首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were maintained at fasting levels. This study aimed to determine whether the pST-induced increase in insulin promotes skeletal muscle protein synthesis when amino acids are provided at fed levels and whether the response is associated with enhanced translation initiation factor activation. Growing pigs were treated with pST (0 or 180 microg x kg(-1) x day(-1)) for 7 days, and then pancreatic-glucose-amino acid clamps were performed. Amino acids were raised to fed levels in the presence of either fasted or fed insulin concentrations; glucose was maintained at fasting throughout. Muscle protein synthesis was increased by pST treatment and by amino acids (with or without insulin) (P<0.001). In pST-treated pigs, fed, but not fasting, amino acid concentrations further increased muscle protein synthesis rates irrespective of insulin level (P<0.02). Fed amino acids, with or without raised insulin concentrations, increased the phosphorylation of S6 kinase (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1), decreased inactive 4EBP1.eIF4E complex association, and increased active eIF4E.eIF4G complex formation (P<0.02). pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of muscle protein synthesis requires fed amino acid levels, but not fed insulin levels. However, under the current conditions, the response to amino acids is not mediated by the activation of translation initiation factors that regulate mRNA binding to the ribosomal complex.  相似文献   

2.
3.
The high efficiency of protein deposition during the neonatal period is driven by high rates of protein synthesis, which are maximally stimulated after feeding. Infusion of amino acids, but not insulin, reproduces the feeding-induced stimulation of liver protein synthesis. To determine whether amino acid-stimulated liver protein synthesis is independent of insulin in neonates, and to examine the role of amino acids and insulin in the regulation of translation initiation in neonatal liver, we performed pancreatic glucose-amino acid clamps in overnight-fasted 7-day-old pigs. Pigs (n = 9-12/group) were infused with insulin at 0, 10, 22, and 110 ng.kg(-0.66).min(-1) to achieve 0, 2, 6, and 30 microU/ml insulin, respectively. At each insulin dose, amino acids were maintained at fasting or fed levels or, in conjunction with the highest insulin dose, allowed to fall to below fasting levels. Insulin had no effect on the fractional rate of protein synthesis in liver. Amino acids increased fractional protein synthesis rates in liver at each dose of insulin, including the 0 microU/ml dose. There was a dose-response effect of amino acids on liver protein synthesis. Amino acids and insulin increased protein S6 kinase and 4E-binding protein 1 (4E-BP1) phosphorylation; however, only amino acids decreased formation of the inactive 4E-BPI.eukaryotic initiation factor-4E (eIF4E) complex. The results suggest that amino acids regulate liver protein synthesis in the neonate by modulating the availability of eIF4E for 48S ribosomal complex formation and that this response does not require insulin.  相似文献   

4.
Previous studies have shown that intravenous infusion of insulin and/or amino acids reproduces the feeding-induced stimulation of muscle protein synthesis in neonates and that insulin and amino acids act independently to produce this effect. The goal of the present study was to delineate the regulatory roles of insulin and amino acids on muscle protein synthesis in neonates by examining translational control mechanisms, specifically the eukaryotic translation initiation factors (eIFs), which enable coupling of initiator methionyl-tRNAi and mRNA to the 40S ribosomal subunit. Insulin secretion was blocked by somatostatin in fasted 7-day-old pigs (n = 8-12/group), insulin was infused to achieve plasma levels of approximately 0, 2, 6, and 30 microU/ml, and amino acids were clamped at fasting or fed levels or, at the high insulin dose, below fasting. Both insulin and amino acids increased the phosphorylation of ribosomal protein S6 kinase (S6K1) and the eIF4E-binding protein (4E-BP1), decreased the binding of 4E-BP1 to eIF4E, increased eIF4E binding to eIF4G, and increased fractional protein synthesis rates but did not affect eIF2B activity. In the absence of insulin, amino acids had no effect on these translation initiation factors but increased the protein synthesis rates. Raising insulin from below fasting to fasting levels generally did not alter translation initiation factor activity but raised protein synthesis rates. The phosphorylation of S6K1 and 4E-BP1 and the amount of 4E-BP1 bound to eIF4E and eIF4E bound to eIF4G were correlated with insulin level, amino acid level, and protein synthesis rate. Thus insulin and amino acids regulate muscle protein synthesis in skeletal muscle of neonates by modulating the availability of eIF4E for 48S ribosomal complex assembly, although other processes also must be involved.  相似文献   

