首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A number of heat shock proteins in Myxococcus xanthus were previously identified by two-dimensional (2D) gel electrophoresis. One of these protein was termed Mx Hsp16.6, and the gene encoding Mx Hsp16.6 was isolated. Mx Hsp16.6 consists of 147 amino acid residues and has an estimated molecular weight of 16,642, in accordance with the apparent molecular mass in the 2D gel. An alpha-crystallin domain, typically conserved in small heat shock proteins, was found in Mx Hsp16.6. Mx Hsp16.6 was not detected during normal vegetative growth but was immediately induced after heat shock. Expression of the hsp16.6 gene was not induced by other stresses, such as starvation, oxidation, and high osmolarity. Mx Hsp16.6 was mostly localized in particles formed after heat shock and precipitated by low-speed centrifugation. Furthermore, Mx Hsp16.6 was detected in highly electron-dense particles in heat-shocked cells by immunoelectron microscopy, suggesting that it forms large complexes with heat-denatured proteins. An insertion mutation in the hsp16.6 gene resulted in lower viability during heat shock and lower acquired thermotolerance. Therefore, it is likely that Mx Hsp16.6 plays critical roles in the heat shock response in M. xanthus.  相似文献   

3.
4.
5.
In heat-shocked tomato cell cultures, cytoplasmic heat shock granules (HSGs) are tightly associated with a specific subset of mRNAs coding mainly for the untranslated control proteins. This messenger ribonucleoprotein complex was banded in a CsCl gradient after fixation with formaldehyde (approximately 1.30 g/cm3). It contains all the heat shock proteins and most of the RNA applied to the gradient. During heat shock, a reversible aggregation of HSGs from 15S precursor particles can be shown. These pre-HSGs are not identical to the 19S plant prosomes. Ultrastructural analysis supports the ribonucleoprotein nature of HSGs and their composition of approximately 10-nm precursor particles. A model summarizes our results. It gives a reasonable explanation for the striking conservation of untranslated mRNAs during heat shock and may apply also to animal cells.  相似文献   

6.
7.
《Insect Biochemistry》1990,20(7):679-684
Heat shock protein synthesis is induced in response to a variety of chemical and physical stresses. Among these are heating above normal growing temperatures, treatment with heavy metals, amino acid analogues, steroid hormones and a variety of other chemicals (CRC Crit. Rev. Biochem. 18, 239–280). We have shown previously that heat shock proteins are also synthesized during recovery from prolonged 0°C treatment in Drosophila larval salivary glands. In this paper we describe the cold treatments which induce heat shock protein synthesis in more detail, and show that heat shock mRNA does not accumulate during the cold treatment, but rather during the recovery period when the larvae are returned to 25°C. The implications of these results for the regulation of heat shock mRNA levels, and for the role of heat shock proteins in recovery from cold shock are discussed.  相似文献   

8.
The aim of this work was to investigate interactions of the human ether-a-go-go channel heag2 with human brain proteins. For this, we used heag2-GST fusion proteins in pull-down assays with brain proteins and mass spectrometry, as well as coimmunoprecipitation. We identified tubulin and heat shock 70 proteins as binding to intracellular C-terminal regions of the channel. To study functional effects, heag2 channels were expressed in Xenopus laevis oocytes for two-electrode voltage clamping. Coexpression of alpha-tubulin or the application of colchicine significantly prolonged channel activation times. Application at different times of colchicine gave similar results. The data suggest that colchicine application and tubulin expression do not affect heag2 trafficking and that tubulin may associate with the channel to cause functional effects. Coexpression of heat shock 70 proteins had no functional effect on the channel. The role of tubulin in the cell cytoskeleton suggests a link for the heag2 channel in tubulin-dependent physiological functions, such as cellular proliferation.  相似文献   

9.
Hsp90 family represents a group of highly conserved and strongly expressed proteins present in almost all biological species. Heat shock proteins in the range of 90 kDa have been detected in a range of plant species andhsp90 genes have been cloned and characterized in selected instances. However, the expression characteristics of plant Hsp90 are poorly understood. Work on expression characteristics of rice Hsp90 is reviewed in this paper. Experimental evidence is provided for indicating that while the rice 87 kDa protein is transiently synthesized within initial 2 h of heat shock, high steady-state levels of this protein are retained even under prolonged high temperature stress conditions or recovery following 4 h heat shock. It is further shown that fifteen different wild rices accumulate differential levels of these proteins in response to heat shock treatment.  相似文献   

