首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Simultaneous nitrification and denitrification using a mixed methanotrophic culture was investigated. When both NO3 -N (108 mg l–1) and NH3-N (59 mg l–1) were added into batch reactors, nitrate removal was complete within 10 h at the rate of 47 mg NO3 -N g VSS–1 day–1 when dissolved oxygen (DO) concentration was maintained at 2 mg DO l–1. Ammonia removal started simultaneously with nitrate removal at a slower rate of 14 NH3-N g VSS–1 day–1. No significant accumulation of nitrite or nitrate during ammonia utilization suggested the occurrence of simultaneous nitrification and denitrification.  相似文献   

3.
The applicability of batch respirometry, as a simple technique for monitoring off-line nitrifying activity and kinetic parameters, was evaluated using two sets of ammonia and nitrite concentrations. The O2 uptake rate (OUR) profiles obtained from the assays were adjusted to a substrate inhibition model. The maximum specific ammonia-oxidizing biomass activity (rSmax) was 0.079 g N-NH4 + g VSS–1 d–1 with a half saturation coefficient (KS) of 11 mg N-NH4 + l–1 and an inhibition coefficient (Ki) of 3300 mg N-NH4 + l–1. Besides, the maximum specific value of nitrite-oxidizing activity was 0.082 g N-NO2 g VSS–1 d–1 with a KS of 4.1 mg N-NO2 l–1 and Ki of 1400 mg N-NO2 l–1.  相似文献   

4.
Anaerobic oxidation of methane coupled to denitrification (AOM-D) in a membrane biofilm reactor (MBfR), a platform used for efficiently coupling gas delivery and biofilm development, has attracted attention in recent years due to the low cost and high availability of methane. However, experimental studies have shown that the nitrate-removal flux in the CH4-based MBfR (<1.0 g N/m2-day) is about one order of magnitude smaller than that in the H2-based MBfR (1.1–6.7 g N/m2-day). A one-dimensional multispecies biofilm model predicts that the nitrate-removal flux in the CH4-based MBfR is limited to <1.7 g N/m2-day, consistent with the experimental studies reported in the literature. The model also determines the two major limiting factors for the nitrate-removal flux: The methane half-maximum-rate concentration (K2) and the specific maximum methane utilization rate of the AOM-D syntrophic consortium (kmax2), with kmax2 being more important. Model simulations show that increasing kmax2 to >3 g chemical oxygen demand (COD)/g cell-day (from its current 1.8 g COD/g cell-day) and developing a new membrane with doubled methane-delivery capacity (Dm) could bring the nitrate-removal flux to ≥4.0 g N/m2-day, which is close to the nitrate-removal flux for the H2-based MBfR. Further increase of the maximum nitrate-removal flux can be achieved when Dm and kmax2 increase together.  相似文献   

5.
Diffusion limitation of phosphate possibly constitutes a serious problem regarding the use of a biofilm reactor for enhanced biological phosphorus removal. A lab-scale reactor for simultaneous removal of phosphorus and nitrate was operated in a continuous alternating mode of operation. For a steady-state operation with excess amounts of carbon source (acetate) during the anaerobic phase, the same amount of phosphate was released during the anaerobic phase as was taken up during the anoxic phase. The measured phosphorus content of the biomass that detached during backwash after an anoxic phase was low, 2.4 +/- 0.4% (equal to 24 +/- 4 mg P/g TS). A simplified computer model indicated the reason to be phosphate diffusion limitation and the model revealed a delicate balance between the obtainable phosphorus contents of the biomass and operating parameters, such as backwash interval, biofilm thickness after backwash, and phase lengths. The aspect of diffusion is considered of crucial importance when evaluating the performance of a biofilter for phosphate removal.  相似文献   

6.
Radioisotopic measurements of the methane consumption by mud samples taken from nine Southern Transbaikal soda lakes (pH 9.5–10.6) showed an intense oxidation of methane in the muds of Lakes Khuzhirta, Bulamai Nur, Gorbunka, and Suduntuiskii Torom, with the maximum oxidation rate in the mud of Lake Khuzhirta (33.2 nmol/(ml day)). The incorporation rate of the radioactive label from14CH4 into14CO2 was higher than into acid-stable metabolites. Optimum pH values for methane oxidation in water samples were 7–8, whereas mud samples exhibited two peaks of methane oxidation activity (at pH 8.15–9.4 and 5.8–6.0). The majority of samples could oxidize ammonium to nitrites; the oxidation was inhibited by methane. The PCR amplification analysis of samples revealed the presence of genes encoding soluble and paniculate methane monooxygenase and methanol dehydrogenase. Three alkaliphilic methanotrophic bacteria of morphotype I were isolated from mud samples in pure cultures, one of which, B5, was able to oxidize ammonium to nitrites at pH 7–11. The data obtained suggest that methanotrophs are widely spread in the soda lakes of Southern Transbaikal, where they can actively oxidize methane and ammonium.  相似文献   

