首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, as genome-scale data have become available for more organisms, the development of phylogenetic markers from nuclear protein-coding loci (NPCL) has become more tractable. However, new methods are needed to efficiently sort the large number of genes from genomic databases into more limited sets appropriate for particular phylogenetic questions, while avoiding introns and paralogs. Here we describe a general methodology for identifying candidate single-copy NPCL from genomic databases. Our method uses information from reference genomes to identify genes with relatively large continuous protein-coding regions (i.e., 700bp). BLAST comparisons are used to help avoid genes with paralogous copies or close relatives (i.e., gene families) that might confound phylogenetic analyses. Exon boundary information is used to identify appropriately spaced potential priming sites. Using this method, we have developed over 25 novel NPCL, which span a variety of desirable evolutionary rates for phylogenetic analyses. Although targeted for higher-level phylogenetics of squamate reptiles, many of these loci appear to be useful across and within other vertebrate clades (e.g., amphibians), and some are relatively rapidly evolving and may be useful for closely-related species (e.g., within genera). This general method can be used whenever large-scale genomic data are available for an appropriate reference species (not necessarily within the focal clade). The method is also well suited for the development of intron regions for lower-level phylogenetic and phylogeographic studies. We provide an online database of alignments and suggested primers for approximately 85 NPCL that should be useful across vertebrates.  相似文献   

2.
Phylogenomics of eukaryotes: impact of missing data on large alignments   总被引:17,自引:0,他引:17  
Resolving the relationships between Metazoa and other eukaryotic groups as well as between metazoan phyla is central to the understanding of the origin and evolution of animals. The current view is based on limited data sets, either a single gene with many species (e.g., ribosomal RNA) or many genes but with only a few species. Because a reliable phylogenetic inference simultaneously requires numerous genes and numerous species, we assembled a very large data set containing 129 orthologous proteins ( approximately 30,000 aligned amino acid positions) for 36 eukaryotic species. Included in the alignments are data from the choanoflagellate Monosiga ovata, obtained through the sequencing of about 1,000 cDNAs. We provide conclusive support for choanoflagellates as the closest relative of animals and for fungi as the second closest. The monophyly of Plantae and chromalveolates was recovered but without strong statistical support. Within animals, in contrast to the monophyly of Coelomata observed in several recent large-scale analyses, we recovered a paraphyletic Coelamata, with nematodes and platyhelminths nested within. To include a diverse sample of organisms, data from EST projects were used for several species, resulting in a large amount of missing data in our alignment (about 25%). By using different approaches, we verify that the inferred phylogeny is not sensitive to these missing data. Therefore, this large data set provides a reliable phylogenetic framework for studying eukaryotic and animal evolution and will be easily extendable when large amounts of sequence information become available from a broader taxonomic range.  相似文献   

3.
To improve the accuracy of tree reconstruction, phylogeneticists are extracting increasingly large multigene data sets from sequence databases. Determining whether a database contains at least k genes sampled from at least m species is an NP-complete problem. However, the skewed distribution of sequences in these databases permits all such data sets to be obtained in reasonable computing times even for large numbers of sequences. We developed an exact algorithm for obtaining the largest multigene data sets from a collection of sequences. The algorithm was then tested on a set of 100,000 protein sequences of green plants and used to identify the largest multigene ortholog data sets having at least 3 genes and 6 species. The distribution of sizes of these data sets forms a hollow curve, and the largest are surprisingly small, ranging from 62 genes by 6 species, to 3 genes by 65 species, with more symmetrical data sets of around 15 taxa by 15 genes. These upper bounds to sequence concatenation have important implications for building the tree of life from large sequence databases.  相似文献   

