首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Escherichia coli K-12 gene ppa encoding inorganic pyrophosphatase (PPase) was cloned and sequenced. The 5' end of the ppa mRNA was identified by primer extension mapping. A typical E. coli sigma 70 promoter was identified immediately upstream of the mRNA 5' end. The structural gene of ppa contains 528 base pairs, from which a 175-amino-acid translation product, Mr 19,572, was deduced. The deduced amino acid composition perfectly fitted with that of PPase as previously determined (P. Burton, D. C. Hall, and J. Josse, J. Biol. Chem. 245:4346-4351, 1970). Furthermore, the partial amino acid sequence (residues 1 to 108) of E. coli PPase determined by S. A. Cohen (Ph.D. thesis, University of Chicago, 1978) was the same as that deduced from the nucleotide sequence. This is the first report of the cloning of a PPase gene.  相似文献   

2.
A gene required for growth and viability in recA mutants of Escherichia coli K-12 was identified. This gene, rdgB (for Rec-dependent growth), mapped near 64 min on the E. coli genetic map. In a strain carrying a temperature-sensitive recA allele, recA200, and an rdgB mutation, DNA synthesis but not protein synthesis ceased after 80 min of incubation at 42 degrees C, and there was extensive DNA degradation. The rdgB mutation alone had no apparent effect on DNA synthesis or growth; however, mutant strains did show enhanced intrachromosomal recombination and induction of the SOS regulon. The rdgB gene was cloned and its-gene product identified through the construction and analysis of deletion and insertion mutations of rdgB-containing plasmids. The ability of a plasmid to complement an rdgB recA mutant was correlated with its ability to produce a 25-kilodalton polypeptide as detected by the maxicell technique.  相似文献   

3.
S Wold  K Skarstad  H B Steen  T Stokke    E Boye 《The EMBO journal》1994,13(9):2097-2102
It is widely accepted that the initiation mass of Escherichia coli is constant and independent of growth rate, and therefore is an important parameter in the regulation of initiation of DNA replication. We have used flow cytometry to measure the initiation mass of E. coli K-12 cells as a function of growth rate. The average initiation mass was determined by two methods: (i) from a mathematical relationship between average cell mass, cell age at initiation and number of origins present in the cells, and (ii) directly from the cell mass distribution. The light scattering signal from individual cells and the protein content per cell were employed as measures of cell mass. The initiation mass was found to increase monotonically with decreasing growth rate, being 1.6 times higher (light scattering) or 2.1 times higher (protein content) at 0.3 than at 2.5 doublings per hour. We conclude that the initiation mass is dependent on growth rate. This finding indicates that the control for timing of initiation is not governed by a direct connection between mass accumulation and the molecule(s) determining initiation of replication.  相似文献   

4.
Seven independently isolated glutathione reductase-deficient (gor) Escherichia coli mutants were found to have an in vivo glutathione redox state that did not significantly differ from that of the parental strain, 98 to 99% reduced. Strains containing both a gor mutation and either a trxA mutation (thioredoxin deficient) or a trxB mutation (thioredoxin reductase deficient) were able to maintain a 94 to 96% reduced glutathione pool, suggesting that glutathione can be reduced independently of glutathione reductase and thioredoxin reductase.  相似文献   

5.
Tightly bound pyrophosphate in Escherichia coli inorganic pyrophosphatase   总被引:1,自引:0,他引:1  
Hexameric inorganic pyrophosphatase of Escherichia coli contains about 1 mol/mol of 'structural' pyrophosphate, which survives gel filtration and prolonged incubation with Mg2+, does not exchange with medium phosphate and pyrophosphate but is removed with 0.8 M perchloric acid. The site of pyrophosphate binding seems to be another than the active site. An additional 0.9 mol of enzyme-bound pyrophosphate is formed in the presence of phosphate and Mg2+ but this pyrophosphate is in fast equilibrium with medium phosphate and appears to be bound to the active site.  相似文献   

6.
7.
The interaction of inorganic pyrophosphatase from E. coli with inorganic phosphate (Pi) was studied in a wide concentration range of phosphate. The apoenzyme gives two inactive compounds with Pi, a product of phosphorylation of the carboxylic group of the active site and a stable complex, which can be detected in the presence of the substrate. The phosphorylation occurs when Pi is added on a millimole concentration scale, and micromole concentrations are sufficient for the formation of the complex. The formation of the phosphorylated enzyme was confirmed by its sensitivity to hydroxylamine and a change in the properties of the inactive enzyme upon its incubation in alkaline medium. The phosphorylation of pyrophosphatase and the formation of the inactive complex occur upon interaction of inorganic phosphate with different subsites of the enzyme active sites, which are connected by cooperative interactions.  相似文献   