5.
The formation of 80 S initiation complexes containing labeled viral mRNA was drastically inhibited when mRNA binding assays were carried out with reticulocyte lysate preincubated with double-stranded RNA (dsRNA). When the assays were analyzed by centrifugation on sucrose gradients, the mRNA incubated with lysate pretreated with dsRNA sedimented as a 48 S complex. Met-tRNA, GDP, and phosphorylated initiation factor eIF-2(alpha P) were shown to co-sediment with the 48 S complex. Therefore, the formation of this complex was attributed to the phosphorylation of eIF-2 alpha by a dsRNA-activated protein kinase. These observations suggested that mRNA could bind to a 40 S ribosomal subunit containing Met-tRNAf, GDP, and eIF-2(alpha P), but the joining of a 60 S ribosomal subunit was inhibited. When the 48 S complex was isolated and incubated with lysate without added dsRNA, the mRNA could form 80 S initiation complexes. The shift of mRNA from 48 S to 80 S complexes was also observed when the eIF-2 alpha kinase activity was inhibited by the addition of 2-aminopurine. This shift was quite slow, however, when compared to the rate of binding of free mRNA to 80 S initiation complexes. The 2-aminopurine was effective in reversing the inhibition of protein synthesis by dsRNA and in maintaining a linear rate of protein synthesis for 3 h in lysates. Without added 2-aminopurine, protein synthesis was inhibited after 90 min even in lysates supplemented with hemin and eIF-2(alpha P) was detected in these lysates. This finding indicated that eIF-2 alpha phosphorylation could be in part responsible for limiting the duration of protein synthesis in mammalian cell-free systems.  相似文献   

6.
Determinants of diaphragmatic injury   总被引:1,自引:0,他引:1  
Severe muscle wasting is a characteristic feature of sepsis. We have previously established that the rate of protein synthesis in muscles composed of fast-twitch fibers is severely diminished in response to sepsis. The present studies investigate the biochemical reactions responsible for the decreased rate of protein synthesis using gastrocnemius from control and septic rats perfused in situ. Analysis of free ribosomal subunits indicated peptide-chain initiation was impaired by infection. To characterize biochemical reactions in the pathway of peptide-chain initiation affected, the effect of sepsis on the incorporation of initiator [35S]methionyl-tRNA (met-tRNAi mec) into the 40S initiation complex was examined. Sepsis caused a 65% decrease in the binding of radiolabelled met-tRNAi mec to the 40S initiation complex compared with controls. The binding of met-tRNAmec to the 40S ribosome is regulated by eukaryotic initiation factor eIF-2B, whose activity can be modulated in part by the redox state of pyridine dinucleotides. The mean cytoplasmic NADH/NAD+ ratio was increased 2 fold in sepsis, while the NADPH/NADP+ ratio was unchanged. These findings identify the formation of the 40S initiation complex as a defect in the protein synthesis machinery during sepsis. The decreased formation of the 40S initiation complex in muscle could not be explained by changes in the cytoplasmic redox state.  相似文献   

7.
Murine L6 and human rhabdomyosarcoma cells were cultured standardized in low (0.28 mM) and normal (9 mM) amino acid (AA) concentrations to reevaluate by independent methods to what extent AA activate initiation of protein synthesis. Methods used were incorporation of radioactive AA into proteins, distribution analysis of RNA in density gradient, and Western blots on initiation factors of translation of proteins in cultured cells as well as in vivo (gastrocnemius, C57Bl mice) during starvation/refeeding. Incorporation rate of AA gave incorrect results in a variety of conditions, where phenylalanine stimulated the incorporation rate of phenylalanine into proteins, but not of tyrosine, and tyrosine stimulated incorporation of tyrosine but not of phenylalanine. Similar problems were observed when [35S]methionine was used for labeling of fractionated cellular proteins. However, the methods entirely independent of labeled AA incorporation indicated that essential AA activate initiation of translation, whereas nonessential AA did not. Branched-chain AA and glutamine, in combination with some other AA, also stimulated initiation of translation. Starvation/refeeding in vitro agreed qualitatively with results in vivo evaluated by initiation factors. Insulin at physiological concentrations (100 microM/ml) did not stimulate global protein synthesis at low or normal AA concentrations but did so at supraphysiological levels (3 mU/ml), confirmed by independent methods. Our results reemphasize that labeled AA should be used with caution for quantification of protein synthesis, since the precursor pool(s) for protein synthesis is not in complete equilibrium with surrounding AA. "Flooding" tracee experiments did not overcome this problem.  相似文献   