4.
Comprehensively sampled phylogenetic trees provide the most compelling foundations for strong inferences in comparative evolutionary biology. Mismatches are common, however, between the taxa for which comparative data are available and the taxa sampled by published phylogenetic analyses. Moreover, many published phylogenies are gene trees, which cannot always be adapted immediately for species level comparisons because of discordance, gene duplication, and other confounding biological processes. A new database, STBase, lets comparative biologists quickly retrieve species level phylogenetic hypotheses in response to a query list of species names. The database consists of 1 million single- and multi-locus data sets, each with a confidence set of 1000 putative species trees, computed from GenBank sequence data for 413,000 eukaryotic taxa. Two bodies of theoretical work are leveraged to aid in the assembly of multi-locus concatenated data sets for species tree construction. First, multiply labeled gene trees are pruned to conflict-free singly-labeled species-level trees that can be combined between loci. Second, impacts of missing data in multi-locus data sets are ameliorated by assembling only decisive data sets. Data sets overlapping with the user’s query are ranked using a scheme that depends on user-provided weights for tree quality and for taxonomic overlap of the tree with the query. Retrieval times are independent of the size of the database, typically a few seconds. Tree quality is assessed by a real-time evaluation of bootstrap support on just the overlapping subtree. Associated sequence alignments, tree files and metadata can be downloaded for subsequent analysis. STBase provides a tool for comparative biologists interested in exploiting the most relevant sequence data available for the taxa of interest. It may also serve as a prototype for future species tree oriented databases and as a resource for assembly of larger species phylogenies from precomputed trees.  相似文献   

5.
Continental‐scale maps of plant functional diversity are a fundamental piece of data of interest to ecosystem modelers and ecologists, yet such maps have been exceedingly hard to generate. The large effort to compile global plant functional trait databases largely for the purpose of mapping and analyzing the spatial distribution of function has resulted in very sparse data matrices thereby limiting progress. Identifying robust methodologies to gap fill or impute trait values in these databases is an important objective. Here I argue that existing statistical tools from phylogenetic comparative methods can be used to rapidly impute values into global plant functional trait databases due to the large amount of phylogenetic signal often in trait data. In particular, statistical models of phylogenetic signal in traits can be generated from existing data and used to predict missing values of closely related species often with a high degree of accuracy thereby facilitating the continental‐scale mapping of plant function. Despite the promise of this approach, I also discuss potential pitfalls and future challenges that will need to be addressed.  相似文献   

6.
Species trees have traditionally been inferred from a few selected markers, and genome‐wide investigations remain largely restricted to model organisms or small groups of species for which sampling of fresh material is available, leaving out most of the existing and historical species diversity. The genomes of an increasing number of species, including specimens extracted from natural history collections, are being sequenced at low depth. While these data sets are widely used to analyse organelle genomes, the nuclear fraction is generally ignored. Here we evaluate different reference‐based methods to infer phylogenies of large taxonomic groups from such data sets. Using the example of the Oleeae tribe, a worldwide‐distributed group, we build phylogenies based on single nucleotide polymorphisms (SNPs) obtained using two reference genomes (the olive and ash trees). The inferred phylogenies are overall congruent, yet present differences that might reflect the effect of distance to the reference on the amount of missing data. To limit this issue, genome complexity was reduced by using pairs of orthologous coding sequences as the reference, thus allowing us to combine SNPs obtained using two distinct references. Concatenated and coalescence trees based on these combined SNPs suggest events of incomplete lineage sorting and/or hybridization during the diversification of this large phylogenetic group. Our results show that genome‐wide phylogenetic trees can be inferred from low‐depth sequence data sets for eukaryote groups with complex genomes, and histories of reticulate evolution. This opens new avenues for large‐scale phylogenomics and biogeographical analyses covering both the extant and the historical diversity stored in museum collections.  相似文献   