8.
Catalysis by Escherichia coli inorganic pyrophosphatase (E-PPase) was found to be strongly modulated by Tris and similar aminoalcoholic buffers used in previous studies of this enzyme. By measuring ligand-binding and catalytic properties of E-PPase in zwitterionic buffers, we found that the previous data markedly underestimate Mg(2+)-binding affinity for two of the three sites present in E-PPase (3.5- to 16-fold) and the rate constant for substrate (dimagnesium pyrophosphate) binding to monomagnesium enzyme (20- to 40-fold). By contrast, Mg(2+)-binding and substrate conversion in the enzyme-substrate complex are unaffected by buffer. These data indicate that E-PPase requires in total only three Mg2+ ions per active site for best performance, rather than four, as previously believed. As measured by equilibrium dialysis, Mg2+ binds to 2.5 sites per monomer, supporting the notion that one of the tightly binding sites is located at the trimer-trimer interface. Mg2+ binding to the subunit interface site results in increased hexamer stability with only minor consequences for catalytic activity measured in the zwitterionic buffers, whereas Mg2+ binding to this site accelerates substrate binding up to 16-fold in the presence of Tris. Structural considerations favor the notion that the aminoalcohols bind to the E-PPase active site.  相似文献   

9.
Escherichia coli inorganic pyrophosphatase (PPase) is a hexamer of identical subunits. This work shows that trimeric form of PPase exhibits the interaction of the active sites in catalysis. Some trimer subunits demonstrate high substrate binding affinity typical for hexamer whereas the rest of subunits reveal more than 300-fold substrate affinity decrease. This fact indicates the appearance of negative cooperativity of trimer subunits upon substrate binding. Association of the wild-type (WT) trimer with catalytically inactive, but still substrate binding mutant trimer into hexameric chimera restores the high activity of the first trimer, characteristic of trimer incorporated in the hexamer of WT PPase. Interaction of PPase active sites suggests that there are pathways for information transmission between the active sites, providing the perfect organization and concerted functioning of the hexameric active sites in catalysis.  相似文献   

10.
The hexameric inorganic pyrophosphatase (PPase) is irreversibly inactivated by phosphoric acid monoesters. The inactivation kinetics are consistent with the formation of a dissociable complex of the phosphoric acid monoester with the enzyme, followed by phosphorylation of the dicarboxylic amino acid of its active site. PPi and its analogues, binding at the regulatory site, release the inhibitor from the active site and thus restore PPase activity. Chemically identical subunits in the hexameric PPase interact, promoting their cooperativity in a reaction with phosphoric acid monoesters. The trimeric and monomeric PPase, exhibiting full catalytic activity, form a dissociable complex with the phosphoric acid monoesters but, in contrast to the hexameric PPase, do not form a covalent bond with them. This indicates that the native hexameric structure is essential for the irreversible inactivation of Escherichia coli PPase by phosphoric acid monoesters. Possible nontraditional pathways for activity regulation of PPase are discussed.  相似文献   

11.
Cadmium uptake in Escherichia coli K-12.   总被引:2,自引:3,他引:2       下载免费PDF全文
109Cd2+ uptake by Escherichia coli occurred by means of an active transport system which has a Km of 2.1 microM Cd2+ and a Vmax of 0.83 mumol/min X g (dry weight) in uptake buffer. 109Cd2+ accumulation was both energy dependent and temperature sensitive. The addition of 20 microM Cd2+ or Zn2+ (but not Mn2+) to the cell suspensions preloaded with 109Cd2+ caused the exchange of Cd2+. 109Cd2+ (0.1 microM) uptake by cells was inhibited by the addition of 20 microM Zn2+ but not Mn2+. Zn2+ was a competitive inhibitor of 109Cd2+ uptake with an apparent Ki of 4.6 microM Zn2+. Although Mn2+ did not inhibit 109Cd2+ uptake, the addition of either 20 microM Cd2+ or Zn2+ prevented the uptake of 0.1 microM 54Mn2+, which apparently occurs by a separate transport system. The inhibition of 54Mn2+ accumulation by Cd2+ or Zn2+ did not follow Michaelis-Menten kinetics and had no defined Ki values. Co2+ was a competitive inhibitor of Mn2+ uptake with an apparent Ki of 34 microM Co2+. We were unable to demonstrate an active transport system for 65Zn2+ in E. coli.  相似文献   

