首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The arginine regulatory protein of Pseudomonas aeruginosa, ArgR, is essential for induction of operons that encode enzymes of the arginine succinyltransferase (AST) pathway, which is the primary route for arginine utilization by this organism under aerobic conditions. ArgR also induces the operon that encodes a catabolic NAD(+)-dependent glutamate dehydrogenase (GDH), which converts l-glutamate, the product of the AST pathway, in alpha-ketoglutarate. The studies reported here show that ArgR also participates in the regulation of other enzymes of glutamate metabolism. Exogenous arginine repressed the specific activities of glutamate synthase (GltBD) and anabolic NADP-dependent GDH (GdhA) in cell extracts of strain PAO1, and this repression was abolished in an argR mutant. The promoter regions of the gltBD operon, which encodes GltBD, and the gdhA gene, which encodes GdhA, were identified by primer extension experiments. Measurements of beta-galactosidase expression from gltB::lacZ and gdhA::lacZ translational fusions confirmed the role of ArgR in mediating arginine repression. Gel retardation assays demonstrated the binding of homogeneous ArgR to DNA fragments carrying the regulatory regions for the gltBD and gdhA genes. DNase I footprinting experiments showed that ArgR protects DNA sequences in the control regions for these genes that are homologous to the consensus sequence of the ArgR binding site. In silica analysis of genomic information for P. fluorescens, P. putida, and P. stutzeri suggests that the findings reported here regarding ArgR regulation of operons that encode enzymes of glutamate biosynthesis in P. aeruginosa likely apply to other pseudomonads.  相似文献   

3.
4.
S M Park  C D Lu    A T Abdelal 《Journal of bacteriology》1997,179(17):5309-5317
Pseudomonas aeruginosa ArgR, a regulatory protein that plays a major role in the control of certain biosynthetic and catabolic arginine genes, was purified to homogeneity. ArgR was shown to be a dimer of two equal subunits, each with a molecular mass of 37,000 Da. Determination of the amino-terminal amino acid sequence showed it to be identical to that predicted from the derived sequence for the argR gene. DNase I footprinting showed that ArgR protects a region of 45 to 47 bp that overlaps the promoters for the biosynthetic car and argF operons, indicating that ArgR exerts its negative control on the expression of these operons by steric hindrance. Studies were also carried out with the aru operon, which encodes enzymes of the catabolic arginine succinyl-transferase pathway. Quantitative S1 nuclease experiments showed that expression of the first gene in this operon, aruC, is initiated from an arginine-inducible promoter. Studies with an aruC::lacZ fusion showed that this promoter is under the control of ArgR. DNase I experiments indicated that ArgR protects two 45-bp binding sites upstream of aruC; the 3' terminus for the downstream binding site overlaps the -35 region for the identified promoter. Gel retardation experiments yielded apparent dissociation constants of 2.5 x 10(-11), 4.2 x 10(-12), and 7.2 x 10(-11) M for carA, argF, and aruC operators, respectively. Premethylation interference and depurination experiments with the car and argF operators identified a common sequence, 5'-TGTCGC-3', which may be important for ArgR binding. Alignment of ArgR binding sites reveals that the ArgR binding site consists of two half-sites, in a direct repeat arrangement, with the consensus sequence TGTCGCN8AAN5.  相似文献   

5.
The repression of the carAB operon encoding carbamoyl phosphate synthase leads to Lactobacillus plantarum FB331 growth inhibition in the presence of arginine. This phenotype was used in a positive screening to select spontaneous mutants deregulated in the arginine biosynthesis pathway. Fourteen mutants were genetically characterized for constitutive arginine production. Mutations were located either in one of the arginine repressor genes (argR1 or argR2) present in L. plantarum or in a putative ARG operator in the intergenic region of the bipolar carAB-argCJBDF operons involved in arginine biosynthesis. Although the presence of two ArgR regulators is commonly found in gram-positive bacteria, only single arginine repressors have so far been well studied in Escherichia coli or Bacillus subtilis. In L. plantarum, arginine repression was abolished when ArgR1 or ArgR2 was mutated in the DNA binding domain, or in the oligomerization domain or when an A123D mutation occurred in ArgR1. A123, equivalent to the conserved residue A124 in E. coli ArgR involved in arginine binding, was different in the wild-type ArgR2. Thus, corepressor binding sites may be different in ArgR1 and ArgR2, which have only 35% identical residues. Other mutants harbored wild-type argR genes, and 20 mutants have lost their ability to grow in normal air without carbon dioxide enrichment; this revealed a link between arginine biosynthesis and a still-unknown CO2-dependent metabolic pathway. In many gram-positive bacteria, the expression and interaction of different ArgR-like proteins may imply a complex regulatory network in response to environmental stimuli.  相似文献   