8.
9.
Abstract: Protein synthesis in the brain is known to be affected by a wide range of treatments. The detailed analysis of the mechanisms that are involved would be facilitated by the development of cell-free translation systems derived from brain tissue. To date, brain cell-free systems have not been fully characterized to demonstrate a capacity for initiation of translation. The following criteria were utilized to demonstrate that a cell-free protein synthesis system derived from rabbit brain was capable of initiation in vitro : (a) sensitivity of cell-free translation to the initiation inhibitor aurintricarboxylic acid (ATA); (b) binding of [35S]Met-tRNAf to 40S and 80S initiation complexes; (c) incorporation of labeled initiation methionine into high-molecular-weight proteins; and (d) the association of labeled exogenous mRNA with polysomes. The optimum conditions for amino acid incorporation in this system were 4 mM-Mg2+, 140 mM-K+, and pH 7.55. Incorporation was dependent on the addition of ATP, GTP, and an energy-generating system. Cell-free protein synthesis reflected the normal process, since a similar spectrum of proteins was synthesized in vitro and in vivo. This initiating cell-free translation system should have wide application in the analysis of the mechanisms whereby various treatments affect protein synthesis in the brain.  相似文献   

10.
When a reticulocyte lysate, supplemented with hemin, was warmed at 42 °C, its protein-synthesizing activity was greatly decreased. This was accompanied by the reduced formation of the 40 S·Met-tRNAf initiation complex. This complex preformed at 34 °C, however, was stable and combined with added globin mRNA and the 60 S ribosomal subunit to form the 80 S complex at the elevated temperature. When the ribosome-free supernatant fraction of lysates was warmed at 42 °C with hemin and then added to the fresh lysate system, it inhibited protein synthesis by decreasing the formation of the 40 S complex. This decrease in protein synthesis by warmed lysates or warmed supernatant could be overcome by high concentrations of GTP and cyclic AMP. This effect of GTP and cyclic AMP was antagonized by ATP. The results indicate that the inactivation of protein synthesis by the lysate warmed at 42 °C is due to the formation of an inhibitor in the supernatant. The ribosomal KCl extract prepared from the lysate that had been warmed at 34 °C and then incubated at this temperature for protein synthesis supported protein synthesis by the KCl-washed ribosome at both 34 and 42 °C. On the contrary, the extract from lysates that had been warmed at 42 °C and then incubated at 34 °C could not support protein synthesis at 42 °C, although it was almost equally as promotive as the control extract in supporting protein synthesis at 34 °C. The results indicate that the factor which can protect protein synthesis against inactivation at 42 °C is itself inactivated in lysates warmed at 42 °C. However, the activity of this extract to support formation of the ternary complex with Met-tRNAf and GTP was not reduced. Native 40 S ribosomal subunits isolated from lysates that had been warmed at 42 °C and then incubated for protein synthesis indicated that the quantity of subunits of density 1.40 g/cm3 in a CsCl density gradient were decreased while those of density 1.49 g/cm3 were increased. The factor-promoted binding of Met-tRNAf to the 40 S subunit of lower density from the warmed and unwarmed lysates was equal, suggesting that the ribosomal subunit was not inactivated. These results were discussed in terms of the action of the inhibitor formed in the supernatant at 42 °C, which may inactivate a ribosomal factor essential for protein synthesis initiation.  相似文献   

11.
The kinetics of initiator transfer RNA (tRNA) interaction with the messenger RNA (mRNA)-programmed 30S subunit and the rate of 50S subunit docking to the 30S preinitiation complex were measured for different combinations of initiation factors in a cell-free Escherichia coli system for protein synthesis with components of high purity. The major results are summarized by a Michaelis-Menten scheme for initiation. All three initiation factors are required for maximal efficiency (kcat/KM) of initiation and for maximal in vivo rate of initiation at normal concentration of initiator tRNA. Spontaneous release of IF3 from the 30S preinitiation complex is required for subunit docking. The presence of initiator tRNA on the 30S subunit greatly increases the rate of 70S ribosome formation by increasing the rate of IF3 dissociation from the 30S subunit and the rate of 50S subunit docking to the IF3-free 30S preinitiation complex. The reasons why IF1 and IF3 are essential in E. coli are discussed in the light of the present observations.  相似文献   