7.
8.
A membrane-aerated biofilm reactor (MABR) was developed to degrade acetonitrile (ACN) in aqueous solutions. The reactor was seeded with an adapted activated sludge consortium as the inoculum and operated under step increases in ACN loading rate through increasing ACN concentrations in the influent. Initially, the MABR started at a moderate selection pressure, with a hydraulic retention time of 16 h, a recirculation rate of 8 cm/s and a starting ACN concentration of 250 mg/l to boost the growth of the biofilm mass on the membrane and to avoid its loss by hydraulic washout. The step increase in the influent ACN concentration was implemented once ACN concentration in the effluent showed almost complete removal in each stage. The specific ACN degradation rate achieved the highest at the loading rate of 101.1 mg ACN/g-VSS h (VSS, volatile suspended solids) and then declined with the further increases in the influent ACN concentration, attributed to the substrate inhibition effect. The adapted membrane-aerated biofilm was capable of completely removing ACN at the removal capacity of up to 21.1 g ACN/m2 day, and generated negligible amount of suspended sludge in the effluent. Batch incubation experiments also demonstrated that the ACN-degrading biofilm can degrade other organonitriles, such as acrylonitrile and benzonitrile as well. Denaturing gradient gel electrophoresis studies showed that the ACN-degrading biofilms contained a stable microbial population with a low diversity of sequence of community 16S rRNA gene fragments. Specific oxygen utilization rates were found to increase with the increases in the biofilm thickness, suggesting that the biofilm formation process can enhance the metabolic degradation efficiency towards ACN in the MABR. The study contributes to a better understanding in microbial adaptation in a MABR for biodegradation of ACN. It also highlights the potential benefits in using MABRs for biodegradation of organonitrile contaminants in industrial wastewater.  相似文献   

9.
The observed growth yield (Y obs) of a nitrifying biofilm metabolizing ammonia in a continuous flow reactor was constant below a fixed biomass concentration of 40–50 g COD-biomass cm–2. Beyond this range, an increased Y obs with the additional accumulation of fixed biomass could be due to a considerable accumulation of inactive materials within the nitrifying biofilm.  相似文献   

10.
A steady-state model for quantifying the space competition in multispecies biofilms is developed. The model includes multiple active species, inert biomass, substrate utilization and diffusion within the biofilm, external mass transport, and detachment phenomena. It predicts the steady-state values of biofilm thickness, species distribution, and substrate fluxes. An experimental evaluation is carried out in completely mixed biofilm reactors in which slow-growing nitrifying bacteria compete with acetate-utilizing heterotrophs. The experimental results show that the model successfully describes the space competition. In particular, increasing acetate concentrations causes NH(4) (+)-N fluxes to decrease, because nitrifiers are forced deeper into the biofilm, where they experience greater mass-transport resistance.  相似文献   

