首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor necrosis factor (TNF)-alpha signals cell death and simultaneously induces the generation of ceramide, which is metabolized to sphingosine and sphingosine 1-phosphate (S1P) by ceramidase (CDase) and sphingosine kinase. Because the dynamic balance between the intracellular levels of ceramide and S1P (the "ceramide/S1P rheostat") may determine cell survival, we investigated these sphingolipid signaling pathways in TNF-alpha-induced apoptosis of primary hepatocytes. Endogenous C16-ceramide was elevated during TNF-alpha-induced apoptosis in both rat and mouse primary hepatocytes. The putative acid sphingomyelinase (ASMase) inhibitor imipramine inhibited TNF-alpha-induced apoptosis and C16-ceramide increase as did the knock out of ASMase. Overexpression of neutral CDase (NCDase) inhibited the TNF-alpha-induced increase of C16-ceramide and apoptosis in rat primary hepatocytes. Moreover, NCDase inhibited liver injury and hepatocyte apoptosis in mice treated with D-galactosamine plus TNF-alpha. This protective effect was abrogated by the sphingosine kinase inhibitor N,N-demethylsphingosine, suggesting that the survival effect of NCDase is due to not only C16-ceramide reduction but also S1P formation. Administration of S1P or overexpression of NCDase activated the pro-survival kinase AKT, and overexpression of dominant negative AKT blocked the survival effect of NCDase. In conclusion, activation of ASMase and generation of C16-ceramide contributed to TNF-alpha-induced hepatocyte apoptosis. NCDase prevented apoptosis both by reducing C16-ceramide and by activation of AKT through S1P formation. Therefore, the cross-talk between sphingolipids and AKT pathway may determine hepatocyte apoptosis by TNF-alpha.  相似文献   

2.
Cellular cytoskeletal remodeling reflects alterations in local biochemical and mechanical changes in terms of stress that manifests relocation of signaling molecules within and across the cell. Although stretching due to load and chemical changes by high homocysteine (HHcy) causes cytoskeletal re-arrangement, the synergism between stretch and HHcy is unclear. We investigated the contribution of HHcy in cyclic stretch-induced focal adhesion (FA) protein redistribution leading to cytoskeletal re-arrangement in mouse aortic endothelial cells (MAEC). MAEC were subjected to cyclic stretch (CS) and HHcy alone or in combination. The redistribution of FA protein, and small GTPases were determined by Confocal microscopy and Western blot techniques in membrane and cytosolic compartments. We found that each treatment induces focal adhesion kinase (FAK) phosphorylation and cytoskeletal actin polymerization. In addition, CS activates and membrane translocates small GTPases RhoA with minimal effect on Rac1, whereas HHcy alone is ineffective in both GTPases translocation. However, the combined effect of CS and HHcy activates and membrane translocates both GTPases. Free radical scavenger NAC (N-Acetyl-Cysteine) inhibits CS and HHcy-mediated FAK phosphorylation and actin stress fiber formation. Interestingly, CS also activates and membrane translocates another FA protein, paxillin in HHcy condition. Cytochalasin D, an actin polymerization blocker and PI3-kinase inhibitor Wortmannin inhibited FAK phosphorylation and membrane translocation of paxillin suggesting the involvement of PI3K pathway. Together our results suggest that CS- and HHcy-induced oxidative stress synergistically contribute to small GTPase membrane translocation and focal adhesion protein redistribution leading to endothelial remodeling.  相似文献   

