首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The genetics of low-level resistance to penicillin and other antibiotics in a clinical isolate and a multistep laboratory mutant of Neisseria gonorrhoea was studied by transformation. Mutations at three loci affected sensitivity to penicillin. Mutation at penA resulted in an eightfold increase in resistance to penicillin without affecting response to other antimicrobial agents. Mutation at ery resulted in a two- to fourfold increase in resistance to penicillin and similar increases in resistance to many other antibiotics, dyes, and detergents. Mutation at penB resulted in a fourfold increase in resistance to penicillin and tetracycline, the phenotypic expression of which was dependent on the presence of mutation at ery. The cumulative effect of mutations at penA, ery, and penB was an approximate 128-fold increase in penicillin resistance, to a minimum inhibitory concentration of 1.0 mug/ml. Low-level resistance to tetracycline or chloramphenicol was due to similar additive effects between mutations at the nonspecific ery and penB loci and a locus specific for resistance to each drug (tet and chl, respectively). No evidence was found for penicillinases or other drug-inactivating enzymes.  相似文献   

2.
The genetic basis for spontaneous resistance to tetracyline (Tet) and penicillin (Pen) in Neisseria gonorrhoeae was investigated. Tet and pen are polygenes which confer small but distinct levels of resistance to Tet and Pen, respectively. Mtr is a multiple-drug resistance polygene which increases resistance to Tet and Pen (as well as to other unrelated antibiotics). Tem is a modifier gene affecting resistance toTet and Pen. Pem is a modifier gene for Pen resistance. The following gene combinations code for resistance to five antibiotics: tet, mtr and tem for Tet; pen, mtr, pem and tem for Pen; tet, tem and mtr for doxycycline; pen and pem for ampicillin; pen, pem and mtr for nafcillin.  相似文献   

3.
Loci for resistance to several antibiotics in laboratory-derived strains of Neisseria gonorrhoeae were mapped by genetic transformation. Genes for high-level resistance to streptomycin (str) and spectinomycin (spc) and for low-level resistance to tetracycline (tet) and chloramphenicol (chl) were linked. Also, a locus for high-level resistance to rifampin (rif) was linked to str and tet. The apparent order was rif... str... tet... chl... spc. Loci for resistance to other antibiotics (penicillin, erythromycin) were transferred independently of each other and were not linked to the cluster around str. Similar linkage relationships were found with str, tet, chl, and spc loci obtained from naturally occurring (clinical) isolates of N. gonorrhoeae.  相似文献   

4.
A genetic analysis of a multiply antibiotic-resistant strain of Staphylococcus epidermidis was performed. Experiments designed to show reversion of organisms to antibiotic susceptibility, as well as studies of the influence of ultraviolet irradiation of phage on the transduction frequencies of the resistance markers, indicated that determinants of chloramphenicol (cml), tetracycline (tet), and neomycin (neo) resistance are present on separate plasmids, but the streptomycin marker is chromosomal. In 2 to 6% of tetracycline-resistant transductants, co-transduction of cml was also observed. By using CsCl-dye density gradients followed by neutral sucrose gradients, the plasmids carrying cml, tet, and neo could be isolated and their molecular weights could be determined. The tetracycline plasmid is shown to be incompatible with one of the cryptic plasmids of a recipient strain.  相似文献   

5.
Molecular analysis of Pasteurella isolates of animal origin for plasmid-encoded tetracycline resistance genes identified a common tet(H)-carrying plasmid of 5.5 kbp in a single isolate of Pasteurella aerogenes and six isolates of Pasteurella multocida. This plasmid carried a truncated Tn5706 element in which one of the IS elements, IS1596, was lost completely and of the other, IS1597, only a relic of 84 bp was left. Sequencing of the resistance gene region and the flanking areas revealed the presence of a deletion in the 3' end of the tet(H) gene which shortened the tet(H) reading frame by 24 bp. The amino acid sequence of the respective TetH protein comprised only 392 amino acids. Despite this deletion, the tet(H) gene conferred high level tetracycline resistance not only to the original Pasteurella isolates but also to the respective Escherichia coli JM107 and C600 transformants as confirmed by MIC determination. The deletion was probably the result from recombinational events. Two possible recombination sites involved in the deletion of tet(H) and that of IS1597 were identified. Macrorestriction analysis of the Pasteurella isolates carrying plasmid pPAT1 confirmed horizontal and vertical transfer of this plasmid.  相似文献   