12.
Glucocorticoids inhibit protein synthesis in muscle. In contrast, insulin and amino acids exert anabolic actions that arise in part from their ability to phosphorylate ribosomal p70 S6-kinase (p70(S6k)) and eukaryotic initiation factor (eIF)4E binding protein (BP)1 (PHAS-I), proteins that regulate translation initiation. Whether glucocorticoids interfere with this action was examined by giving rats either dexamethasone (DEX, 300 microg. kg(-1). day(-1), n = 10) or saline (n = 10) for 5 days. We then measured the phosphorylation of PHAS-I and p70(S6k) in rectus muscle biopsies taken before and at the end of a 180-min infusion of either insulin (10 mU. min(-1). kg(-1) euglycemic insulin clamp, n = 5 for both DEX- and saline-treated groups) or a balanced amino acid mixture (n = 5 for each group also). Protein synthesis was also measured during the infusion period. The results were that DEX-treated rats had higher fasting insulin, slower glucose disposal, less lean body mass, and decreased protein synthetic rates during insulin or amino acid infusion (P < 0.05 each). DEX did not affect basal PHAS-I or p70(S6k) phosphorylation but blocked insulin-stimulated phosphorylation of PHAS-I- and amino acid-stimulated phosphorylation of both PHAS-I and p70(S6k) (P < 0.01, for each). DEX also increased muscle PHAS-I concentration. These effects can, in part, explain glucocorticoid-induced muscle wasting.  相似文献   

13.
Ribosomal activity of the 16 S.23 S RNA complex   总被引:1,自引:0,他引:1  
It has been demonstrated in this laboratory that 16 S and 23 S RNAs form a binary complex like 30 S and 50 S ribosomes under certain specific conditions, and 5 S RNA can be incorporated into the complex in stoichiometric amounts in presence of three ribosomal proteins, L5, L18, and L15/25. These studies raised the basic question of whether such complex will have biological activity. Therefore, the following steps in protein synthesis were examined with the complex in place of the ribosomes: (i) poly-U-dependent binding of phenylalanyl tRNA; (ii) EF-G-dependent GTPase activity; (iii) initiation complex formation; (iv) peptidyl transferase activity; and (v) poly-U-dependent polyphenylalanine synthesis. All the steps could be unequivocally demonstrated by the addition of a limited number of proteins although the complex had comparatively much less activity than 70 S ribosomes. It appears that rRNAs are directly involved in various steps of protein synthesis. Furthermore, the 16 S.23 S RNA complex might have acted as a primitive ribosome, as suggested by Crick and Orgel.  相似文献   

14.
During late gestation, amino acids and insulin promote skeletal muscle protein synthesis. However, the independent effects of amino acids and insulin on the regulation of mRNA translation initiation in the fetus are relatively unknown. The purpose of this study was to determine whether acute amino acid infusion in the late-gestation ovine fetus, with and without a simultaneous increase in fetal insulin concentration, activates translation initiation pathway(s) in skeletal muscle. Fetuses received saline (C), mixed amino acid infusion plus somatostatin infusion to suppress amino acid-stimulated fetal insulin secretion (AA+S), mixed amino acid infusion with concomitant physiological increase in fetal insulin (AA), or high-dose insulin infusion with euglycemia and euaminoacidemia (HI). After a 2-h infusion period, fetal skeletal muscle was harvested under in vivo steady-state conditions and frozen for quantification of proteins both upstream and downstream of mammalian target of rapamycin (mTOR). In the AA group, we found a threefold increase in ribosomal protein S6 kinase (p70(S6k)) and Erk1/2 phosphorylation; however, blocking the physiological rise in insulin with somatostatin in the AA+S group prevented this increase. In the HI group, Akt, Erk1/2, p70(S6k), and ribosomal protein S6 were highly phosphorylated and 4E-binding protein 1 (4E-BP1) associated with eukaryotic initiation factor (eIF)4E decreased by 30%. These data show that insulin is a significant regulator of intermediates involved in translation initiation in ovine fetal skeletal muscle. Furthermore, the effect of amino acids is dependent on a concomitant increase in fetal insulin concentrations, because amino acid infusion upregulates p70(S6k) and Erk only when amino acid-stimulated increase in insulin occurs.  相似文献   