6.
The complete nucleotide sequence for the aot operon of Pseudomonas aeruginosa PAO1 was determined. This operon contains six open reading frames. The derived sequences for four of these, aotJ, aotQ, aotM, and aotP, show high similarity to those of components of the periplasmic binding protein-dependent ABC (ATP binding cassette) transporters of enteric bacteria. Transport studies with deletion derivatives established that these four genes function in arginine-inducible uptake of arginine and ornithine but not lysine. The aotO gene, which encodes a polypeptide with no significant similarity to any known proteins, is not essential for arginine and ornithine uptake. The sixth and terminal gene in the operon encodes ArgR, which has been recently shown to function in regulation of arginine metabolism. Studies with an aotJ::lacZ translational fusion showed that expression of the aot operon is strongly induced by arginine and that this effect is mediated by ArgR. S1 nuclease and primer extension experiments showed the presence of two promoters, P1 and P2. The downstream promoter, P2, is induced by arginine and appears to be subject to carbon catabolite repression. The upstream promoter, P1, is induced by glutamate. Footprinting experiments established the presence of a 44-bp ArgR binding site that overlaps the −35 region for P2, as was shown to be the case for the arginine-inducible aru promoter, and the −10 region for P1, as was shown to be the case for arginine-repressible operons in P. aeruginosa. Sequence alignment confirms the architecture and the consensus sequence of the ArgR binding sites, as was previously reported.  相似文献   

7.
8.
NtrC protein of piezophilic Shewanella violacea was overexpressed and purified, to confirm the protein-DNA interaction. An electrophoretic mobility shift assay demonstrated that the NtrC recognizes the sequence for NtrC binding within the region upstream of the glnA operon. Western blot analysis also showed that the NtrC is expressed at a higher level under high-pressure conditions than under atmospheric pressure conditions.  相似文献   

9.
Pseudomonas aeruginosa can utilize arginine and other amino acids as both carbon and nitrogen sources. Earlier studies have shown that the specific porin OprD facilitates the diffusion of basic amino acids as well as the structurally analogous beta-lactam antibiotic imipenem. The studies reported here showed that the expression of OprD was strongly induced when arginine, histidine, glutamate, or alanine served as the sole source of carbon. The addition of succinate exerted a negative effect on induction of oprD, likely due to catabolite repression. The arginine-mediated induction was dependent on the regulatory protein ArgR, and binding of purified ArgR to its operator upstream of the oprD gene was demonstrated by gel mobility shift and DNase assays. The expression of OprD induced by glutamate as the carbon source, however, was independent of ArgR, indicating the presence of more than a single activation mechanism. In addition, it was observed that the levels of OprD responded strongly to glutamate and alanine as the sole sources of nitrogen. Thus, that the expression of oprD is linked to both carbon and nitrogen metabolism of Pseudomonas aeruginosa.  相似文献   

10.
11.
Transcriptome analysis of the ArgR regulon in Pseudomonas aeruginosa   总被引:2,自引:0,他引:2  
Lu CD  Yang Z  Li W 《Journal of bacteriology》2004,186(12):3855-3861
  相似文献   

12.
13.
14.
We report the cloning of the arginine repressor gene from the psychropiezophilic Gram-negative bacterium Moritella profunda, the purification of its product (ArgR(Mp)), the identification of the operator in the bipolar argECBFGH(A) operon, in vivo repressibility studies, and an in vitro analysis of the repressor-operator interaction, including binding to mutant and heterologous arginine operators. The ArgR(Mp) subunit shows about 70% amino acid sequence identity with Escherichia coli ArgR (ArgR(Ec)). Binding of purified hexameric ArgR(Mp) to the control region of the divergent operon proved to be arginine-dependent, sequence-specific, and significantly more sensitive to heat than complex formation with ArgR(Ec). ArgR(Mp) binds E.coli arginine operators very efficiently, but hardly recognizes the operator from Bacillus stearothermophilus or Thermotoga maritima. ArgR(Mp) binds to a single site overlapping the -35 element of argC(P), but not argE(P). Therefore, the arrangement of promoter and operator sites in the bipolar argECBFGH(A) operon of M.profunda is very different from the organization of control elements in the bipolar argECBH operon of E.coli, where both promoters overlap the common operator and are equally repressible. We demonstrate that M.profunda argC(P) is about 44-fold repressible, whereas argE(P) is fully constitutive. A high-resolution contact map of the ArgR(Mp)-operator interaction was established by enzymatic and chemical footprinting, missing contact and base-specific premodification binding interference studies. The results indicate that the argC operator consists of two ARG box-like sequences (18bp imperfect palindromes) separated by 3bp. ArgR(Mp) binds to one face of the DNA helix and establishes contacts with two major groove segments and the intervening minor groove of each ARG box, whereas the minor groove segment facing the repressor at the center of the operator remains largely uncontacted. This pattern is reminiscent of complex formation with the repressors of E.coli and B.stearothermophilus, and suggests that each ARG box is contacted by two ArgR subunits belonging to opposite trimers. Moreover, the premodification interference patterns and mutant studies clearly indicate that the inner, center proximal halves of each ARG box in the M.profunda argC operator are more important for complex formation and repression than the outermost halves. A close inspection of sequence conservation and of single base-pair O(c)-type mutations indicate that the same conclusion can be generalized to E.coli operators.  相似文献   