6.
Among mutants of Streptomyces coelicolor A3(2) studied which were sensitive to chloramphenicol (Cmls), strains sensitive to a number of antibiotics (ristomycin, tetracycline, polymyxin, lincomycin) amount of 46%. Antibiotic-sensitive mutants are capable to form different classes of resistant revertants with frequency varying from 10(-2) to 10(-6) in independent strains. Ristomycin-sensitive clones (Rims) have been found to occur with high frequency in Cmls strains and Cmlr revertants. Mutations mediating the Rims phenotype are mapped in a locus linked to the gene for resistance to chloramphenicol. The results obtained are discussed, in accordance with the notion about possible role of cml mutation in induction of secondary mutational changes in the genome of S. coelicolor A3(2).  相似文献   

7.
8.
The tentative map position on the Escherichia coli chromosome of the tolF locus, determining tolerance to colicins A, E2, E3, K, and L, has been confirmed by three-point transduction. It lies between the aroA and pyrD loci at about 21 min on the linkage map of Bachmann et al. (1976). The cmlB locus, determining increased resistance to the antibiotics chloramphenicol and tetracycline, also lies in this region (Reeve, 1966). Phenotypic and genetic comparison of isogenic strains that carry a mutation in either the tolF or cmlB locus makes it likely that these loci are closely related or identical. The tolD locus determining tolerance to colicins E2 and E3 as well as increased resistance to antibiotics has been reported to be located close to the aroA locus as a result of conjugation experiments (Eriksson-Grennberg et al. 1965). However, tolD did not cotransduce with any of several loci in this region, indicating that the mutation is not located within the region of the genetic map corresponding to approximately 19 to 22.5 min.  相似文献   

9.
Twenty laboratories in England and Scotland took part in 1977 in a survey of antibiotic resistance in Streptococcus pneumoniae and Haemophilus influenzae. In Str pneumoniae 59 (6.8%) of the 866 strains studied were resistant to tetracycline and three to chloramphenicol, and one strain showed a decreased susceptibility to penicillin. The prevalence of resistance to tetracycline was lower than that found in a similar study performed in 1975. Nine hundred and fifty-two strains of H influenzae were examined: 15 (1.6%) were resistant to ampicillin (all were beta-lactamase producers) and 26 (2.7%) to tetracycline. Only two strains were resistant to chloramphenicol and two to trimethoprim. Sixty-three H influenzae strains were capsulated. Thirty-four of these were of Pittman type b, and antibiotic resistance, particularly to ampicillin, was more common in these than in other serotypes or non-typable strains. Some variation was seen in the resistance rate of both H influenzae and Str pneumoniae to tetracycline in strains from different centres, but too few were isolated to assess whether this represented a true geographical difference.  相似文献   

10.
The minimum inhibitory concentrations (MICs) of 6 different antibiotics (chloramphenicol, clindamycin, erythromycin, streptomycin, tetracycline and vancomycin) were determined for 143 strains of lactic acid bacteria and bifidobacteria using the Etest. Different MICs were found for different species and strains. Based on the distribution of these MIC values, most of the strains were either susceptible or intrinsically resistant to these antibiotics. However, the MIC range of some of these antibiotics showed a bimodal distribution, which suggested that some of the tested strains possess acquired antibiotic resistance. Screening for resistance genes was performed by PCR using specific primers, or using a DNA microarray with around 300 nucleotide probes representing 7 classes of antibiotic resistance genes. The genes identified encoded resistance to tetracycline [tet(M), tet(W), tet(O) and tet(O/W)], erythromycin and clindamycin [erm(B)] and streptomycin [aph(E) and sat(3)]. Internal portions of some of these determinants were sequenced and found to be identical to genes described in other bacteria. All resistance determinants were located on the bacterial chromosome, except for tet(M), which was identified on plasmids in Lactococcus lactis. The contribution of intrinsic multidrug transporters to the antibiotic resistance was investigated by cloning and measuring the expression of Bifidobacterium breve genes in L. lactis.  相似文献   

11.
Update on acquired tetracycline resistance genes   总被引:10,自引:0,他引:10  
This mini-review summarizes the changes in the field of bacterial acquired tetracycline resistance (tet) and oxytetracycline (otr) genes identified since the last major review in 2001. Thirty-eight acquired tetracycline resistant (Tc(r)) genes are known of which nine are new and include five genes coding for energy-dependent efflux proteins, two genes coding for ribosomal protection proteins, and two genes coding for tetracycline inactivating enzymes. The number of inactivating enzymes has increased from one to three, suggesting that work needs to be done to determine the role these enzymes play in bacterial resistance to tetracycline. In the same time period, 66 new genera have been identified which carry one or more of the previously described 29 Tc(r) genes. Included in the new genera is, for the first time, an obligate intracellular pathogen suggesting that this sheltered group of bacteria is capable of DNA exchange with non-obligate intracellular bacteria. The number of genera carrying ribosomal protection genes increased dramatically with the tet(M) gene now identified in 42 genera as compared with 24 and the tet(W) gene found in 17 new genera as compared to two genera in the last major review. New conjugative transposons, carrying different ribosomal protection tet genes, have been identified and an increase in the number of antibiotic resistance genes linked to tet genes has been found. Whether these new elements may help to spread the tet genes they carry to a wider bacterial host range is discussed.  相似文献   