7.
The inference of phylogenetic hypotheses from landmark data has been questioned during the last two decades. Besides theoretical concerns, one of the limitations pointed out for the use of landmark data in phylogenetics is its (supposed) lack of information relevant to the inference of phylogenetic relationships. However, empirical analyses are scarce; there exists no previous study that systematically evaluates the phylogenetic performance of landmark data in a series of data sets. In the present study, we analysed 41 published data sets in order to assess the correspondence between the phylogenetic trees derived from landmark data and those obtained with alternative and independent sources of evidence, and determined the main factors that might affect this inference. The data sets presented a variable number of terminals (5–200) and configurations (1–14), belonging to different taxonomic groups. The results showed that for most of the data sets analysed, the trees derived from landmark data presented a low correspondence with the reference phylogenies. The results were similar irrespective of the phylogenetic method considered. Complementary analyses strongly suggested that the limited amount of evidence included in each data set (one or a few landmark configurations) is the main cause for that low correspondence: the phylogenetic analysis of eight data sets that presented three or more configurations clearly showed that the inclusion of several landmark configurations improves the results. In addition, the analyses indicated that the inclusion of landmark data from different configurations is more important than the inclusion of more landmarks from the same configuration. Based on the results presented here, we consider that the poor results previously obtained in phylogenetic analyses based on landmark data were not caused by methodological limitations, but rather due to the limited amount of evidence included in the data sets.  相似文献   

8.
In the context of exponential growing molecular databases, it becomes increasingly easy to assemble large multigene data sets for phylogenomic studies. The expected increase of resolution due to the reduction of the sampling (stochastic) error is becoming a reality. However, the impact of systematic biases will also become more apparent or even dominant. We have chosen to study the case of the long-branch attraction artefact (LBA) using real instead of simulated sequences. Two fast-evolving eukaryotic lineages, whose evolutionary positions are well established, microsporidia and the nucleomorph of cryptophytes, were chosen as model species. A large data set was assembled (44 species, 133 genes, and 24,294 amino acid positions) and the resulting rooted eukaryotic phylogeny (using a distant archaeal outgroup) is positively misled by an LBA artefact despite the use of a maximum likelihood-based tree reconstruction method with a complex model of sequence evolution. When the fastest evolving proteins from the fast lineages are progressively removed (up to 90%), the bootstrap support for the apparently artefactual basal placement decreases to virtually 0%, and conversely only the expected placement, among all the possible locations of the fast-evolving species, receives increasing support that eventually converges to 100%. The percentage of removal of the fastest evolving proteins constitutes a reliable estimate of the sensitivity of phylogenetic inference to LBA. This protocol confirms that both a rich species sampling (especially the presence of a species that is closely related to the fast-evolving lineage) and a probabilistic method with a complex model are important to overcome the LBA artefact. Finally, we observed that phylogenetic inference methods perform strikingly better with simulated as opposed to real data, and suggest that testing the reliability of phylogenetic inference methods with simulated data leads to overconfidence in their performance. Although phylogenomic studies can be affected by systematic biases, the possibility of discarding a large amount of data containing most of the nonphylogenetic signal allows recovering a phylogeny that is less affected by systematic biases, while maintaining a high statistical support.  相似文献   

9.
The challenge of constructing large phylogenetic trees   总被引:3,自引:0,他引:3  
The amount of sequence data available to reconstruct the evolutionary history of genes and species has increased 20-fold in the past decade. Consequently the size of phylogenetic analyses has grown as well, and phylogenetic methods, algorithms and their implementations have struggled to keep pace. Computational and other challenges raised by this burgeoning database emerge at several stages of analysis, from the optimal assembly of large data matrices from sequence databases, to the efficient construction of trees from these large matrices and the piece-wise assembly of 'supertrees' from those trees in turn. A final challenge is posed by the difficulty of visualizing and making inferences from trees that might soon routinely contain thousands of species.  相似文献   

10.
What does it mean to identify a protein in proteomics?   总被引:18,自引:0,他引:18  
The annotation of the human genome indicates the surprisingly low number of approximately 40,000 genes. However, the estimated number of proteins encoded by these genes is two to three orders of magnitude higher. The ability to unambiguously identify the proteins is a prerequisite for their functional investigation. As proteins derived from the same gene can be largely identical, and might differ only in small but functionally relevant details, protein identification tools must not only identify a large number of proteins but also be able to differentiate between close relatives. This information can be generated by mass spectrometry, an approach that identifies proteins by partial analysis of their digestion-derived peptides. Information gleaned from databases fills in the missing sequence information. Because both sequence databases and experimental data are limited, a certain ambiguity often remains concerning which sequence variant(s) and modification(s) are present. As the common denominator of all the isoforms is a gene, in our opinion, it would be more accurate to state that a product of this particular gene rather than a certain protein has been identified by mass spectrometry.  相似文献   