15.
16.
S M Park  C D Lu    A T Abdelal 《Journal of bacteriology》1997,179(17):5300-5308
Gel retardation experiments indicated the presence in Pseudomonas aeruginosa cell extracts of an arginine-inducible DNA-binding protein that interacts with the control regions for the car and argF operons, encoding carbamoylphosphate synthetase and anabolic ornithine carbamoyltransferase, respectively. Both enzymes are required for arginine biosynthesis. The use of a combination of transposon mutagenesis and arginine hydroxamate selection led to the isolation of a regulatory mutant that was impaired in the formation of the DNA-binding protein and in which the expression of an argF::lacZ fusion was not controlled by arginine. Experiments with various subclones led to the conclusion that the insertion affected the expression of an arginine regulatory gene, argR, that encodes a polypeptide with significant homology to the AraC/XylS family of regulatory proteins. Determination of the nucleotide sequence of the flanking regions showed that argR is the sixth and terminal gene of an operon for transport of arginine. The argR gene was inactivated by gene replacement, using a gentamicin cassette. Inactivation of argR abolished arginine control of the biosynthetic enzymes encoded by the car and argF operons. Furthermore, argR inactivation abolished the induction of several enzymes of the arginine succinyltransferase pathway, which is considered the major route for arginine catabolism under aerobic conditions. Consistent with this finding and unlike the parent strain, the argR::Gm derivative was unable to utilize arginine or ornithine as the sole carbon source. The combined data indicate a major role for ArgR in the control of arginine biosynthesis and aerobic catabolism.  相似文献   

17.
The hexameric regulatory protein ArgR formed by arginine-mediated dimerization of identical trimers governs the expression of genes required for arginine metabolism and some other genes in mesophilic and moderately thermophilic bacteria. We have cloned the argR gene from two hyperthermophilic bacteria of the genus Thermotoga. The two-domain ArgR proteins encoded by T. neapolitana and T. maritima share a low degree of sequence similarity with other bacterial arginine repressors. The ArgR protein from T. neapolitana binds to an operator located just upstream of its coding sequence and, therefore, the argR gene may be autoregulated. The protein has extremely high intrinsic thermostability and tolerance to urea. Moreover, its binding to target DNA increases the melting temperature by approximately 15° C. The formation of oligomeric ArgR-DNA complexes is a function of protein concentration, with hexameric complexes being favoured at higher concentrations. In the presence of arginine the hyperthermophilic ArgR protein binds to its own operator, argRo, only by forming hexamer ArgR-DNA complexes, whereas both trimer-DNA and hexamer-DNA complexes are detected in the absence of arginine. However, the affinity of T. neapolitana ArgR for DNA has been found to be higher for a mixture of trimers and non-bound hexamers than for arginine-bound hexamers. Our data indicate that genes for arginine biosynthesis are clustered in a putative operon, which could also be regulated by the ArgR protein, in the hyperthermophilic host. Received: 19 July 1999 / Accepted: 4 November 1999  相似文献   

18.
19.
Tandem CRP binding sites in the deo operon of Escherichia coli K-12   总被引:26,自引:7,他引:19       下载免费PDF全文
The locations of DNA binding by the cyclic AMP receptor protein (CRP) in the deo operon of Escherichia coli have been determined by the DNase I footprinting procedure. Two high affinity sites were found around positions -35 and -90, preceding the second deo promoter. In vitro data on induction of gene fusions that join different parts of the deoP -2 regulatory region to the lac genes suggest that: (1) both CRP binding sites are needed for high expression from the deoP -2 region; and (2) negative regulation by the cytR repressor is accomplished by preventing the cAMP-CRP complex from binding to the second target.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号