10.
11.
Intracellular levels of total glutathione and cytosolic superoxide dismutase activity were assayed in cells from Tetrahymena pyriformis either exposed to sub-lethal (34°C) or to lethal heat shock (39°C). The results showed that glutathione levels decrease to 60% of normal values after a sub-lethal heat shock for 1 hour. This change is part of the heat shock response, since the effect is reversed as soon as cells are brought to their normal growing temperature. Using actinomycin D, which blocks the synthesis of high molecular weight hsp (Galego and Rodrigues-Pousada, 1985), prior to thermal stress, the fall in total glutathione is not observed, suggesting a partial correlation with the synthesis of these stress proteins. Using cells pre-exposed to a sub-lethal heat shock, a subsequent short severe heat shock does not lead to a significant decrease of the glutathione content. Superoxide dismutase (SOD) activity is not significantly induced after either a short period at 34°C or a prolonged treatment at the same temperature.  相似文献   

12.
Heat shock response in mycoplasmas, genome-limited organisms.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have measured the effect of heat shock on three mycoplasmas (Acholeplasma laidlawii K2 and JA1 and Mycoplasma capricolum Kid) and demonstrated the induction of mycoplasma heat shock proteins under these conditions. Increased synthesis of at least 5 heat shock proteins in A. laidlawii K2, 11 heat shock proteins in A. laidlawii JA1, and 7 heat shock proteins in M. capricolum was observed by electrophoretic analysis of proteins from heat-shocked cells in sodium dodecyl sulfate-polyacrylamide gels. In all three strains, major heat shock proteins (66 to 68 and 26 to 29 kilodaltons [kDa]) were found. The 66- to 68-kDa protein cross-reacted with antibody to Escherichia coli DnaK protein, suggesting that this heat shock protein has been conserved in spite of major reductions in genetic complexity during mycoplasma evolution. A. laidlawii also contained a 60-kDa protein that cross-reacted with eubacterial GroEL protein and a 40-kDa protein that cross-reacted with E. coli RecA protein. Unlike with coliphages, the mycoplasma virus L2 progeny yield was not increased when virus was plated on heat-shocked A. laidlawii host cells. However, UV-irradiated L2 virus could be host cell reactivated by both A. laidlawii SOS repair and heat shock systems.  相似文献   

13.
The aim of this study was to elucidate the mechanisms for regulations of cardiac Kv1.5 channel expression. We particularly focused on the role of heat shock proteins (Hsps). We tested the effects of Hsps on the stability of Kv1.5 channels using biochemical and electrophysiological techniques: co-expression of Kv1.5 and Hsp family proteins in mammalian cell lines, followed by Western blotting, immunoprecipitation, pulse-chase analysis, immunofluorescence and whole-cell patch clamp. Hsp70 and heat shock factor 1 increased the expression of Kv1.5 protein in HeLa and COS7 cells, whereas either Hsp40, 27 or 90 did not. Hsp70 prolonged the half-life of Kv1.5 protein. Hsp70 was co-immunoprecipitated and co-localized with Kv1.5-FLAG. Hsp70 significantly increased the immunoreactivity of Kv1.5 in the endoplasmic reticulum, Golgi apparatus and on the cell membrane. Hsp70 enhanced Kv1.5 current of transfected cells, which was abolished by pretreatment with brefeldin A or colchicine. Thus, Hsp70, but not other Hsps, stabilizes functional Kv1.5 protein.  相似文献   

14.
Abstract An isoprotein of enolase from the yeast Saccharomyces cerevisiae was reported to be a heat shock protein. The possible role of the C. albicans enolase as a heat shock protein was therefore investigated. The de novo synthesis of C. albicans enolase protein and mRNA did not increase during heat stress, but remained constitutively expressed. Amino acid similarity to the heat shock proteins suggests that although the C. albicans enolase is not a classical heat shock protein, it may be a memberof a group of constitutively expressed, structurally related proteins, the heat shock cognate proteins.  相似文献   

15.
The heat shock response in three vegetatively propagated clones of Salix viminalis L. was studied. In the clone 78198, synthesis of a total of 58 proteins was induced or increased by heat shock. Of these proteins, 39 were found in both leaves and callus, 8 only in leaves, and 11 only in callus. The number of heat shock proteins differed between the three clones studied. The molecular weights of the heat shock proteins ranged from 18000 to over 94000. The optimal synthesis of heat shock proteins took place at 37–40°C, but several proteins could be induced at 25–30°C. The synthesis of the majority of the proteins present at a normal growth temperature (20°C) was not completely blocked by the heat shock. More than 12 h was needed for the reappearance of the normal protein synthesis pattern after heat shock.  相似文献   