3.
Tumor necrosis factor alpha (TNF-alpha) is a potent inhibitor of proliferation in several cell types, including thyroid FRTL-5 cells. As intracellular free calcium ([Ca2+]i) is a major signal in activating proliferation, we investigated the effect of TNF-alpha on calcium fluxes in FRTL-5 cells. TNF-alpha per se did not modulate resting [Ca2+]i. However, preincubation (10 min) of the cells with 1-100 ng/ml TNF-alpha decreased the thapsigargin (Tg)-evoked store-operated calcium entry in a concentration-dependent manner. TNF-alpha did not inhibit the mobilization of sequestered calcium. To investigate whether the effect of TNF-alpha on calcium entry was mediated via the sphingomyelinase pathway, the cells were pretreated with sphingomyelinase (SMase) prior to stimulation with Tg. SMase inhibited the Tg-evoked calcium entry in a concentration-dependent manner. Furthermore, an inhibition of calcium entry was obtained after preincubation of the cells with the membrane-permeable C2-ceramide and C6-ceramide analogues. The inactive ceramides dihydro-C2 and dihydro-C6 showed only marginal effects. Neither SMase, C2-ceramide, nor C6-ceramide affected the release of sequestered calcium. C2- and C6-ceramide also decreased the ATP-evoked calcium entry, without affecting the release of sequestered calcium. The effect of TNF-alpha and SMase was inhibited by the kinase inhibitor staurosporin and by the protein kinase C (PKC) inhibitor calphostin C but not by down-regulation of PKC. However, we were unable to measure a significant activation of PKC using TNF-alpha or C6-ceramide. The effect of TNF-alpha was not mediated via activation of either c-Jun N-terminal kinase or p38 kinase. We were unable to detect an increase in the ceramide (or sphingosine) content of the cells after stimulation with TNF-alpha for up to 30 min. Thus, one mechanism of action of TNF-alpha, SMase, and ceramide on thyroid FRTL-5 cells is to inhibit calcium entry.  相似文献   

4.
Although accumulating evidence demonstrates that white matter degeneration contributes to pathology in Alzheimer's disease (AD), the underlying mechanisms are unknown. In order to study the roles of the amyloid-beta peptide in inducing oxidative stress damage in white matter of AD, we investigated the effects of amyloid-beta peptide 25-35 (Abeta) on proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha)-induced inducible nitric oxide synthase (iNOS) in cultured oligodendrocytes (OLGs). Although Abeta 25-35 by itself had little effect on iNOS mRNA, protein, and nitrite production, it enhanced TNF-alpha-induced iNOS expression and nitrite generation in OLGs. Abeta, TNF-alpha, or the combination of both, increased neutral sphingomyelinase (nSMase) activity, but not acidic sphingomyelinase (aSMase) activity, leading to ceramide accumulation. Cell permeable C2-ceramide enhanced TNF-alpha-induced iNOS expression and nitrite generation. Moreover, the specific nSMase inhibitor, 3-O-methyl-sphingomyelin (3-OMS), inhibited iNOS expression and nitrite production induced by TNF-alpha or by the combination of TNF-alpha and Abeta. Overexpression of a truncated mutant of nSMase with a dominant negative function inhibited iNOS mRNA production. 3-OMS also inhibited nuclear factor kappaB (NF-kappaB) binding activity induced by TNF-alpha or by the combination of TNF-alpha and Abeta. These results suggest that neutral sphingomyelinase/ceramide pathway is required but may not be sufficient for iNOS expression induced by TNF-alpha and the combination of TNF-alpha and Abeta.  相似文献   

5.
We previously reported that extracellular sphingomyelinase induces sphingomyelin hydrolysis in osteoblast-like MC3T3-E1 cells and that mitogen-activated protein (MAP) kinases are involved in bone morphogenetic protein (BMP)-4-stimulated osteocalcin synthesis in these cells. In the present study, we investigated whether sphingomyelinase affects BMP-4-stimulated synthesis of osteocalcin in osteoblast-like MC3T3-E1 cells. Sphingomyelinase significantly enhanced the BMP-4-stimulated osteocalcin synthesis. Among sphingomyelin metabolites, C(2)-ceramide enhanced the BMP-4-stimulated osteocalcin synthesis while sphingosine and sphingosine 1-phosphate had little effect on the synthesis. D-erythro-MAPP, an inhibitor of ceramidase, amplified the sphingomyelinase-effect on the osteocalcin synthesis. C(2)-ceramide suppressed the BMP-4-induced phosphorylation of p44/p42 MAP kinase, while having little effect on the phosphorylation of Smad1 and p38 MAP kinase. Taken together, our results strongly suggest that extracellular sphingomyelinase enhances the BMP-stimulated osteocalcin synthesis via ceramide in osteoblasts and that the effect of ceramide is exerted at a point upstream from p44/p42 MAP kinase.  相似文献   