11.
Interest in congruence in phylogenetic data has largely focused on issues affecting multicellular organisms, and animals in particular, in which the level of incongruence is expected to be relatively low. In addition, assessment methods developed in the past have been designed for reasonably small numbers of loci and scale poorly for larger data sets. However, there are currently over a thousand complete genome sequences available and of interest to evolutionary biologists, and these sequences are predominantly from microbial organisms, whose molecular evolution is much less frequently tree-like than that of multicellular life forms. As such, the level of incongruence in these data is expected to be high. We present a congruence method that accommodates both very large numbers of genes and high degrees of incongruence. Our method uses clustering algorithms to identify subsets of genes based on similarity of phylogenetic signal. It involves only a single phylogenetic analysis per gene, and therefore, computation time scales nearly linearly with the number of genes in the data set. We show that our method performs very well with sets of sequence alignments simulated under a wide variety of conditions. In addition, we present an analysis of core genes of prokaryotes, often assumed to have been largely vertically inherited, in which we identify two highly incongruent classes of genes. This result is consistent with the complexity hypothesis.  相似文献   

12.
Modern biological applications usually involve the similarity comparison between two objects, which is often computationally very expensive, such as whole genome pairwise alignment and protein 3D structure alignment. Nevertheless, being able to quickly identify the closest neighboring objects from very large databases for a newly obtained sequence or structure can provide timely hints to its functions and more. This paper presents a substantial speedup technique for the well-studied k-nearest neighbor (k-nn) search, based on novel concepts of virtual pivots and partial pivots, such that a significant number of the expensive distance computations can be avoided. The new method is able to dynamically locate virtual pivots, according to the query, with increasing pruning ability. Using the same or less amount of database preprocessing effort, the new method outperformed the second best method by using no more than 40 percent distance computations per query, on a database of 10,000 gene sequences, compared to several best known k-nn search methods including M-Tree, OMNI, SA-Tree, and LAESA. We demonstrated the use of this method on two biological sequence data sets, one of which is for HIV-1 viral strain computational genotyping.  相似文献   

13.
Highly accurate estimation of phylogenetic trees for large data sets is difficult, in part because multiple sequence alignments must be accurate for phylogeny estimation methods to be accurate. Coestimation of alignments and trees has been attempted but currently only SATé estimates reasonably accurate trees and alignments for large data sets in practical time frames (Liu K., Raghavan S., Nelesen S., Linder C.R., Warnow T. 2009b. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science. 324:1561-1564). Here, we present a modification to the original SATé algorithm that improves upon SATé (which we now call SATé-I) in terms of speed and of phylogenetic and alignment accuracy. SATé-II uses a different divide-and-conquer strategy than SATé-I and so produces smaller more closely related subsets than SATé-I; as a result, SATé-II produces more accurate alignments and trees, can analyze larger data sets, and runs more efficiently than SATé-I. Generally, SATé is a metamethod that takes an existing multiple sequence alignment method as an input parameter and boosts the quality of that alignment method. SATé-II-boosted alignment methods are significantly more accurate than their unboosted versions, and trees based upon these improved alignments are more accurate than trees based upon the original alignments. Because SATé-I used maximum likelihood (ML) methods that treat gaps as missing data to estimate trees and because we found a correlation between the quality of tree/alignment pairs and ML scores, we explored the degree to which SATé's performance depends on using ML with gaps treated as missing data to determine the best tree/alignment pair. We present two lines of evidence that using ML with gaps treated as missing data to optimize the alignment and tree produces very poor results. First, we show that the optimization problem where a set of unaligned DNA sequences is given and the output is the tree and alignment of those sequences that maximize likelihood under the Jukes-Cantor model is uninformative in the worst possible sense. For all inputs, all trees optimize the likelihood score. Second, we show that a greedy heuristic that uses GTR+Gamma ML to optimize the alignment and the tree can produce very poor alignments and trees. Therefore, the excellent performance of SATé-II and SATé-I is not because ML is used as an optimization criterion for choosing the best tree/alignment pair but rather due to the particular divide-and-conquer realignment techniques employed.  相似文献   