16.
Heat shock triggers rapid protein phosphorylation in soybean seedings   总被引:3,自引:0,他引:3  
Heat shock arrests the synthesis of many cellular proteins and simultaneously initiates expression of a unique set of proteins, termed heat shock proteins. We have found that heat shock rapidly triggers phosphorylation of a set of proteins in soybean seedlings. Although the kinetics of phosphorylation and the heat shock response are similar, the major identified phosphorylation products do not comigrate with heat shock proteins on polyacrylamide gels. Cadmium, which is known to induce the heat shock response, stimulates phosphorylation of the same set of proteins. The rapidity of phosphorylation suggests that it may play a pivotal role in sensing and transducing elevated temperature stress in plants.  相似文献   

17.
Heat-resistant variants have been selected from B16 melanoma cells and from surface mutants previously derived from them. The aim of the present study was to explore the possible role of heat shock proteins in the manifestation of this heat resistance. The major heat shock proteins evident after heating have subunit molecular weights of 68, 70, 89, and 110K on sodium dodecyl sulfate-polyacrylamide gels. The 68-kDa protein is not evident in any of the unheated B16 cell lines while the levels of the other heat shock proteins are elevated after heating. The constitutive levels of the 70, 89, and 110-kDa heat shock proteins were assessed after gel electrophoretic separation of proteins in several of the heat-resistant variants. No major differences were found in the levels of these proteins between the heat-sensitive parent lines and the heat-resistant variants. We therefore conclude that heat shock proteins are not a determining factor in the heat-resistant phenotype of B16 melanoma cells.  相似文献   

18.
19.
We examined the effect of aging on the expression of ubiquitin RNA and the binding of the ubiquitin polypeptide to proteins following heat shock in Drosophila melanogaster. Heat-shocked adult flies transcribe two major RNA species-one of 4.4 kb and one of about 6 kb that hybridize to the polyubiquitin-encoding probe. Several less abundant RNAs were also observed but the 4.4-kb band was present as the major RNA species in both stressed and nonstressed flies of both ages. The 6-kb fragment was more abundant in heat shocked aged flies than in younger flies. The quantitative expression of the polyubiquitin gene increased in proportion to the duration of the heat stress. Moreover, the induction of the polyubiquitin RNA was markedly elevated during aging following heat shock. Hybridization of Northern blots with the monoubiquitin gene probe revealed a band of 0.9 kb that was not significantly affected by heat stress. We also investigated the relationship between the changes in polyubiquitin gene expression and the formation of ubiquitin-protein complexes in aging heat-shocked flies. Heat shock to old flies results in a significant increase in the level of proteins immunoprecipitated by anti-ubiquitin antibodies. In the case of proteins synthesized 2 h before heat shock, most of the ubiquitinated proteins were of high molecular weight. For those proteins synthesized during a 30-min heat shock and the 2 h following heat shock, two major immunoprecipitated bands were observed: an 80-kD and a 70-kD polypeptide. The ubiquitination of a 60 kD protein was also observed in nonstressed flies, but its for mation was drastically reduced following heat shock. For proteins synthesized during and after heat shock from both age groups, the major ubiquitinated polypeptide is 70 kD. In all age groups, more ubiquitin complexes were formed with proteins synthesized before heat shock, than with proteins synthesized either during or after heat shock. This suggests that cellular proteins synthesized at physiological temperatures are more sensitive to heat induced damage than those synthesized during stress. These data support the hypothesis that in aging flies, heat shock induces an unusually high concentration of abnormal proteins which are targeted for degradation by the ubiquitin-dependent proteolytic system. © 1993Wiley-Liss, Inc.  相似文献   

20.
At elevated temperatures, germinating conidiospores of Neurospora crassa discontinue synthesis of most proteins and initiate synthesis of three dominant heat shock proteins of 98,000, 83,000, and 67,000 Mr and one minor heat shock protein of 30,000 Mr. Postemergent spores produce, in addition to these, a fourth major heat shock protein of 38,000 Mr and a minor heat shock protein of 34,000 Mr. The three heat shock proteins of lower molecular weight are associated with mitochondria. This exclusive synthesis of heat shock proteins is transient, and after 60 min of exposure to high temperatures, restoration of the normal pattern of protein synthesis is initiated. Despite the transiency of the heat shock response, spores incubated continuously at 45 degrees C germinate very slowly and do not grow beyond the formation of a germ tube. The temperature optimum for heat shock protein synthesis is 45 degrees C, but spores incubated at other temperatures from 40 through 47 degrees C synthesize heat shock proteins at lower rates. Survival was high for germinating spores exposed to temperatures up to 47 degrees C, but viability declined markedly at higher temperatures. Germinating spores survived exposure to the lethal temperature of 50 degrees C when they had been preexposed to 45 degrees C; this thermal protection depends on the synthesis of heat shock proteins, since protection was abolished by cycloheximide. During the heat shock response mitochondria also discontinue normal protein synthesis; synthesis of the mitochondria-encoded subunits of cytochrome c oxidase was as depressed as that of the nucleus-encoded subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号