首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Predation is a major selective force for the evolution of behavioural characteristics of prey. Predation among consumers competing for food is termed intraguild predation (IGP). From the perspective of individual prey, IGP differs from classical predation in the likelihood of occurrence because IG prey is usually more rarely encountered and less profitable because it is more difficult to handle than classical prey. It is not known whether IGP is a sufficiently strong force to evolve interspecific threat sensitivity in antipredation behaviours, as is known from classical predation, and if so whether such behaviours are innate or learned. We examined interspecific threat sensitivity in antipredation in a guild of predatory mite species differing in adaptation to the shared spider mite prey (i.e. Phytoseiulus persimilis, Neoseiulus californicus and Amblyseius andersoni). We first ranked the players in this guild according to the IGP risk posed to each other: A. andersoni was the strongest IG predator; P. persimilis was the weakest. Then, we assessed the influence of relative IGP risk and experience on maternal strategies to reduce offspring IGP risk: A. andersoni was insensitive to IGP risk. Threat sensitivity in oviposition site selection was induced by experience in P. persimilis but occurred independently of experience in N. californicus. Irrespective of experience, P. persimilis laid fewer eggs in choice situations with the high- rather than low-risk IG predator. Our study suggests that, similar to classical predation, IGP may select for sophisticated innate and learned interspecific threat-sensitive antipredation responses. We argue that such responses may promote the coexistence of IG predators and prey.  相似文献   

2.
1. Habitat heterogeneity and predator behaviour can strongly affect predator-prey interactions but these factors are rarely considered simultaneously, especially when systems encompass multiple predators and prey. 2. In the Arctic, greater snow geese Anser caerulescens atlanticus L. nest in two structurally different habitats: wetlands that form intricate networks of water channels, and mesic tundra where such obstacles are absent. In this heterogeneous environment, goose eggs are exposed to two types of predators: the arctic fox Vulpes lagopus L. and a diversity of avian predators. We hypothesized that, contrary to birds, the hunting ability of foxes would be impaired by the structurally complex wetland habitat, resulting in a lower predation risk for goose eggs. 3. In addition, lemmings, the main prey of foxes, show strong population cycles. We thus further examined how their fluctuations influenced the interaction between habitat heterogeneity and fox predation on goose eggs. 4. An experimental approach with artificial nests suggested that foxes were faster than avian predators to find unattended goose nests in mesic tundra whereas the reverse was true in wetlands. Foxes spent 3.5 times more time between consecutive attacks on real goose nests in wetlands than in mesic tundra. Their attacks on goose nests were also half as successful in wetlands than in mesic tundra whereas no difference was found for avian predators. 5. Nesting success in wetlands (65%) was higher than in mesic tundra (56%) but the difference between habitats increased during lemming crashes (15%) compared to other phases of the cycle (5%). Nests located at the edge of wetland patches were also less successful than central ones, suggesting a gradient in accessibility of goose nests in wetlands for foxes. 6. Our study shows that the structural complexity of wetlands decreases predation risk from foxes but not avian predators in arctic-nesting birds. Our results also demonstrate that cyclic lemming populations indirectly alter the spatial distribution of productive nests due to a complex interaction between habitat structure, prey-switching and foraging success of foxes.  相似文献   

3.
A meta-analysis of predation risk effects on pollinator behaviour   总被引:1,自引:0,他引:1  
Flower-visiting animals are constantly under predation risk when foraging and hence might be expected to evolve behavioural adaptations to avoid predators. We reviewed the available published and unpublished data to assess the overall effects of predators on pollinator behaviour and to examine sources of variation in these effects. The results of our meta-analysis showed that predation risk significantly decreased flower visitation rates (by 36%) and time spent on flowers (by 51%) by pollinators. The strength of the predator effects depended neither on predator taxa and foraging mode (sit-and-wait or active hunters) nor on pollinator lifestyle (social vs. solitary). However, predator effects differed among pollinator taxa: predator presence reduced flower visitation rates and time spent on flowers by Squamata, Lepidoptera and Hymenoptera, but not by Diptera. Furthermore, larger pollinators showed weaker responses to predation risk, probably because they are more difficult to capture. Presence of live crab spiders on flowers had weaker effects on pollinator behaviour than presence of dead or artificial crab spiders or other objects (e.g. dead bees, spheres), suggesting that predator crypsis may be effective to some extent. These results add to a growing consensus on the importance of considering both predator and pollinator characteristics from a community perspective.  相似文献   

