首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
张剑  董路  张雁云 《生物多样性》2019,27(12):1291-1664
我国提议在南极恩克斯堡岛新站址北侧3 km的阿德利企鹅(Pygoscelis adeliae)聚集繁殖地建立南极特别保护区, 对保护区边界的划分, 各国尚存争议, 尤其是对南湾(South Bay)的繁殖小种群是否具有遗传独特性, 是否应将其纳入保护区是重点关注的问题。本研究采集了恩克斯堡岛海景湾(Seaview Bay)和南湾的阿德利企鹅样品, 通过全基因组重测序和种群基因组学方法, 分析了恩克斯堡岛不同区域的种群遗传结构。发现恩克斯堡岛海景湾与南湾阿德利企鹅没有显著的遗传分化, 南湾阿德利企鹅不是独特的小种群; 海景湾高海拔区域个体与低海拔区域个体之间也没有显著的遗传差异, 推测该区域阿德利企鹅繁殖群体的分布格局与冰川堆积形成的阶地不具有显著相关性。本工作为恩克斯堡岛保护区和罗斯海新站建设提供了重要科技支撑。  相似文献   

2.
Historically, king penguin populations on Macquarie Island have suffered greatly from human exploitation. Two large colonies on the island were drastically reduced to a single small colony as a result of harvesting for the blubber oil industry. However, recent conservation efforts have resulted in the king penguin population expanding in numbers and range to recolonize previous as well as new sites. Ancient DNA methods were used to estimate past genetic diversity and combined with studies of modern populations, we are now able to compare past levels of variation with extant populations on northern Macquarie Island. The ancient and modern populations are closely related and show a similar level of genetic diversity. These results suggest that the king penguin population has recovered past genetic diversity in just 80 years owing to conservation efforts, despite having seen the brink of extinction.  相似文献   

3.
There is an increasing awareness that the long-term viability of endemic island populations is negatively affected by genetic factors associated with population bottlenecks and/or persistence at small population size. Here we use contemporary samples and historic museum specimens (collected 1888–1938) to estimate the effective population size (N e) for the endangered yellow-eyed penguin (Megadyptes antipodes) in South Island, New Zealand, and evaluate the genetic concern for this iconic species. The South Island population of M. antipodes—constituting almost half of the species’ census size—is thought to be descended from a small number of founders that reached New Zealand just a few hundred years ago. Despite intensive conservation measures, this population has shown dramatic fluctuations in size over recent decades. We compare estimates of the harmonic mean N e for this population, obtained using one moment and three likelihood based-temporal methods, including one method that simultaneously estimates migration rate. Evaluation of the N e estimates reveals a harmonic mean N e in the low hundreds. Additionally, the inferred low immigration rates (m = 0.003) agree well with contemporary migration rate estimates between the South Island and subantarctic populations of M. antipodes. The low N e of South Island M. antipodes is likely affected by strong fluctuations in population size, and high variance in reproductive success. These results show that genetic concerns for this population are valid and that the long-term viability of this species may be compromised by reduced adaptive potential.  相似文献   

4.
企鹅珍珠贝不同地理群体遗传多样性的fAFLP 分析   总被引:1,自引:0,他引:1  
为阐明企鹅珍珠贝(Pteria penguin)不同地理种群的遗传多样性机制, 采用荧光标记扩增片段长度多态性(fAFLP)技术分析了企鹅珍珠贝广西涠洲岛、广东流沙湾和海南黎安3 个不同地理群体的遗传多样性。选取7 对引物组合对90 个个体(每个群体30 个)进行fAFLP 扩增, 结果发现每个个体均能扩增出清晰的、可重复的扩增条带, 每对引物的扩增位点数在100—163 之间, 共得到895 个扩增位点, 多态位点数为865 个; 涠洲岛、流沙湾和黎安群体的多态位点比例分别为70.73%、63.13%、66.82%。Nei 遗传多样性指数为0.1634、0.1558、0.1783, Shannon 遗传多样性指数为0.2635、0.2474、0.2932。3 个群体间遗传相似度在0.9722—0.9824之间, 遗传距离在0.0177—0.0282 之间。根据遗传距离绘制UPGMA 聚类图, 但Mantel 检验结果显示企鹅珍珠贝三群体间的遗传距离与地理距离之间无显著相关。Shannon 遗传多样性指数和AMOVA 分析, 结果均显示企鹅珍珠贝的遗传变异主要来源于群体内个体间, 7.91%的遗传变异来自群体间, 92.09%的遗传变异来自群体内。分析群体的显性基因型频率分布和基因流Nm 发现3 个群体有基本相同的遗传结构, 有明显的基因交流。研究结果表明北海涠洲岛群体、湛江流沙湾群体和海南黎安群体的企鹅珍珠贝种质有较高的多态位点比例, 但未发生显著地理分化。这一结果为我国企鹅珍珠贝的良种选育以及种质资源保护措施的制定提供了参考依据。    相似文献   