15.
Type III and IV intermediate filament (IF) proteins share a conserved sequence motif of -Tyr-Arg-Arg-X-Phe- at the near-amino termini. To characterize significance of the aromatic residues in the motif, we prepared vimentin mutants in which Tyr-10 and Phe-14 are substituted with Asn and Ser (Vim[Y10N], Vim[F14S] and Vim[Y10N, F14S]), and examined assembly properties in vitro by electron microscopy and viscosity measurements. At 2 s after initiation of assembly reaction at pH 7.2 and 150 mM NaCl, all the vimentin mutants formed so-called unit-length filaments (ULFs) that were slightly larger than ULFs of wild-type vimentin. In following filament elongation, Vim[Y10N, F14S] and Vim[Y10N] performed longitudinal annealing of ULFs very rapidly and formed IFs within only 2.5 and 5 min, respectively, while Vim[F14S] and wild-type vimentin gave IFs by 40-60 min. The IFs of Vim[Y10N, F14S] and Vim[Y10N], however, tended to intertwine each other and formed bundles in parts of the specimens. The intertwinements decreased as the salt concentration decreased, and optimal salt concentration for the two mutants to form normal IFs was 50 mM. These results suggest that the aromatic residues, especially Tyr-10, in the motif have a role in controlling intermolecular interactions involved in IF assembly in vitro and suppress undesirable filament intertwinements at physiological ionic strength.  相似文献   

16.
Polymicrobial sepsis impairs skeletal muscle protein synthesis, which results from impairment in translation initiation under basal conditions. The purpose of the present study was to test the hypothesis that sepsis also impairs the anabolic response to amino acids, specifically leucine (Leu). Sepsis was induced by cecal ligation and puncture, and 24 h later, Leu or saline (Sal) was orally administered to septic and time-matched nonseptic rats. The gastrocnemius was removed 20 min later for assessment of protein synthesis and signaling components important in peptide-chain initiation. Oral Leu increased muscle protein synthesis in nonseptic rats. Leu was unable to increase protein synthesis in muscle from septic rats, and synthetic rates remained below those observed in nonseptic + Sal rats. In nonseptic + Leu rats, phosphorylation of eukaryotic initiation factor (eIF)4E-binding protein 1 (4E-BP1) in muscle was markedly increased compared with values from time-matched Sal-treated nonseptic rats. This change was associated with redistribution of eIF4E from the inactive eIF4E.4E-BP1 to the active eIF4E.eIF4G complex. In septic rats, Leu-induced phosphorylation of 4E-BP1 and changes in eIF4E distribution were completely abrogated. Sepsis also antagonized the Leu-induced increase in phosphorylation of S6 kinase 1 and ribosomal protein S6. Sepsis attenuated Leu-induced phosphorylation of mammalian target of rapamycin and eIF4G. The ability of sepsis to inhibit anabolic effects of Leu could not be attributed to differences in plasma concentrations of insulin, insulin-like growth factor I, or Leu between groups. In contrast, the ability of exogenous insulin-like growth factor I to stimulate the same signaling components pertaining to translation initiation was not impaired by sepsis. Hence, sepsis produces a relatively specific Leu resistance in skeletal muscle that impairs the ability of this amino acid to stimulate translation initiation and protein synthesis.  相似文献   

17.
Elevations in free fatty acids (FFAs) impair glucose uptake in skeletal muscle. However, there is no information pertaining to the effect of elevated circulating lipids on either basal protein synthesis or the anabolic effects of leucine and insulin-like growth factor I (IGF-I). In chronically catheterized conscious rats, the short-term elevation of plasma FFAs by the 5-h infusion of heparin plus Intralipid decreased muscle protein synthesis by approximately 25% under basal conditions. Lipid infusion was associated with a redistribution of eukaryotic initiation factor (eIF)4E from the active eIF4E.eIF4G complex to the inactive eIF4E.4E-BP1 complex. This shift was associated with a decreased phosphorylation of eIF4G but not 4E-BP1. Lipid infusion did not significantly alter either the total amount or phosphorylation state of mTOR, TSC2, S6K1, or the ribosomal protein S6 under basal conditions. In control rats, oral leucine increased muscle protein synthesis. This anabolic response was not impaired by lipid infusion, and no defects in signal transduction pathways regulating translation initiation were detected. In separate rats that received a bolus injection of IGF-I, lipid infusion attenuated the normal redistribution of eIF4E from the active to inactive complex and largely prevented the increased phosphorylation of 4E-BP1, eIF4G, S6K1, and S6. This IGF-I resistance was associated with enhanced Ser(307) phosphorylation of insulin receptor substrate-1 (IRS-1). These data indicate that the short-term elevation of plasma FFAs impairs basal protein synthesis in muscle by altering eIF4E availability, and this defect may be related to impaired phosphorylation of eIF4G, not 4E-BP1. Moreover, hyperlipidemia impairs IGF-I action but does not produce leucine resistance in skeletal muscle.  相似文献   