4.
Trophically transmitted parasites may increase their transmission efficiency by altering the behaviour of infected hosts to increase their susceptibility to predation by target hosts (the next host in the life cycle). The parasite Diplostomum spathaceum (Trematoda) reduces the vision of its fish intermediate hosts: its metacercariae lodge themselves in the eyes of fish and induce cataract formation, which gives them the opportunity to affect fish behaviour. We examined whether D. spathaceum eye flukes change the preference of fish for the surface layers of the water column or their escape behaviour, which could make the fish more vulnerable to predation by bird hosts. We also studied the influence of parasites on the susceptibility of fish to artificial aerial predators that were able to catch fish from the water surface. Infected and control fish did not differ in their preference for the surface layers but infected fish showed less escape behaviour when a black plate was drawn over the water surface. They were also more easily caught by human ‘predators’ dipping a net into the tank. Thus, infected fish should be easier prey for gulls and terns, implying that the ability of D. spathaceum eye flukes to alter fish behaviour may be a parasite strategy evolved to enhance transmission.  相似文献   

5.
6.
Tissue-encysting coccidia, including Toxoplasma gondii and Sarcocystis neurona, are heterogamous parasites with sexual and asexual life stages in definitive and intermediate hosts, respectively. During its sexual life stage, T. gondii reproduces either by genetic out-crossing or via clonal amplification of a single strain through self-mating. Out-crossing has been experimentally verified as a potent mechanism capable of producing offspring possessing a range of adaptive and virulence potentials. In contrast, selfing and other life history traits, such as asexual expansion of tissue-cysts by oral transmission among intermediate hosts, have been proposed to explain the genetic basis for the clonal population structure of T. gondii. In this study, we investigated the contributing roles self-mating and sexual recombination play in nature to maintain clonal population structures and produce or expand parasite clones capable of causing disease epidemics for two tissue encysting parasites. We applied high-resolution genotyping against strains isolated from a T. gondii waterborne outbreak that caused symptomatic disease in 155 immune-competent people in Brazil and a S. neurona outbreak that resulted in a mass mortality event in Southern sea otters. In both cases, a single, genetically distinct clone was found infecting outbreak-exposed individuals. Furthermore, the T. gondii outbreak clone was one of several apparently recombinant progeny recovered from the local environment. Since oocysts or sporocysts were the infectious form implicated in each outbreak, the expansion of the epidemic clone can be explained by self-mating. The results also show that out-crossing preceded selfing to produce the virulent T. gondii clone. For the tissue encysting coccidia, self-mating exists as a key adaptation potentiating the epidemic expansion and transmission of newly emerged parasite clones that can profoundly shape parasite population genetic structures or cause devastating disease outbreaks.  相似文献   