5.
Translocation of individuals among extant populations is an important tool in species conservation that allows managers to supplement dwindling populations and potentially alleviate the deleterious effects of inbreeding. Ideal translocation strategy should consider historical relationships among existing populations to avoid potential disruption of population subdivision and local adaptation. Here, we examine mitochondrial sequence variation in the endangered blue duck Hymenolaimus malacorhynchos, a New Zealand endemic riverine specialist, to facilitate informed decision making in future translocations. Behavioural observations suggest that blue duck dispersal is limited and may result in genetic structure within and between regional populations. We analysed 894 base pairs of mitochondrial control region in 78 adult blue ducks sampled from 11 river catchments across the species’ range (representing four regions in the North Island and three regions in the South Island) and found strong and significant genetic structure both within and among islands. These results, combined with a 2.0% sequence divergence between islands, indicates that North Island and South Island blue ducks should be treated as separate management units. The relationship between genetic differentiation and geographic distance for blue ducks on the South Island conformed to an “isolation by distance” pattern. Overall, we recommend that translocations of blue ducks should not be made between the North and the South Islands and those within each island should be restricted to neighbouring catchments.  相似文献   

6.
Historical records suggest that the petrels of Round Island (near Mauritius, Indian Ocean) represent a recent, long‐distance colonization by species originating from the Atlantic and Pacific Oceans. The majority of petrels on Round Island appear most similar to Pterodroma arminjoniana, a species whose only other breeding locality is Trindade Island in the South Atlantic. Using nine microsatellite loci, patterns of genetic differentiation in petrels from Round and Trindade Islands were analysed. The two populations exhibit low but significant levels of differentiation in allele frequencies and estimates of migration rate between islands using genetic data are also low, supporting the hypothesis that these populations have recently separated but are now isolated from one another. A second population of petrels, most similar in appearance to the Pacific species P. neglecta, is also present on Round Island and observations suggest that the two petrel species are hybridizing. Vocalizations recorded on the island also suggest that hybrid birds may be present within the population. Data from microsatellite genotypes support this hypothesis and indicate that there may have been many generations of hybridization and back‐crossing between P. arminjoniana and P. neglecta on Round Island. Our results provide an insight into the processes of dispersal and the consequences of secondary contact in Procellariiformes.  相似文献   

7.
Seabirds and their response to climate perturbations are important bioindicators of changes in Antarctic ecosystems. During 30?years of observations of two chinstrap penguin (Pygoscelis antarcticus) colonies, one on King George Island and the other on Penguin Island (South Shetland Islands, Antarctica), the size of the breeding populations decreased by 84 and 41?%, respectively. We applied analyses of amplified fragment length polymorphisms to study the genetic structure of the two populations and to evaluate the influence of the sudden population decrease. Our data indicate that there were only weak genetic differences between the populations, which were not strong enough to support the hypothesis of population differentiation. Weak genetic differences observed between the two populations seem not to be determined by selection processes. We hypothesize that the very low level of between-population genetic structure can be explained by some extent of genetic drift, which is largely compensated by gene flow. Moreover, the two populations seem to remain in a stationary state. Our results support the hypothesis of limited natal philopatry in chinstrap penguins. The observed decrease in population size is probably caused by emigration or a rise in juvenile mortality due to the increasing krill limitation of the marine food web. However, detailed research is required to address this issue.  相似文献   