12.
S Iida  I Kulka  J Meyer    W Arber 《Journal of bacteriology》1987,169(4):1447-1453
Tn2653 contains one copy of the tet gene and two copies of the cat gene derived from plasmid pBR325 and is flanked by inverted repeats of IS1. Transposed onto the P1-15 prophage, it confers a chloramphenicol resistance phenotype to the Escherichia coli host. Because the prophage is perpetuated as a plasmid at about one copy per host chromosome, the host cell is still tetracycline sensitive even though P1-15 is carrying one copy of the tet gene. We isolated P1-15::Tn2653 mutants conferring a tetracycline resistance phenotype, in which the whole transposon and variable flanking P1-15 DNA segments were amplified. Amplification was most probably preceded by IS1-mediated DNA rearrangements which led to long direct repeats containing Tn2653 sequences and P1-15 DNA. Subsequent recombination events between these direct repeats led to amplification of a segment containing the tetracycline resistance gene in tandem arrays.  相似文献   

13.
Hashimoto, Hajime (Gunma University, Maebashi, Japan), and Susumu Mitsuhashi. Drug resistance of enteric bacteria. VII. Recombination of R factors with tetracycline-sensitive mutants. J. Bacteriol. 92:1351-1356. 1966.-The transmissible drug-resistance factor R is able to confer resistance to tetracycline (TC), chloramphenicol (CM), streptomycin (SM), and sulfonamide (SA) on a host bacterium when infected by cell-to-cell contact. Tetracycline-sensitive mutants were isolated from either CM- or SM-sensitive mutants of an R factor. Among 30 mutants isolated, 10 were point mutants which could recombine with each other, forming recombinant R factors able to grow on plates containing 50 mug/ml of TC. The recombination frequency of TC-resistant recombinants was 10(-2) to 10(-3) in bacterial cells carrying two types of TC-sensitive R factors by superinfection with both factors. Segregational patterns of the various markers on the R factor, i.e., chl, str, sul, and m, the locus determining R mating, and their linkage order, were investigated among TC-resistant recombinants of the R factor. When TC was used as the selective drug, the tet locus mapped on the R factor as an end marker. In view of the fact that these results are inconsistent with the linkage order of various markers reported previously, a circular genetic structure for the R factor which includes five tet-s and three chl-s loci is presented.  相似文献   

14.
A total of 48 strains of the soil bacterium Rhizobium japonicum were screened for their response to several widely used antibiotics. Over 60% of the strains were resistant to chloramphenicol, polymyxin B, and erythromycin, and 47% or more of the strains were resistant to neomycin and penicillin G, when tested by disk assay procedures. The most common grouping of resistances in strains was simultaneous resistance to tetracycline, penicillin G, neomycin, chloramphenicol, and streptomycin (25% of all strains tested). The occurrence of multiple drug resistance in a soil bacterium that is not a vertebrate pathogen suggests that chemotherapeutic use of antibiotics is not required for the development of multiple drug resistance.  相似文献   

15.
Multiple antibiotic resistance in Rhizobium japonicum.   总被引:3,自引:3,他引:0       下载免费PDF全文
A total of 48 strains of the soil bacterium Rhizobium japonicum were screened for their response to several widely used antibiotics. Over 60% of the strains were resistant to chloramphenicol, polymyxin B, and erythromycin, and 47% or more of the strains were resistant to neomycin and penicillin G, when tested by disk assay procedures. The most common grouping of resistances in strains was simultaneous resistance to tetracycline, penicillin G, neomycin, chloramphenicol, and streptomycin (25% of all strains tested). The occurrence of multiple drug resistance in a soil bacterium that is not a vertebrate pathogen suggests that chemotherapeutic use of antibiotics is not required for the development of multiple drug resistance.  相似文献   