11.
Decolorization and mineralization of reactive dyes by intimately coupled TiO2‐photocatalysis and biodegradation (ICPB) on a novel TiO2‐coated biofilm carrier were investigated in a photocatalytic circulating‐bed biofilm reactor (PCBBR). Two typical reactive dyes—Reactive Black 5 (RB5) and Reactive Yellow 86 (RY86)—showed similar first‐order kinetics when being photocatalytically decolorized at low pH (~4–5) in batch experiments. Photocatalytic decolorization was inhibited at neutral pH in the presence of phosphate or carbonate buffer, presumably due to electrostatic repulsion from negatively charged surface sites on TiO2, radical scavenging by phosphate or carbonate, or both. Therefore, continuous PCBBR experiments were carried out at a low pH (~4.5) to maintain high photocatalytic efficiency. In the PCBBR, photocatalysis alone with TiO2‐coated carriers could remove target compound RB5 and COD by 97% and 47%, respectively. Addition of biofilm inside macroporous carriers maintained a similar RB5 removal efficiency, but COD removal increased to 65%, which is evidence of ICPB despite the low pH. ICPB was further proven by finding microorganisms inside carriers at the end of the PCBBR experiments. A proposed ICPB pathway for RB5 suggests that a major intermediate, a naphthol derivative, was responsible for most of the residual COD, while most of the nitrogen in the azo‐bonds (? N?N? ) was oxidized to N2. Biotechnol. Bioeng. 2012; 109:884–893. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
Coupling advanced oxidative pretreatment with subsequent biodegradation demonstrates potential for treating wastewaters containing biorecalcitrant and inhibitory organic constituents. However, advanced oxidation is indiscriminate, producing a range of products that can be too oxidized, unavailable for biodegradation, or toxic themselves. This problem could be overcome if advanced oxidation and biodegradation occurred together, an orientation called intimate coupling; then, biodegradable organics are removed as they are formed, focusing the chemical oxidant on the non-biodegradable fraction. Intimate coupling has seemed impossible because the conditions of advanced oxidation, for example, hydroxyl radicals and sometimes UV-light, are severely toxic to microorganisms. Here, we demonstrate that a novel photocatalytic circulating-bed biofilm reactor (PCBBR), which utilizes macro-porous carriers to protect biofilm from toxic reactants and UV light, achieves intimate coupling. We demonstrate the viability of the PCBBR system first with UV only and acetate, where the carriers grew biofilm and sustained acetate biodegradation despite continuous UV irradiation. Images obtained by scanning electron microscopy and confocal laser scanning microscopy show bacteria living behind the exposed surface of the cubes. Second, we used slurry-form Degussa P25 TiO2 to initiate photocatalysis of inhibitory 2,4,5-trichlorophenol (TCP) and acetate. With no bacterial carriers, photocatalysis and physical processes removed TCP and COD to 32% and 26% of their influent levels, but addition of biofilm carriers decreased residuals to 2% and 4%, respectively. Biodegradation alone could not remove TCP. Photomicrographs clearly show that biomass originally on the exterior of the carriers was oxidized (charred), but biofilm a short distance within the carriers was protected. Finally, we coated TiO2 directly onto the carrier surface, producing a hybrid photocatalytic-biological carrier. These carriers likewise demonstrated the concept of photocatalytic degradation of TCP coupled with biodegradation of acetate, but continued TCP degradation required augmentation with slurry-form TiO2.  相似文献   

13.
Because methane-oxidizing bacteria (MOB) are the only biological sink for the greenhouse gas methane, knowledge of the functioning of these bacteria in various ecosystems is needed to understand the dynamics observed in global methane emission. The activity of MOB is commonly assessed by methane oxidation assays. The resulting methane depletion curves often follow a biphasic pattern of initial and induced methane oxidation activity, often interpreted as representing the in situ active and total MOB community, respectively. The application of quantitative-PCR on soil incubations, which were stopped before, at and after the transition point in the methane-depletion curve, demonstrated that both pmoA -mRNA was produced as well as substantial cell growth took place already in the initial phase. In addition, type Ia and II MOB displayed markedly different behaviour, which can be interpreted as ecologically different strategies. For the correct interpretation of methane oxidation assays, the use of small time windows is recommended to calculate methane oxidation activities to avoid substantial cell growth.  相似文献   

14.
A model describing the cometabolic biotransformation ofo-xylene with toluene as primary carbon source in a continuously fed fixed biofilm reactor is presented. The model is based on the concept of competitive inhibition betweeno-xylene and toluene. The proposed model simulated successfully the transformation ofo-xylene and the associated by-products formation, as well as the toluene degradation. However, it appears that an accurate measurement of active biomass density and distribution in the biofilm is needed, since these factors dramatically affects the modelling. The modelling of various kinetic experiments indicates that the active biomass (or toluene degraders) is accumulated on the top of the biofilm, leading to the conclusion that only a minor part of the biofilm thickness was active. The calibrated model is able to predict the removal of toluene ando-xylene for concentrations ranging from 0 to 30 mg/L. For higher concentrations toxicity phenomena may decrease the accuracy of the model.  相似文献   

15.
AIMS: To study the accumulation of the bacterial living cells (LC) and dead cells (DC) in a mixed-species biofilm developed in a 3 l biotrickling filter (BTF) challenged with toluene. METHODS AND RESULTS: The bacterial LC and DC within the biofilm developed on polypropylene Pall rings in a toluene-degrading BTF were enumerated as fluoro-microscopic counts during a 62-operating day period using nucleic acid staining and the direct epifluorescence filter technique. The biofilm development could be separated into three distinct phases: (i) cell attachment, (ii) biofilm establishment and (iii) biofilm maturation. The LC were always dominant (>/=72%) in the biofilm during the establishment phase whereas the average LC fraction decreased to 51% of the total cells in the maturation phase. The concentration of LC and DC was observed to level off after 41 days at 1010 cells per ring. The biofilm thickness and the dry weight increased independently of the cell number during the maturation phase. CONCLUSIONS: After the LC reached a maximum concentration in the biofilm, the biofilm proliferation was only characterized by the accumulation of DC and organic matter. SIGNIFICANCE AND IMPACT OF THE STUDY: The results obtained in the present study are of particular relevance for biofilm mathematical modelling and numerical simulations. They will also be useful to estimate the contribution of the living bacteria within the biofilm in bioprocesses.  相似文献   