6.
7.
Since sphingosine 1-phosphate (Sph-1-P) is stored in abundant amounts in blood platelets and released extracellularly upon stimulation, it is important to clarify the effects of this bioactive lysophospholipid on vascular endothelial cells from the viewpoint of platelet-endothelial cell interactions. In this study, we investigated the effects of Sph-1-P on the cytoskeletal remodeling of human umbilical vein endothelial cells (HUVECs). Of a focal adhesion kinase (FAK) family of non-receptor protein-tyrosine kinases, HUVECs were found to express FAK, but scarcely proline-rich tyrosine kinase 2. Sph-1-P induced FAK tyrosine phosphorylation, myosin light chain phosphorylation, and the formation of stress fibers in HUVECs. The specific Rho inactivator C3 transferase from Clostridium botulinum abolished all of these cytoskeletal responses induced by Sph-1-P, while pertussis toxin only partly inhibited FAK tyrosine phosphorylation, and hardly affected myosin light chain phosphorylation and stress fiber formation. In contrast, Sph-1-P-induced intracellular Ca(2)(+) mobilization was suppressed by pertussis toxin, but not at all by C3 exoenzyme. Our results suggest that Sph-1-P, a bioactive lipid released from activated platelets, induces endothelial cell cytoskeletal reorganization, mainly through Rho-mediated signaling pathways.  相似文献   

8.
Paxillin is involved in the regulation of Helicobacter pylori-mediated gastric epithelial cell motility. We investigated the signaling pathways regulating H. pylori-induced paxillin phosphorylation and the effect of the H. pylori virulence factors cag pathogenicity island (PAI) and outer inflammatory protein (OipA) on actin stress fiber formation, cell phenotype, and IL-8 production. Gastric cell infection with live H. pylori induced site-specific phosphorylation of paxillin tyrosine (Y) 31 and Y118 in a time- and concentration-dependent manner. Activated paxillin localized in the cytoplasm at the tips of H. pylori-induced actin stress fibers. Isogenic oipA mutants significantly reduced paxillin phosphorylation at Y31 and Y118 and reduced actin stress fiber formation. In contrast, cag PAI mutants only inhibited paxillin Y118 phosphorylation. Silencing of epidermal growth factor receptor (EGFR), focal adhesion kinase (FAK), or protein kinase B (Akt) expression by small-interfering RNAs or inhibiting kinase activity of EGFR, Src, or phosphatidylinositol 3-kinase (PI3K) markedly reduced H. pylori-induced paxillin phosphorylation and morphologic alterations. Reduced FAK expression or lack of Src kinase activity suppressed H. pylori-induced IL-8 production. Compared with infection with the wild type, infection with the cag PAI mutant and oipA mutant reduced IL-8 production by nearly 80 and 50%. OipA-induced IL-8 production was FAK- and Src-dependent, although a FAK/Src-independent pathway for IL-8 production also exists, and the cag PAI may be mainly involved in this pathway. We propose paxillin as a novel cellular target for converging H. pylori-induced EGFR, FAK/Src, and PI3K/Akt signaling to regulate cytoskeletal reorganization and IL-8 production in part, thus contributing to the H. pylori-induced diseases.  相似文献   