7.
Toxoplasma gondii has a complex life cycle involving definite (cat) and intermediate (all warm blooded animals) hosts. This gives rise to four infectious forms each of which has a distinctive biological role. Two (tachyzoite and merozoite) are involved in propagation within a host and two (bradyzoite and sporozoite) are involved in transmission to new hosts. The various forms can be identified by their structure, host parasite relationship and distinctive developmental processes. In the present in vivo study, the various stages have been evaluated by electron microscopy and immunocytochemistry using a panel of molecular markers relating to surface and cytoplasmic molecules, metabolic iso-enzymes and secreted proteins that can differentiate between tachyzoite, bradyzoite and coccidian development. Tachyzoites were characterised as being positive for surface antigen 1, enolase isoenzyme 2, lactic dehydrogenase isoenzyme 1 and negative for bradyzoite antigen 1. In contrast, bradyzoites were negative for SAG1 but positive for BAG1, ENO1 and LDH2. When stage conversion was followed in brain lesion at 10 and 15 days post-infection, tachyzoites were predominant but a number of single intermediate organisms displaying tachyzoite and certain bradyzoite markers were observed. At later time points, small groups of organisms displaying only bradyzoite markers were also present. A number (9) of dense granule proteins (GRA1-8, NTPase) have also been identified in both tachyzoites and bradyzoites but there were differences in their location during parasite development. All the dense granule proteins extensively label the parasitophorous vacuole during tachyzoite development. In contrast the tissue cyst wall displays variable staining for the dense granule proteins, which also expresses an additional unique cyst wall protein. The molecular differences could be identified at the single cell stage consistent with conversion occurring at the time of entry into a new cell. These molecular differences were reflected in the structural differences in the parasitophorous vacuoles observed by electron microscopy. Stage conversion to enteric (coccidian) development was limited to the enterocytes of the cat small intestine. Although no specific markers were available, this form of development can be identified by the absence of specific tachyzoite (SAG1) and bradyzoite (BAG1) markers although the isoenzymes ENO2 and LHD1 were expressed. There was also a significant difference in the expression of the dense granule proteins. The coccidian stages and merozoites only expressed two (GRA7 and NTPase) of the nine dense granule proteins and this was reflected in significant differences in the structure of the parasitophorous vacuole. The coccidian stages also undergo conversion from asexual to sexual development. The mechanism controlling this process is unknown but does not involve any change in the host cell type or parasitophorous vacuole and may be pre-programmed, since the number of asexual cycles was self-limiting. In conclusion, it was possible using a combination of molecular markers to identify tachyzoite, bradyzoite and coccidian development in tissue sections.  相似文献   

8.
Afonso C  Paixão VB  Costa RM 《PloS one》2012,7(3):e32489
The intracellular parasite Toxoplasma has an indirect life cycle, in which felids are the definitive host. It has been suggested that this parasite developed mechanisms for enhancing its transmission rate to felids by inducing behavioral modifications in the intermediate rodent host. For example, Toxoplasma-infected rodents display a reduction in the innate fear of predator odor. However, animals with Toxoplasma infection acquired in the wild are more often caught in traps, suggesting that there are manipulations of intermediate host behavior beyond those that increase predation by felids. We investigated the behavioral modifications of Toxoplasma-infected mice in environments with exposed versus non-exposed areas, and found that chronically infected mice with brain cysts display a plethora of behavioral alterations. Using principal component analysis, we discovered that most of the behavioral differences observed in cyst-containing animals reflected changes in the microstructure of exploratory behavior and risk/unconditioned fear. We next examined whether these behavioral changes were related to the presence and distribution of parasitic cysts in the brain of chronically infected mice. We found no strong cyst tropism for any particular brain area but found that the distribution of Toxoplasma cysts in the brain of infected animals was not random, and that particular combinations of cyst localizations changed risk/unconditioned fear in the host. These results suggest that brain cysts in animals chronically infected with Toxoplasma alter the fine structure of exploratory behavior and risk/unconditioned fear, which may result in greater capture probability of infected rodents. These data also raise the possibility that selective pressures acted on Toxoplasma to broaden its transmission between intermediate predator hosts, in addition to felid definitive hosts.  相似文献   