8.
The spatial distribution of a species’ genetic diversity can provide insights into underlying evolutionary, ecological and environmental processes, and can contribute information towards the delineation of conservation units. The Knysna seahorse, Hippocampus capensis, is endangered and occurs in only three estuaries on the warm-temperate south coast of South Africa: Knsyna, Keurbooms and Swartvlei. Population sizes in the latter two estuaries have been very small for a prolonged period of time, and the populations residing in them may thus benefit from translocations as a means of increasing population sizes and possibly also genetic diversity. However, information on whether these three estuaries constitute distinct conservation units that warrant separate management is presently lacking. Here, we used genetic information from mitochondrial (control region) and nuclear microsatellite loci to assess the genetic diversity and spatial structure across the three estuaries, and also whether translocations should be included in the management plan for the Knysna seahorse. Although each population had a unique combination of alleles, and clustering methods identified the Swartvlei Estuary as being distinct from the others, levels of genetic admixture were high, and there was no evidence for reciprocal monophyly that would indicate that each estuary has a unique demographic history. On these grounds, we suggest recognising the three populations as a single evolutionarily significant unit (ESU), and encourage translocations between them to ensure the species’ long-term survival.  相似文献   

9.
Commercial sealing in the 18th and 19th centuries had a major impact on the Antarctic and subantarctic fur seal populations (Arctocephalus gazella and A. tropicalis) in the Southern Ocean. The intensive and unrestricted nature of the industry ensured substantial reductions in population sizes and resulted in both species becoming locally extinct at some sites. However, both species are continuing to recover, through the recolonization of islands across their former range and increasing population size. This study investigated the extent and pattern of genetic variation in each species to examine the hypothesis that higher levels of historic sealing in A. gazella have resulted in a greater loss of genetic variability and population structure compared with A. tropicalis. A 316-bp section of the mitochondrial control region was sequenced and revealed nucleotide diversities of 3.2% and 4.8% for A. gazella and A. tropicalis, respectively. There was no geographical distribution of lineages observed within either species, although the respective PhiST values of 0.074 and 0.19 were significantly greater than zero. These data indicate low levels of population structure in A. gazella and relatively high levels in A. tropicalis. Additional samples screened with restriction endonucleases were incorporated, and the distribution of restriction fragment length polymorphism (RFLP) and sequence haplotypes were examined to identify the main source populations of newly recolonized islands. For A. tropicalis, the data suggest that Macquarie Island and Iles Crozet were probably recolonized by females from Marion Island, and to a lesser extent Ile Amsterdam. Although there was less population structure within A. gazella, there were two geographical regions identified: a western region containing the populations of South Georgia and Bouvetoya, which were the probable sources for populations at Marion, the South Shetland and Heard Islands; and an eastern region containing the panmictic populations of Iles Kerguelen and Macquarie Island. The latter region may be a result of a pronounced founder effect, or represent a remnant population that survived sealing at Iles Kerguelen.  相似文献   

10.
The Saint Croix ground lizard (Ameiva polops) is a Critically Endangered species endemic to Saint Croix, U.S. Virgin Islands. Although it is completely extirpated from Saint Croix Island (last seen in 1968), two small natural satellite populations survive on two islets off St. Croix: one on Protestant Cay (estimated at ~30 individuals in 2002); and one on Green Cay (estimated at ~180 individuals in 2002). Two additional small populations exist that were founded with individuals translocated from the two surviving natural populations. One is on Ruth Island, a man-made islet off St. Croix, founded in 1990 with 10 individuals from Protestant Cay. The other is on Buck Island, ~2.5 km from Saint Croix, founded in 2008 with 57 individuals from Green Cay. All populations are vulnerable to catastrophic events such as hurricanes, sea level rise, introduction of exotic species, and landscape transformation. Herein, we used mitochondrial and nuclear-microsatellite markers to examine levels of genetic diversity within extant populations of A. polops and the degree of genetic differentiation among them. We also conducted analyses to search for signatures of recent bottlenecks in these populations and to estimate their effective population size (N e ). We found low genetic variability within populations of this lizard, comparable to that observed in other threatened vertebrates. We also found significant genetic differentiation among the three populations examined, as well as signatures of recent bottlenecks and critically low N e values in all populations. Based on our results, we suggest two different conservation units for A. polops: (1) Green Cay and its replicate population at Buck Island; and (2) Protestant Cay and its replicate population at Ruth Island. We discuss the implications of our findings on the conservation and management of A. polops.  相似文献   