18.
Endotoxin (i.e., lipopolysaccharide, LPS) impairs skeletal muscle protein synthesis. Although this impairment is not acutely associated with a decreased plasma concentration of total amino acids, LPS may blunt the anabolic response to amino acids. To examine this hypothesis, rats were injected intraperitoneally with LPS or saline (Sal) and 4 h thereafter were orally administered either leucine (Leu) or Sal. The gastrocnemius was removed 20 min later to assess signaling components important in the translational control of protein synthesis. In the Sal-Leu group phosphorylation of 4E-BP1 in muscle was markedly increased, compared to values from time-matched saline-treated control rats. This change was associated with a redistribution of eukaryotic initiation factor (eIF) 4E from the inactive eIF4E x 4E-BP1 complex to the active eIF4E x eIF4G complex. In LPS-treated rats, the Leu-induced phosphorylation of 4E-BP1 and changes in eIF4E distribution were partially or completely abrogated. LPS also antagonized the Leu-induced increase in phosphorylation of S6K1, ribosomal protein S6 and mTOR. Neither LPS nor leu altered the total amount or phosphorylation of TSC2 in muscle. The ability of LPS to blunt the anabolic effects of Leu could not be attributed to differences in the plasma concentrations of insulin or Leu between groups. Furthermore, the replacement of plasma insulin-like growth factor (IGF)-I in LPS-treated rats to basal levels also did not ameliorate the defect in leucine-induced phosphorylation of S6K1 or S6, although it did reverse the LPS-induced decrease in the constitutive phosphorylation of mTOR, S6 and 4E-BP1. Pretreatment with the glucocorticoid receptor antagonist RU486 was unable to prevent the LPS-induced leucine resistance. In contrast, to the abovementioned results with leucine, LPS did not prevent the ability of pharmacological levels of IGF-I to phosphorylate 4E-BP1, S6K1, mTOR or alter the availability of eIF4E. Hence, LPS working via a glucocorticoid-independent mechanism produces a leucine resistance in skeletal muscle that might be expected to impair the ability of this amino acid to stimulate translation initiation and protein synthesis.  相似文献   

19.
The significance of changes in rates of synthesis, export, and degradation of proteins during liver regeneration was assessed. (a) Proteins were pulse labeled by the intravenous injection of radioactive leucine and, 5 min later, pactamycin (an inhibitor of the initiation of protein synthesis). One-half of the protein radioactivity was lost from the normal liver within 3 hours. From the radioactivity of the plasma proteins at that time and a study of the disappearance of these proteins from the circulation, it was calculated that 28% of the newly synthesized proteins were exported. Serum albumin accounted for a third of the exported proteins. Thirty-six hours after partial hepatectomy the proportion of albumin to total protein synthesis remained constant, while that of the other plasma proteins increased by 50%. The fraction of the newly synthesized proteins retained by the liver after 3 hours decreased by 20%. (b) During the first 36 hours of liver regeneration the average rates of protein degradation slowed down to one-half the normal values. This was determined either by the loss of radioactivity from total protein (or the guanidino-C of protein-bound arginine) in livers labeled with [14C]bicarbonate, or calculated as the balance between protein synthesis and net protein gain. (c) From these results, and those of our previous study of the protein synthetic machinery of normal and regenerating livers (Scornik, O.A. (1974)J. Biol. Chem. 249, 3876-3883), we conclude that changes in the rate of protein degradation are the single most important factor determining the increase in protein content during liver compensatory growth.  相似文献   

20.
The method previously developed for the measurement of rates of methionine incorporation into brain proteins assumed that methionine derived from protein degradation did not recycle into the precursor pool for protein synthesis and that the metabolism of methionine via the transmethylation pathway was negligible. To evaluate the degree of recycling, we have compared, under steady-state conditions, the specific activity of L-[35S] methionine in the tRNA-bound pool to that of plasma. The relative contribution of methionine from protein degradation to the precursor pool was 26%. Under the same conditions, the relative rate of methionine flux into the transmethylation cycle was estimated to be 10% of the rate of methionine incorporation into brain proteins. These results indicate the following: (a) there is significant recycling of unlabeled methionine derived from protein degradation in brain; and (b) the metabolism of methionine is directed mainly towards protein synthesis. At normal plasma amino acid levels, methionine is the amino acid which, to date, presents the lowest degree of dilution in the precursor pool for protein synthesis. L-[35S]-Methionine, therefore, presents radiobiochemical properties required to measure, with minimal underestimation, rates of brain protein synthesis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号