9.
We look at a simple model in which an animal makes behavioural decisions over time in an environment in which all parameters are known to the animal except predation risk. In the model there is a trade-off between gaining information about predation risk and anti-predator behaviour. All predator attacks lead to death for the prey, so that the prey learns about predation risk by virtue of the fact that it is still alive. We show that it is not usually optimal to behave as if the current unbiased estimate of the predation risk is its true value. We consider two different ways to model reproduction; in the first scenario the animal reproduces throughout its life until it dies, and in the second scenario expected reproductive success depends on the level of energy reserves the animal has gained by some point in time. For both of these scenarios we find results on the form of the optimal strategy and give numerical examples which compare optimal behaviour with behaviour under simple rules of thumb. The numerical examples suggest that the value of the optimal strategy over the rules of thumb is greatest when there is little current information about predation risk, learning is not too costly in terms of predation, and it is energetically advantageous to learn about predation. We find that for the model and parameters investigated, a very simple rule of thumb such as 'use the best constant control' performs well.  相似文献   

10.
11.
The structure and location of Toxoplasma gondii apicoplasts were examined in intermediate and definitive hosts and shown to vary in a stage-specific manner. Immunocytochemistry and electron microscopy studies were used to identify changes in the morphology of apicoplasts and in their enoyl reductase (ENR) content during asexual and sexual development. Apicoplasts in tachyzoites were small, multimembraned organelles anterior to nuclei that divided and segregated with the nuclei during endodyogeny. In nonproliferating bradyzoites within mature tissue cysts (1 to 24 months), apicoplasts had high levels of ENR. During coccidian development, asexual multiplication (endopolygeny), resulting in simultaneous formation of up to 30 daughters (merozoites), involved an initial growth phase associated with repeated nuclear divisions during which apicoplasts appeared as single, elongated, branched structures with increased levels of ENR. At initiation of merozoite formation, enlarged apicoplasts divided simultaneously, with constrictions, into portions that segregated to developing daughters. In sexual stages, apicoplast division did not occur during microgametogony, and apicoplasts were absent from the microgametes that were formed. In contrast, during macrogametogony, the apicoplast appeared as a large, branched, perinuclear structure that had very high levels of ENR in the absence of nuclear division. Marked increases in the size of apicoplasts and levels of ENR may be related to requirements of the macrogametocytes to synthesize and store all components necessary for oocyst formation and subsequent extracellular sporulation. Thus, it is shown that apicoplasts are present and contain ENR in all T. gondii life cycle stages except microgametes, which will result in maternal inheritance of the organelle.  相似文献   

12.
As an actively dividing organism, the intracellular parasite Toxoplasma gondii must adjust the size and composition of its membranes in order to accommodate changes due to housekeeping activities, to commit division and in fine to produce new viable progenies. Lipid inventory of T. gondii reveals that the biological membranes of this parasite are composed of a complex mixture of neutral and polar lipids. After examination of the origin of T. gondii membrane lipids, three categories of lipids can be described: (i) lipids scavenged by T. gondii from the host cell; (ii) lipids synthesized in large amounts by the parasite, independently from its host cell; and (iii) lipids produced de novo by the parasite, but whose synthesis does not come close to satisfying the entire parasite's needs. These latter must be adeptly acquired from the host environment. To this end, T. gondii diverts a large variety of lipid precursors from host cytoplasm and efficiently manufacture them into complex lipids. This rather remarkable reliance on host lipid resources for parasite survival opens new avenues to restrict parasite growth. Indeed, parasite starvation can be induced upon deprivation from essential host lipids. Lipid analogues with anti-proliferative properties are voraciously taken up by the parasites, which results in parasite membrane defects, and ultimately death.  相似文献   