14.
Bayesian inference is becoming a common statistical approach to phylogenetic estimation because, among other reasons, it allows for rapid analysis of large data sets with complex evolutionary models. Conveniently, Bayesian phylogenetic methods use currently available stochastic models of sequence evolution. However, as with other model-based approaches, the results of Bayesian inference are conditional on the assumed model of evolution: inadequate models (models that poorly fit the data) may result in erroneous inferences. In this article, I present a Bayesian phylogenetic method that evaluates the adequacy of evolutionary models using posterior predictive distributions. By evaluating a model's posterior predictive performance, an adequate model can be selected for a Bayesian phylogenetic study. Although I present a single test statistic that assesses the overall (global) performance of a phylogenetic model, a variety of test statistics can be tailored to evaluate specific features (local performance) of evolutionary models to identify sources failure. The method presented here, unlike the likelihood-ratio test and parametric bootstrap, accounts for uncertainty in the phylogeny and model parameters.  相似文献   

15.
MOTIVATION: Sequence databases represent an enormous resource of phylogenetic information, but there is a lack of tools for accessing that information in order to assess the amount of evolutionary information in these databases that may be suitable for phylogenetic reconstruction and for identifying areas of the taxonomy that are under-represented for specific gene sequences. RESULTS: We have developed TreeGeneBrowser which allows inspection and evaluation of gene sequence data for phylogenetic reconstruction. This program improves the efficiency of identification of genes that may be useful for particular phylogenetic studies and identifies taxa and taxonomic branches that are under-represented in sequence databases.  相似文献   

16.
Many research groups are estimating trees containing anywhere from a few thousands to hundreds of thousands of species, toward the eventual goal of the estimation of a Tree of Life, containing perhaps as many as several million leaves. These phylogenetic estimations present enormous computational challenges, and current computational methods are likely to fail to run even on data sets in the low end of this range. One approach to estimate a large species tree is to use phylogenetic estimation methods (such as maximum likelihood) on a supermatrix produced by concatenating multiple sequence alignments for a collection of markers; however, the most accurate of these phylogenetic estimation methods are extremely computationally intensive for data sets with more than a few thousand sequences. Supertree methods, which assemble phylogenetic trees from a collection of trees on subsets of the taxa, are important tools for phylogeny estimation where phylogenetic analyses based upon maximum likelihood (ML) are infeasible. In this paper, we introduce SuperFine, a meta-method that utilizes a novel two-step procedure in order to improve the accuracy and scalability of supertree methods. Our study, using both simulated and empirical data, shows that SuperFine-boosted supertree methods produce more accurate trees than standard supertree methods, and run quickly on very large data sets with thousands of sequences. Furthermore, SuperFine-boosted matrix representation with parsimony (MRP, the most well-known supertree method) approaches the accuracy of ML methods on supermatrix data sets under realistic conditions.  相似文献   

17.
Phylogenetic analyses frequently rely on models of sequence evolution that detail nucleotide substitution rates, nucleotide frequencies, and site-to-site rate heterogeneity. These models can influence hypothesis testing and can affect the accuracy of phylogenetic inferences. Maximum likelihood methods of simultaneously constructing phylogenetic tree topologies and estimating model parameters are computationally intensive, and are not feasible for sample sizes of 25 or greater using personal computers. Techniques that initially construct a tree topology and then use this non-maximized topology to estimate ML substitution rates, however, can quickly arrive at a model of sequence evolution. The accuracy of this two-step estimation technique was tested using simulated data sets with known model parameters. The results showed that for a star-like topology, as is often seen in human immunodeficiency virus type 1 (HIV-1) subtype B sequences, a random starting topology could produce nucleotide substitution rates that were not statistically different than the true rates. Samples were isolated from 100 HIV-1 subtype B infected individuals from the United States and a 620 nt region of the env gene was sequenced for each sample. The sequence data were used to obtain a substitution model of sequence evolution specific for HIV-1 subtype B env by estimating nucleotide substitution rates and the site-to-site heterogeneity in 100 individuals from the United States. The method of estimating the model should provide users of large data sets with a way to quickly compute a model of sequence evolution, while the nucleotide substitution model we identified should prove useful in the phylogenetic analysis of HIV-1 subtype B env sequences. Received: 4 October 2000 / Accepted: 1 March 2001  相似文献   