9.
In our recent studies, we defined a critical role for increased levels of myosin light chain (MLC) phosphorylation, a regulatory event in the interaction between actin and myosin in TNF-alpha-induced pulmonary endothelial cell actomyosin rearrangement and apoptosis. The Rho GTPase effector, Rho kinase is an important signaling effector governing levels of MLC phosphorylation which contributes to plasma membrane blebbing in several models of apoptosis. In this study, we directly assessed the role of Rho kinase in TNF-alpha-induced endothelial cell microfilament rearrangement and apoptosis. Inhibition of RhoA GTPase activity by the overexpression of dominant negative RhoA attenuates TNF-alpha-triggered stress fiber formation, consistent with Rho activation as a key event in TNF-alpha-induced cytoskeletal rearrangement. Furthermore, pharmacologic inhibition of Rho kinase as well as dominant negative RhoA overexpression dramatically reduced TNF-alpha-induced bovine endothelial apoptosis reflected by nucleosomal fragmentation as well as caspase 7, 3, and 8 activation. These results indicate that Rho kinase-dependent cytoskeletal rearrangement is critical for early apoptotic events, possibly in the assembly of the death-inducing signaling complex leading to initiator and effector caspase activation, and suggest a novel role for Rho GTPases in endothelial cell apoptosis.  相似文献   

10.
RhoA is known to participate in cytoskeletal remodeling events through several signaling pathways, yet the precise mechanism of its activation remains unknown. Here, we provide the first evidence that dematin functions upstream of RhoA and regulates its activation. Primary mouse embryonic fibroblasts were generated from a dematin headpiece domain null (HPKO) mouse, and the visualization of the actin morphology revealed a time-dependent defect in stress fiber formation, membrane protrusions, cell motility, and cell adhesion. Rescue experiments using RNA interference and transfection assays revealed that the observed phenotypes are due to a null effect and not a gain of function in the mutant fibroblasts. In vivo wounding of adult HPKO mouse skin showed a decrease in wound healing (reepithelialization and granulation) compared to the wild-type control. Biochemical analysis of the HPKO fibroblasts revealed a sustained hyperphosphorylation of focal adhesion kinase (FAK) at tyrosine 397 as well as a twofold increase in RhoA activation. Inhibition of both RhoA and FAK signaling using C3 toxin and FRNK (focal adhesion kinase nonrelated kinase), respectively, revealed that dematin acts upstream of RhoA. Together, these results unveil a new function of dematin as a negative regulator of the RhoA activation pathway with physiological implications for normal and pathogenic signaling pathways.  相似文献   

11.
Vascular calcification is the deposition of mineral in the artery wall by vascular smooth muscle cells (VSMCs) in response to pathological stimuli. The process is similar to bone formation and is an independent risk factor for cardiovascular disease. Given that ceramide and sphingosine 1-phosphate (S1P) are involved in cardiovascular pathophysiology and biomineralization, their role in VSMC matrix mineralization was investigated. During phosphate-induced VSMC mineralization, endogenous S1P levels increased accompanied by increased sphingosine kinase (SK) activity and increased mRNA expression of SK1 and SK2. Consistent with this, mineralization was increased by exogenous S1P, but decreased by C2-ceramide. Mechanistically, exogenous S1P stimulated ezrin-radixin-moesin (ERM) phosphorylation in VSMCs and ERM phosphorylation was increased concomitantly with endogenous S1P during mineralization. Moreover, inhibition of acid sphingomyelinase and ceramidase with desipramine prevented increased S1P levels, ERM activation, and mineralization. Finally, pharmacological inhibition of ERM phosphorylation with NSC663894 decreased mineralization induced by phosphate and exogenous S1P. Although further studies will be needed to verify these findings in vivo, this study defines a novel role for the SK-S1P-ERM pathways in phosphate-induced VSMC matrix mineralization and shows that blocking these pathways with pharmacological inhibitors reduces mineralization. These results may inform new therapeutic approaches to inhibit or delay vascular calcification.  相似文献   