13.
Beckerman AP  Wieski K  Baird DJ 《Oecologia》2007,152(2):335-343
Predator-generated variation in prey energy intake remains the dominant explanation of adaptive response to predation risk in prey life history, morphology and physiology across a wide range of taxa. This "behavioural hypothesis" suggest that chemical or visual signals of predation risk reduce prey energy intake leading to a life history characterized by a small size and late age at maturity. However, size-selective predation can induce either smaller size-early age or large size-late age life history. The alternative "physiological hypothesis" suggests that size-selective cues decouple the relationship between energy and life history, acting instead directly on development. Here we use a series of experiments in a fish-daphnid predator-prey system to ask whether size-selective predator cues induce a physiological mediation of development, overshadowing behaviourally based changes in food intake. We found fish chemical cues reduce the net energy intake in Daphnia magna, suggesting a behaviourally mediated reduction in energy. Experimental manipulation of food levels show further that reductions in food lead to later but smaller size at maturity. However, in line with the physiological hypothesis, we show that D. magna matures earlier and at a smaller size when exposed to fish predation cues. Furthermore, our data shows that they do this by increasing their development rate (earlier maturity) for a given growth rate, resulting in a smaller size at maturity. Our data, from a classic size-selective predation system, indicate that predator-induced changes in this system are driven by physiological mediation of development rather than behavioural mediation of energy intake.  相似文献   

14.
1. Adaptive maternal programming occurs when mothers alter their offspring's phenotype in response to environmental information such that it improves offspring fitness. When a mother's environment is predictive of the conditions her offspring are likely to encounter, such transgenerational plasticity enables offspring to be better-prepared for this particular environment. However, maternal effects can also have deleterious effects on fitness.2. Here, we test whether female threespined stickleback fish exposed to predation risk adaptively prepare their offspring to cope with predators. We either exposed gravid females to a model predator or not, and compared their offspring's antipredator behaviour and survival when alone with a live predator. Importantly, we measured offspring behaviour and survival in the face of the same type of predator that threatened their mothers (Northern pike).3. We did not find evidence for adaptive maternal programming; offspring of predator-exposed mothers were less likely to orient to the predator than offspring from unexposed mothers. In our predation assay, orienting to the predator was an effective antipredator behaviour and those that oriented, survived for longer.4. In addition, offspring from predator-exposed mothers were caught more quickly by the predator on average than offspring from unexposed mothers. The difference in antipredator behaviour between the maternal predator-exposure treatments offers a potential behavioural mechanism contributing to the difference in survival between maternal treatments.5. However, the strength and direction of the maternal effect on offspring survival depended on offspring size. Specifically, the larger the offspring from predator-exposed mothers, the more vulnerable they were to predation compared to offspring from unexposed mothers.6. Our results suggest that the predation risk perceived by mothers can have long-term behavioural and fitness consequences for offspring in response to the same predator. These stress-mediated maternal effects can have nonadaptive consequences for offspring when they find themselves alone with a predator. In addition, complex interactions between such maternal effects and offspring traits such as size can influence our conclusions about the adaptive nature of maternal effects.  相似文献   

15.
Cephalopods, and in particular the cuttlefish Sepia officinalis, are common models for studies of camouflage and predator avoidance behaviour. Preventing detection by predators is especially important to this group of animals, most of which are soft-bodied, lack physical defences, and are subject to both visually and non-visually mediated detection. Here, we report a novel cryptic mechanism in S. officinalis in which bioelectric cues are reduced via a behavioural freeze response to a predator stimulus. The reduction of bioelectric fields created by the freeze-simulating stimulus resulted in a possible decrease in shark predation risk by reducing detectability. The freeze response may also facilitate other non-visual cryptic mechanisms to lower predation risk from a wide range of predator types.  相似文献   