18.
The problem of missing data is often considered to be the most important obstacle in reconstructing the phylogeny of fossil taxa and in combining data from diverse characters and taxa for phylogenetic analysis. Empirical and theoretical studies show that including highly incomplete taxa can lead to multiple equally parsimonious trees, poorly resolved consensus trees, and decreased phylogenetic accuracy. However, the mechanisms that cause incomplete taxa to be problematic have remained unclear. It has been widely assumed that incomplete taxa are problematic because of the proportion or amount of missing data that they bear. In this study, I use simulations to show that the reduced accuracy associated with including incomplete taxa is caused by these taxa bearing too few complete characters rather than too many missing data cells. This seemingly subtle distinction has a number of important implications. First, the so-called missing data problem for incomplete taxa is, paradoxically, not directly related to their amount or proportion of missing data. Thus, the level of completeness alone should not guide the exclusion of taxa (contrary to common practice), and these results may explain why empirical studies have sometimes found little relationship between the completeness of a taxon and its impact on an analysis. These results also (1) suggest a more effective strategy for dealing with incomplete taxa, (2) call into question a justification of the controversial phylogenetic supertree approach, and (3) show the potential for the accurate phylogenetic placement of highly incomplete taxa, both when combining diverse data sets and when analyzing relationships of fossil taxa.  相似文献   

19.

Background

Genome level analyses have enhanced our view of phylogenetics in many areas of the tree of life. With the production of whole genome DNA sequences of hundreds of organisms and large-scale EST databases a large number of candidate genes for inclusion into phylogenetic analysis have become available. In this work, we exploit the burgeoning genomic data being generated for plant genomes to address one of the more important plant phylogenetic questions concerning the hierarchical relationships of the several major seed plant lineages (angiosperms, Cycadales, Gingkoales, Gnetales, and Coniferales), which continues to be a work in progress, despite numerous studies using single, few or several genes and morphology datasets. Although most recent studies support the notion that gymnosperms and angiosperms are monophyletic and sister groups, they differ on the topological arrangements within each major group.

Methodology

We exploited the EST database to construct a supermatrix of DNA sequences (over 1,200 concatenated orthologous gene partitions for 17 taxa) to examine non-flowering seed plant relationships. This analysis employed programs that offer rapid and robust orthology determination of novel, short sequences from plant ESTs based on reference seed plant genomes. Our phylogenetic analysis retrieved an unbiased (with respect to gene choice), well-resolved and highly supported phylogenetic hypothesis that was robust to various outgroup combinations.

Conclusions

We evaluated character support and the relative contribution of numerous variables (e.g. gene number, missing data, partitioning schemes, taxon sampling and outgroup choice) on tree topology, stability and support metrics. Our results indicate that while missing characters and order of addition of genes to an analysis do not influence branch support, inadequate taxon sampling and limited choice of outgroup(s) can lead to spurious inference of phylogeny when dealing with phylogenomic scale data sets. As expected, support and resolution increases significantly as more informative characters are added, until reaching a threshold, beyond which support metrics stabilize, and the effect of adding conflicting characters is minimized.  相似文献   

20.
Consensus design is an appealing strategy for the stabilization of proteins. It exploits amino acid conservation in sets of homologous proteins to identify likely beneficial mutations. Nevertheless, its success depends on the phylogenetic diversity of the sequence set available. Here, we show that randomization of a single protein represents a reliable alternative source of sequence diversity that is essentially free of phylogenetic bias. A small number of functional protein sequences selected from binary-patterned libraries suffice as input for the consensus design of active enzymes that are easier to produce and substantially more stable than individual members of the starting data set. Although catalytic activity correlates less consistently with sequence conservation in these extensively randomized proteins, less extreme mutagenesis strategies might be adopted in practice to augment stability while maintaining function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号