11.
Phylogeography and conservation genetics of Eld's deer (Cervus eldi)   总被引:6,自引:0,他引:6  
Eld's deer (Cervus eldi) is a highly endangered cervid, distributed historically throughout much of South Asia and Indochina. We analysed variation in the mitochondrial DNA (mtDNA) control region for representatives of all three Eld's deer subspecies to gain a better understanding of the genetic population structure and evolutionary history of this species. A phylogeny of mtDNA haplotypes indicates that the critically endangered and ecologically divergent C. eldi eldi is related more closely to C. e. thamin than to C. e. siamensis, a result that is consistent with biogeographic considerations. The results also suggest a strong degree of phylogeographic structure both between subspecies and among populations within subspecies, suggesting that dispersal of individuals between populations has been very limited historically. Haplotype diversity was relatively high for two of the three subspecies (thamin and siamensis), indicating that recent population declines have not yet substantially eroded genetic diversity. In contrast, we found no haplotype variation within C. eldi eldi or the Hainan Island population of C. eldi siamensis, two populations which are known to have suffered severe population bottlenecks. We also compared levels of haplotype and nucleotide diversity in an unmanaged captive population, a managed captive population and a relatively healthy wild population. Diversity indices were higher in the latter two, suggesting the efficacy of well-designed breeding programmes for maintaining genetic diversity in captivity. Based on significant genetic differentiation among Eld's deer subspecies, we recommend the continued management of this species in three distinct evolutionarily significant units (ESUs). Where possible, it may be advisable to translocate individuals between isolated populations within a subspecies to maintain levels of genetic variation in remaining Eld's deer populations.  相似文献   

12.
The Blakiston's fish owl (Bubo blakistoni) population on Hokkaido Island, Japan, decreased to less than one hundred individuals over the last century due to habitat disruption by human activity. Although the ongoing conservation management has slightly restored the population, it remains endangered. In order to assess the genetic variation and population structure of the Blakiston's fish owl in Hokkaido, we genotyped eight microsatellite loci on 120 individuals sampled over the past three decades. The genotype data set showed low levels of genetic variation and gene flow among the geographically isolated five subpopulations. Comparative analysis of past and current populations indicated that some alleles shared by past individuals had been lost, and that genetic variation had declined over the last three decades. The result suggests that the genetic decline may have resulted from inbreeding and/or genetic drift due to bottlenecks in the Hokkaido population. The present study provides invaluable genetic information for the conservation and management of the endangered Blakiston's fish owl in Hokkaido.  相似文献   

13.
We report the first record of a northern rockhopper penguin Eudyptes moseleyi on the Kerguelen Islands, Southern Indian Ocean. The penguin must have crossed the subtropical convergence to reach the island. This species was recently proved to be genetically different from the subantarctic eastern rockhopper penguin E. filholi that normally breeds on the Kerguelen Islands. The sequencing of a part of the mitochondrial control region shows that this bird may come from the population of Gough Island, 6,000 km away, in the south Atlantic Ocean. This finding confirms that the genetic isolation between these two penguin species is complete, although some individuals may sporadically disperse between the breeding sites. This first direct observation of a disperser from the Atlantic to the Indian Ocean also adds further support to a biogeographic dispersion pattern already suggested by phylogeographic patterns in other species from the Southern Ocean.  相似文献   