12.
Small G proteins in the Rho family are known to regulate diverse cellular processes, including cytoskeletal organization and cell cycling, and more recently, ion channel activity and activity of phosphatidylinositol 4-phosphate 5-kinase (PI(4)P 5-K). The present study investigates regulation of the epithelial Na(+) channel (ENaC) by Rho GTPases. We demonstrate here that RhoA and Rac1 markedly increase ENaC activity. Activation by RhoA was suppressed by the C3 exoenzyme. Inhibition of the downstream RhoA effector Rho kinase, which is necessary for RhoA activation of PI(4)P 5-K, abolished ENaC activation. Similar to RhoA, overexpression of PI(4)P 5-K increased ENaC activity suggesting that production of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) in response to RhoA-Rho kinase signaling stimulates ENaC. Supporting this idea, inhibition of phosphatidylinositol 4-kinase, but not the RhoA effector phosphatidylinositol 3-kinase and MAPK cascades, markedly attenuated RhoA-dependent activation of ENaC. RhoA increased ENaC activity by increasing the plasma membrane levels of this channel. We conclude that RhoA activates ENaC via Rho kinase and subsequently activates PI(4)P 5-K with concomitant increases in PI(4,5)P(2) levels promoting channel insertion into the plasma membrane.  相似文献   

13.
14.
Treatment of confluent rat2 fibroblasts with C2-ceramide (N-acetylsphingosine), sphingomyelinase, or tumor necrosis factor-alpha (TNFalpha) increased phosphatidylinositol (PI) 3-kinase activity by 3-6-fold after 10 min. This effect of C2-ceramide depended on tyrosine kinase activity and an increase in Ras-GTP levels. Increased PI 3-kinase activity was also accompanied by its translocation to the membrane fraction, increases in tyrosine phosphorylation of the p85 subunit, and physical association with Ras. Activation of PI 3-kinase by TNFalpha, sphingomyelinase, and C2-ceramide was inhibited by tyrosine kinase inhibitors (genistein and PP1). The stimulation of PI 3-kinase by sphingomyelinase and C2-ceramide was not observed in fibroblasts expressing dominant-negative Ras (N17) and the stimulation by TNFalpha was decreased by 70%. PI 3-kinase activation by C2-ceramide was not modified by inhibitors of acidic and neutral ceramidases, and it was not observed with the relatively inactive analog, dihydro-C2-ceramide. It is proposed that activation of Ras and PI 3-kinase by ceramide can contribute to signaling effects of TNFalpha that occur downstream of sphingomyelinase activation and result in increased fibroblasts proliferation.  相似文献   

15.
P34(BSA), a BSA conjugate of a synthetic 10-mer peptide deduced from Treponema denticola major outer sheath protein (Msp), stabilizes actin filaments in fibroblasts and retards cell motility. We reported previously that it is internalized by cells, binds and bundles actin filaments in vitro, and activates RhoA; yet, its site and mechanism of action were not defined. We have assessed P34(BSA)'s modes of interaction with and signaling to fibroblasts. At 4 degrees C, P34(BSA) was not internalized, but it bound to the plasma membrane and promoted actin stress fiber formation at approximately 80% capacity compared with 37 degrees C controls, casting doubt that cellular uptake is a critical step for its cytoskeleton-stabilizing property. In Rho G-LISA and co-immunoprecipitation assays, P34(BSA) was found to activate RhoA, even at 4 degrees C, to promote its interaction with guanosine nucleotide exchange factor p114RhoGEF. It also caused phosphorylation of cofilin. Upon RhoA inhibition, either by C3 transferase RhoA inhibitor or by transfection with a dominant negative RhoA construct, P34(BSA) did not achieve the stress fiber formation seen with P34(BSA) alone. By inhibiting phosphatidylinositol-3 kinase (PI 3-K) with LY294002, the P34(BSA) effects were completely blocked. Depletion of cholesterol with methyl-beta-cyclodextrin (MbetaCD) partially inhibited P34(BSA) signaling via the plasma membrane to the cytoskeleton. This suggests that multivalent P34(BSA) activation of lipid raft components requires active PI 3-K, and initiates the pathway through a RhoGEF and RhoA, which mediates stress fiber formation in fibroblasts. Hence, P34(BSA) may represent a novel tool to investigate RhoA-dependent processes, such as remodeling filamentous actin in eukaryotic cells.  相似文献   