16.
Many prey animals experience temporal variation in the risk of predation and therefore face the problem of allocating their time between antipredator efforts and other activities like feeding and breeding. We investigated time allocation of prey animals that balanced predation risk and feeding opportunities. The predation risk allocation hypothesis predicts that animals should forage more in low- than in high-risk situations and that this difference should increase with an increasing attack ratio (i.e. difference between low- and high-risk situations) and proportion of time spent at high risk. To test these predictions we conducted a field test using bank voles (Clethrionomys glareolus) as a prey and the least weasel (Mustela nivalis nivalis) as a predator. The temporal pattern and intensity of predation risk were manipulated in large outdoor enclosures and the foraging effort and patch use of voles were measured by recording giving-up densities. We did not observe any variation in feeding effort due to changes in the level of risk or the proportion of time spent under high-risk conditions. The only significant effect was found when the attack ratio was altered: the foraging effort of voles was higher in the treatment with a low attack ratio than in the treatment with a high attack ratio. Thus the results did not support the predation risk allocation hypothesis and we question the applicability of the hypothesis to our study system. We argue that the deviation between the observed pattern of feeding behaviour of bank voles and that predicted by the predation risk allocation hypothesis was mostly due to the inability of voles to accurately assess the changes in the level of risk. However, we also emphasise the difficulties of testing hypotheses under outdoor conditions and with mammals capable of flexible behavioural patterns.  相似文献   

17.
18.
Group size effects on antipredatory behaviour are well documented in numerous animals, but little is known about how the level of predation risk influences this process. We tested the hypothesis that group size and level of risk interact to affect the levels of antipredatory behaviour in the group-living sun skink, Lampropholis delicata. We controlled the size of lizard groups (N=1, 2, 4, 8 or 12 females) and altered predation risk by providing either a basking tile covered with chemical cues from a predator (high risk) or one without scent (low risk). The time allocated to individual antipredatory behaviour decreased significantly with increasing group size. The relation between group size and time allocated to individual antipredatory behaviour was nonlinear and asymptotic, and did not change under low and high risks of predation. However, group size and predation risk interacted to affect significantly the time that lizards allocated to antipredatory behaviour. When the overall risk from predators was high, individual responsiveness decreased strongly as group size became larger. In contrast, when the overall risk from predators was low, individual responsiveness decreased weakly as group size became larger. Consequently, the time that lizards allocated to antipredatory behaviour under different risks of predation converged as group size increased.  相似文献   

19.
The fiddler crab, Uca beebei, lives in individually defended burrows, in mixed-sex colonies on intertidal mud flats. Avian predation is common, especially of crabs unable to escape into burrows. Mating pairs form in two ways. Females either mate on the surface at their burrow entrance (''surface mating'') or leave their own burrow and sequentially enter and leave (''sample'') courting males'' burrows, before staying in one to mate underground (''burrow mating''). We tested whether perceived predation risk affects the relative frequency of these mating modes. We first observed mating under natural levels of predation during one biweekly, semi-lunar cycle. We then experimentally increased the perceived predation risk by attracting grackles (Quiscalus mexicanus) to each half of the study site in two successive biweekly cycles. In each experimental cycle, crabs were significantly less likely to mate on the side with more birds. Moreover, on the side with elevated predation risk, the number of females leaving burrows to sample was greatly reduced relative to the number of females that surface-mated. Males waved less and built fewer mud pillars, which attract females, when birds were present. We discuss several plausible proximate explanations for these results and the effect of changes in predation regime on sexual selection.  相似文献   

20.
Observations on Echinococcus multilocularis in the definitive host   总被引:2,自引:0,他引:2  
Six dogs were found to be susceptible to experimental infections with a European isolate of Echinococcus multilocularis from southern Germany. Two cats were only poorly susceptible. Adult worms were not evenly distributed throughout the small intestine and the majority of parasites were found in the posterior region. The mode of attachment of E. multilocularis in the dog was similar to that for E. granulosus with the adult worm extending its rostellum deep within a crypt of Lieberkühn. In cats only few worms were found to have penetrated deeply between the villi. E. multilocularis was found to possess a modified group of rostellar tegumental cells, morphologically and functionally identical to those described in E. granulosus and previously referred to as the "rostellar gland". By studying development in vivo and in vitro, the time required for the production of shelled eggs was demonstrated to be only 28 days. Concurrent experimental infections in dogs with E. multilocularis and E. granulosus revealed that both species will develop together in the same host. Their development was not retarded in any way by the presence of the other and both species were able to coexist in the same area of the intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号