16.
The genetic determinants responsible for the resistances against the antibiotics tetracycline [tet(M), tet(O), tet(S), tet(K) and tet(L)], erythromycin (ermA,B,C; mefA,E; msrA/B; and ereA,B) and chloramphenicol (cat) of 38 antibiotic-resistant Enterococcus faecium and Enterococcus faecalis strains from food were characterised. In addition, the transferability of resistance genes was also assessed using filter mating assays. The tet(L) determinant was the most commonly detected among tetracycline-resistant enterococci (94% of the strains), followed by the tet(M) gene, which occurred in 63.0% of the strains. Tet(K) occurred in 56.0% of the resistant strains, while genes for tet(O) and tet(S) could not be detected. The integrase gene of the Tn916-1545 family of transposons was present in 81.3% of the tetracycline resistant strains, indicating that resistance genes might be transferable by transposons. All chloramphenicol-resistant strains carried a cat gene. 81.8% of the erythromycin-resistant strains carried the ermB gene. Two (9.5%) of the 21 erythromycin-resistant strains, which did not contain ermA,B,C, ereA,B and mphA genes harboured the msrC gene encoding an erythromycin efflux pump, which was confirmed by sequencing the PCR amplicon. In addition, all E. faecium strains contained the msrC gene, but none of the E. faecalis strains. Transfer of the genetic determinants for antibiotic resistance could only be demonstrated in one filter mating experiment, where both the tet(M) and tet(L) genes were transferred from E. faecalis FAIR-E 315 to the E. faecalis OG1X recipient strain. Our results show the presence of various types of resistance genes as well as transposon integrase genes associated with transferable resistances in enterococci, indicating a potential for gene transfer in the food environment.  相似文献   

17.
Two hundred strains of Staphylococcus aureus isolated from outpatients with infections of the skin and subcutaneous tissues were tested for sensitivity to penicillin, erythromycin, tetracycline, sodium fusidate, methicillin, clindamycin, chloramphenicol, and gentamicin. One hundred and sixty-three (81.5%) of the strains were resistant to penicillin and 16 (8%) resistant to tetracycline. Incidence of resistance to other antibiotics was low. No strain was resistant to chloramphenicol, gentamicin, or methicillin. When compared with results of earlier studies, there was an increase in the incidence of resistance to penicillin and tetracycline, but no appreciable increase in resistance to other antibiotics.  相似文献   

18.
Some genetic and biochemical properties of the tetracycline resistance element of the Staphylococcus aureus plasmid pT181 have been studied. Resequencing of a portion of the tetracycline resistance gene (tet) showed the presence of a single open reading frame of 1,299 nucleotides capable of encoding a polypeptide of 433 amino acids. Analysis of BAL 31 nuclease-generated deletion mutants of the tet gene showed the presence of two complementation groups within this region. Northern blot hybridizations demonstrated that the tet gene encodes a single mRNA, and its initiation site has been mapped by S1 nuclease protection experiments. We also identified an approximately 52,000-dalton tetracycline-inducible polypeptide in Bacillus subtilis minicells carrying pT181. Induction of the tet gene by tetracycline resulted in a 4-fold increase in the levels of TET mRNA and at least a 15-fold increase in the amount of TET protein in B. subtilis minicells.  相似文献   

19.
A mutation to tetracycline sensitivity in a resistant strain of Streptococcus pneumoniae was shown by several criteria to be due to a point mutation in the conjugative omega (cat-tet) element found in the chromosomes of strains derived from BM6001, a clinical strain resistant to tetracycline and chloramphenicol. Strains carrying the mutation were transformed back to tetracycline resistance with the high efficiency of a point marker by donor deoxyribonucleic acids from its ancestral strain and from nine other clinical isolates of pneumococcus and by deoxyribonucleic acids from group D Streptococcus faecalis and group B Streptococcus agalactiae strains that also carry conjugative tet elements in their chromosomes. It was not transformed to resistance by tet plasmid deoxyribonucleic acids from either gram-negative or gram-positive species, except for one that carried transposon Tn916, the conjugative tet element present in the chromosomes of some S. faecalis strains. The results showed that the tet determinants in conjugative elements of several streptococcal species share a high degree of deoxyribonucleic acid sequence homology and suggested that they differ from other tet genes.  相似文献   

20.
Shigella were most sensitive to polymyxin ceporin, ampicillin, neomycin and furazolidone and resistant to chloramphenicol, tetracycline and streptomycin. Shigella resistant simultaneously to two or three drugs mainly to tetracycline + chloramphenicol, tetracycline + streptomycin and tetracycline + chloramphenicol + streptomycin were most frequent. The frequency of the Shigella strains carrying R-plasmids increased from 28 per cent in 1969--1970 to 72.6 per cent in 1977. The Shigella strains isolated during the dysentery outbreak in 1973--1977 carried the R-factor controlling resistance to tetracycline + chloramphenicol, tetracycline + chloramphenicol + streptomycin, tetracycline + chloramphenicol + streptomycin + neomycin. Interaction between separate biochemical types, colicinogenicity and drug resistance classes was found in the Shigella isolates. The data on the effect of antibiotic (tetracyclines) intensive use in stock-raising defining wide spread of the R-plasmids controlling resistance to these drugs were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号