14.
The influences of management practices and past demographic history on genetic diversity are of critical relevance to sustainable practices and the conservation of wildlife populations. The red deer (Cervus elaphus) is an interesting model species to address these questions because it has a wide geographical distribution and it has been intensively managed for humans in the last decades. In the present study, we have analyzed the impact of recent management practices on the genetic diversity of Iberian red deer populations and assessed the genetic variation effects on population and individual fitness‐related traits. Four populations subjected to distinct management systems were selected: Cabañeros (CB) and Doñana (DN), not hunted populations; Fraga/Caspe (FG/CP), open hunting area with very low or absent management; and PE, fenced private hunting estate founded 31 years ago through the introduction of deer of different origins. Ten microsatellites were amplified in a total of 172 individuals. Additionally, several fitness‐related traits such as the presence of tuberculosis compatible lesions (TBCL), spleen weight (SW), and body length (BL) were estimated. We found a marked genetic variation and differentiation among populations, suggesting a strong population structure. In the fenced population, the introduction of genetically distinct animals has led to high genetic variability (no evidence of inbreeding) despite intensive management. Lower levels of genetic diversity were observed in two historically isolated natural populations (DN and FG/CP). The past demographic history of Iberian populations appears to be more relevant than the current management policy in shaping the genetic variability of natural populations. Population genetic diversity may correlate with life‐history traits and disease susceptibility, which could compromise the conservation and management of these wildlife populations. Although no significant effects of individual genetic diversity (general and local effect hypotheses) were observed on TBCL, SW and BL, some single‐locus effects had almost significant trends for the TBCL and SW traits. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 209–223.  相似文献   

15.
The distribution and abundance of the greater sage-grouse (Centrocercus urophasianus) have declined dramatically, and as a result the species has become the focus of conservation efforts. We conducted a range-wide genetic survey of the species which included 46 populations and over 1000 individuals using both mitochondrial sequence data and data from seven nuclear microsatellites. Nested clade and structure analyses revealed that, in general, the greater sage-grouse populations follow an isolation-by-distance model of restricted gene flow. This suggests that movements of the greater sage-grouse are typically among neighbouring populations and not across the species, range. This may have important implications if management is considering translocations as they should involve neighbouring rather than distant populations to preserve any effects of local adaptation. We identified two populations in Washington with low levels of genetic variation that reflect severe habitat loss and dramatic population decline. Managers of these populations may consider augmentation from geographically close populations. One population (Lyon/Mono) on the southwestern edge of the species' range appears to have been isolated from all other greater sage-grouse populations. This population is sufficiently genetically distinct that it warrants protection and management as a separate unit. The genetic data presented here, in conjunction with large-scale demographic and habitat data, will provide an integrated approach to conservation efforts for the greater sage-grouse.  相似文献   

16.
The endangered mountain zebra (Equus zebra) is endemic to the semi-arid inhospitable mountainous escarpments of southern Africa. The species is divided taxonomically into two geographically separated subspecies, each with differing recent population histories. In Namibia, Hartmann’s mountain zebra (E. z. hartmannae) is common and occurs in large free-ranging populations, whereas in South Africa, prolonged hunting and habitat destruction over the last 300 years has decimated populations of the Cape mountain zebra (E. z. zebra). In this study, we investigate the consequences of these divergent demographic histories for population genetic diversity and structure. We also examine the phylogeographic relationship between the two taxonomic groups. Genetic information was obtained at 15 microsatellite loci for 291 individuals from a total of 10 populations as well as 445 bp of the mitochondrial control region sequence data from 77 individuals. Both model-based and standard analytical approaches were used to examine the data. Both types of marker returned levels of diversity and structure that were consistent with population history. Low genetic variation within individual Cape mountain zebra populations, the characteristic indicator of population fragmentation and drift, was offset by moderate variation in the entire E. z. zebra sample. This implies that higher levels of diversity still exist within the Cape mountain zebra gene pool. A management strategy that entailed the mixing of aboriginal populations is therefore advocated in order to halt the further loss of Cape mountain zebra genetic diversity. Allele frequencies in Hartmann’s mountain zebra were relatively resilient to demographic fluctuations. Due to the high incidence of mitochondrial haplotype sharing between populations, the hypothesis that Cape and Hartmann’s mountain zebra mitochondrial lineages were reciprocally monophyletic was not supported. However, the presence of private alleles at nuclear loci rendered the two subspecies genetically distinct evolutionary significant units.  相似文献   