16.
17.
18.
Sawai H  Okazaki T  Domae N 《FEBS letters》2002,524(1-3):103-106
Sphingolipids such as ceramide and sphingosine are putative intracellular signal mediators in cell differentiation, growth inhibition and apoptosis. Previously, we reported that C2-ceramide induced c-jun expression in apoptosis of human leukemia HL-60 cells. Here we report that sphingosine also induced c-jun expression in apoptosis of HL-60 cells. Sphingosine-induced c-jun expression was stimulated by H-89, a protein kinase A inhibitor, whereas C2-ceramide-induced c-jun expression was inhibited by protein kinase C inhibitors. Furthermore, H-89 potentiated sphingosine-induced but not C2-ceramide-induced growth inhibition. These results suggest that sphingosine and C2-ceramide might induce c-jun expression and apoptosis in distinct signaling pathways.  相似文献   

19.
Two isoforms of sphingosine kinase, SK1 and SK2, catalyze the formation of the bioactive lipid sphingosine 1-phosphate (S1P) in mammalian cells. We have previously shown that treatment of androgen-sensitive LNCaP prostate cancer cells with a non-selective SK isoform inhibitor, 2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole (SKi), induces the proteasomal degradation of SK1. This is concomitant with a significant increase in C22:0-ceramide and sphingosine levels and a reduction in S1P levels, resulting in the apoptosis of LNCaP cells. In contrast, we show here that a SK2-selective inhibitor, (R)-FTY720 methyl ether (ROME), increases sphingosine and decreases S1P levels but has no effect on ceramide levels and does not induce apoptosis in LNCaP cells. We also show that several glycolytic metabolites and (R)-S-lactoylglutathione are increased upon treatment of LNCaP cells with SKi, which induces the proteasomal degradation of c-Myc. These changes reflect an indirect antagonism of the Warburg effect. LNCaP cells also respond to SKi by diverting glucose 6-phosphate into the pentose phosphate pathway to provide NADPH, which serves as an antioxidant to counter an oxidative stress response. SKi also promotes the formation of a novel pro-apoptotic molecule called diadenosine 5′,5′′′-P1,P3-triphosphate (Ap3A), which binds to the tumor suppressor fragile histidine triad protein (FHIT). In contrast, the SK2-selective inhibitor, ROME, induces a reduction in some glycolytic metabolites and does not affect oxidative stress. We conclude that SK1 functions to increase the stability of c-Myc and suppresses Ap3A formation, which might maintain the Warburg effect and cell survival, while SK2 exhibits a non-overlapping function.  相似文献   

20.
LPS is a constituent of cell walls of Gram-negative bacteria that, acting through the CD14/TLR4 receptor complex, causes strong proinflammatory activation of macrophages. In murine peritoneal macrophages and J774 cells, LPS at 1-2 ng/ml induced maximal TNF-α and MIP-2 release, and higher LPS concentrations were less effective, which suggested a negative control of LPS action. While studying the mechanism of this negative regulation, we found that in J774 cells, LPS activated both acid sphingomyelinase and neutral sphingomyelinase and moderately elevated ceramide, ceramide 1-phosphate, and sphingosine levels. Lowering of the acid sphingomyelinase and neutral sphingomyelinase activities using inhibitors or gene silencing upregulated TNF-α and MIP-2 production in J774 cells and macrophages. Accordingly, treatment of those cells with exogenous C8-ceramide diminished TNF-α and MIP-2 production after LPS stimulation. Exposure of J774 cells to bacterial sphingomyelinase or interference with ceramide hydrolysis using inhibitors of ceramidases also lowered the LPS-induced TNF-α production. The latter result indicates that ceramide rather than sphingosine suppresses TNF-α and MIP-2 production. Of these two cytokines, only TNF-α was negatively regulated by ceramide 1-phosphate as was indicated by upregulated TNF-α production after silencing of ceramide kinase gene expression. None of the above treatments diminished NO or RANTES production induced by LPS. Together the data indicate that ceramide negatively regulates production of TNF-α and MIP-2 in response to LPS with the former being sensitive to ceramide 1-phosphate as well. We hypothesize that the ceramide-mediated anti-inflammatory pathway may play a role in preventing endotoxic shock and in limiting inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号