16.
Neighbouring plants generally compete for the limiting resources in order to grow and reproduce. Some resources, e.g., sun light, may be monopolised by the larger plants and this may lead to asymmetric competition where a plant, which is twice as large, grows more than twice as fast. A previously published individual-based Richards growth model that describes the asymmetric growth of individual plants is here generalised with respect to a variable mean plant density and an explicit spatial setting.  相似文献   

17.
The present paper introduces a new diffusion process for the purpose of modelling logistic-type behaviour patterns. Unlike other processes in the same context, this one verifies that its mean function is a logistic curve. In addition, its transition density can be found explicitly, which allows to analyse inference from the discrete sampling of trajectories. The main features of the process will be analysed and the maximum likelihood estimation of parameters will be carried out through discrete sampling. Regarding the numerical problems found to solve the likelihood equations, several strategies are developed for obtaining initial solutions for the usual numerical procedures. Such strategies are compared by means of a simulation example. Also, another simulation study is carried out in order to compare the estimation in this process to that developed by means of continuous sampling in the logistic diffusion model considered by Giovanis and Skiadas (1999). Finally an example is given for the growth of a microorganism culture. This example illustrates the predictive possibilities of the new process, as well as its ability to study time variables formulated as first-passage-times.  相似文献   

18.
Bromate (BrO(3)(-)) is an oxidized contaminant produced from bromide (Br(-)) during ozonation and advanced oxidation of drinking water. Previous research shows that denitrifying bioreactors can reduce bromate to innocuous bromide. We studied a hydrogen-based, denitrifying membrane-biofilm reactor (MBfR) for bromate reduction, and report the first kinetics for a hydrogen-based bromate reduction process. A mixed-culture MBfR reduced up to 1,500 microg/L bromate to below 10 microg/L with a 50-min hydraulic residence time. Kinetics were determined using short-term tests on a completely mixed MBfR at steady state with an influent of 5 mg N/L nitrate plus 100 microg/L bromate. Short-term tests examined the impact of pH, nitrite, nitrate, and bromate on bromate reduction rates in the MBfR. Kinetic parameters for the process were estimated based on the short-term bromate tests. The q(max) for bromate reduction was 0.12 mg BrO(3)(-) x mg(x)(-1) x day(-1), and the K was 1.2 mg BrO(3)(-)/L. This q(max) is 2-3 times higher than reported for heterotrophic enrichments, and the K is the first reported in the literature. Nitrite and nitrate partially inhibited bromate reduction, with nitrite exerting a stronger inhibitory effect. Bromate was self-inhibitory at concentrations above 15 mg/L, but up to 50 mg/L of bromate had no inhibitory effect on denitrification. The optimum pH was approximately 7. We also examined the performance of an MBfR containing pure culture of the denitrifying bacterium Ralstonia eutropha. Under conditions similar to the mixed-culture tests, no bromate reduction was detected, showing that not all denitrifying bacteria are active in bromate reduction. Our results suggest the presence of specialized, dissimilatory bromate-reducing bacteria in the mixed-culture MBfR.  相似文献   

19.
Biofilm mechanical properties are essential in quantifying the rate of microbial detachment, a key process in determining the function and structure of biofilm systems. Although properties such as biofilm elastic moduli, yield stress and cohesive strength have been studied before, a wide range of values for the biofilm Young's modulus that differ by several orders of magnitude are reported in the literature. In this article, we use experimental data reported in Stoodley et al. [Stoodley et al., Biotechnol Bioeng (1999): 65(1):83-92] and present a methodology for the calculation of Young's modulus, which partially explains the large difference between the values reported in the literature.  相似文献   

20.
Digitized images can be used for quantitative comparison of biofilms grown under different conditions. Using biofilm image reconstruction, it was previously found that biofilms with a completely different look can have nearly identical structural parameters and that the most commonly utilized global structural parameters were not sufficient to uniquely define these biofilms. Here, additional local and global parameters are introduced to show that these parameters considerably increase the reliability of the image reconstruction process. Assessment using human evaluators indicated that the correct identification rate of the reconstructed images increased from 50% to 72% with the introduction of the new parameters into the reconstruction procedure. An expanded set of parameters especially improved the identification of biofilm structures with internal orientational features and of structures in which colony sizes and spatial locations varied. Hence, the newly introduced structural parameter sets helped to better classify the biofilms by incorporating finer local structural details into the reconstruction process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号