17.
The endangered Cook’s petrel (Pterodroma cookii) is restricted to two separated populations at the extremes of its former range across New Zealand. Prior work revealed morphological, foraging, and reproductive isolation between these two remnant populations. To aid the conservation management of the species, additional information is required on the genetic structure of Cook’s petrel. We used mitochondrial DNA sequences (Cytochrome Oxidase subunit 1 gene), collected from 26 and 19 Cook’s petrel breeding on Little Barrier Island (LBI) and Codfish Island (CDF), respectively, for this preliminary study. We uncovered distinct population genetic structure with analysis of molecular variance suggesting genetic isolation of the populations. Levels of genetic variation were higher in the LBI population (four haplotypes present; h = 0.34 and π = 0.10) whereas the CDF population had only one haplotype that was distinct from the LBI population. Our results indicate that Cook’s petrel constitute two distinct management units for which conservation of genetic as well as behavioural and morphological diversity should be a priority. Further genetic studies using nuclear markers are recommended.  相似文献   

18.
The fluvial eight-barbel loach Lefua sp. 1 is an undescribed species distributed from the Kinki to Chugoku districts, Honshu, and also on Shikoku Island, Japan. Genetic relationships among local populations are unclear and management units remain undetermined. To aid conservation, we determined genetic population structures from microsatellite loci for 20 populations from three river systems on Honshu. The genetic diversity within populations is relatively low; the majority has experienced genetic bottlenecks. Statistical analysis revealed significant divergence among river systems suggesting that each should be recognized as a management unit. Any conservation program should consider the populations’ genetic uniqueness.  相似文献   

19.
The identification and assessment of island endemics is a conservation priority. We genotyped 115 rock ptarmigan from five insular populations in the Aleutian-Commander archipelago and two Alaska mainland populations to identify conservation units, assess genetic diversity and gene flow, and to determine whether populations have declined over time. We found four distinct populations that appear to be completely isolated and which correspond closely to recognized subspecies. The most geographically isolated populations also have the lowest genetic diversity. Three populations (Attu Island, Rat Islands, and Adak Island), which each experienced historic introductions of an exotic predator, showed genetic signals of declines, but the timing did not correspond with the introduction. We recommend management of each endemic group as a unique conservation unit.  相似文献   

20.
Aim Genetically differentiated insular populations are candidates for independent units for conservation. However, occasional immigration to reduced island populations may occur and potentially have important consequences in their future viability and evolutionary potential. In this study, we investigate the conservation implications of population structure and connectivity of insular and continental populations of a migratory raptor as determined using genetic tools and satellite tracking. Location Western European populations in the Iberian Peninsula and two insular populations in the Mediterranean Sea (Balearic Islands) and Atlantic Ocean (Canary Islands). Methods We genotyped 22 microsatellite loci in 96 Egyptian vultures (Neophron percnopterus) from the Iberian Peninsula, 36 from Menorca (Balearic archipelago) and 242 (85% of the current population) from Fuerteventura (Canary Islands). We analysed genetic variation to estimate structure, gene flow, genetic diversity, effective size and recent demographic history of the populations. Additionally, 19 vultures were marked with satellite transmitters to track their migration routes. Results Insular populations were genetically differentiated from those of the mainland. We detected immigration in the insular populations and within the continental counterpart. We found similar levels of genetic variability between the continent and the islands, and a bottleneck analysis indicated recent sharp population declines in both archipelagos but not on the continent. Main conclusions Our study provides evidence that, in spite of significant differentiation, insular populations of highly mobile species may remain connected with the mainland. Conservation programmes should take into account population connectivity and integrate differentiated units of management within complex units of conservation that can best maintain processes and potential for evolutionary change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号