12.
Triethyltin (TET) stimulated the basal respiration of Escherichia coli K-12 membrane vesicles in chloride (Cl-) medium but it had little effect on respiration in sulphate (SO4(2-)) medium. Since this uncoupling activity was Cl- dependent it was attributed to the Cl-/hydroxide (OH-) exchange reaction known to be mediated by TET [1,2]. TET inhibited the oxidation of succinate by intact E. coli in both Cl- and SO4(2-) medium, but at the same concentration of TET, inhibition was always more extensive in Cl- than SO4(2-) medium. In Cl- medium uncoupling in membrane vesicles and inhibition of succinate oxidation in intact bacteria occurred over the same concentration range and it appeared that the same mechanism, i.e. Cl-/OH- exchange, was responsible for both effects. Inhibition of succinate oxidation in SO4(2-) medium was not substantial until the concentration of TET was greater than 10(-5) M. Although the nature of this inhibition could not be determined by experiments with membrane vesicles indirect evidence from growth experiments indicated that it was due to impairment of oxidative phosphorylation. The relationship between these biochemical findings and the bacteriocidal action of TET was examined by using various concentrations of anion and substrate in the growth medium. Growth was inhibited in media containing either Cl- or SO4(2-) as the main anion but at a particular concentration of TET, inhibition was greater in Cl- medium. Growth was also inhibited to a greater extent in succinate than glucose medium. Furthermore in either Cl- or SO4(2-) glucose medium, lactic acid production increased as the concentration of TET was increased. These findings imply that the bacteriocidal action of TET is related to its effect(s) on oxidative phosphorylation.  相似文献   

13.
14.
Glyoxal (GO) and methylglyoxal (MG) are reactive carbonyl compounds that are accumulated in vivo through various pathways. They are presumably detoxified through multiple pathways including glutathione (GSH)-dependent/independent glyoxalase systems and NAD(P)H dependent reductases. Previously, we reported an involvement of aldo-ketoreductases (AKRs) in MG detoxification. Here, we investigated the role of various AKRs (YqhE, YafB, YghZ, YeaE, and YajO) in GO metabolism. Enzyme activities of the AKRs to GO were measured, and GO sensitivities of the corresponding mutants were compared. In addition, we examined inductions of the AKR genes by GO. The results indicate that AKRs efficiently detoxify GO, among which YafB, YghZ, and YeaE are major players.  相似文献   

15.
16.
Gene-protein index of Escherichia coli K-12.   总被引:47,自引:3,他引:44       下载免费PDF全文
  相似文献   

17.
Uroporphyrin-accumulating mutant of Escherichia coli K-12.   总被引:10,自引:6,他引:4       下载免费PDF全文
An uroporphyrin III-accumulating mutant of Escherichia coli K-12 was isolated by neomycin. The mutant, designated SASQ85, was catalase deficient and formed dwarf colonies on usual media. Comparative extraction by cyclohexanone and ethyl acetate showed the superiority of the former for the extraction of the uroporphyrin accumulated by the mutant. Cell-free extracts of SASQ85 were able to convert 5-aminolevulinic acid and porphobilinogen to uroporphyrinogen, but not to copro- or protoporphyrinogen. Under the same conditions cell-free extracts of the parent strain converted 5-aminolevulinic to uroporphyringen, coproporphyrinogen, and protoporphyrinogen. The conversion of porphobilinogen to uroporphyrinogen by cell-free extracts of the mutant was inhibited 98 and 95%, respectively, by p-chloromercuribenzoate and p-chloromercuriphenyl-sulfonate, indicating the presence of uroporphyrinogen synthetase activity in the extracts. Spontaneous transformation of porphobilinogen to uroporphyrin was not detectable under the experimental conditions used [4 h at 37 C in tris(hydroxymethyl)aminomethane-potassium phosphate buffer, pH 8.2]. The results indicate a deficient uroporphyrinogen decarboxylase activity of SASQ85 which is thus the first uroporphyrinogen decarboxylase-deficient mutant isolated in E. coli K-12. Mapping of the corresponding locus by P1-mediated transduction revealed the frequent joint transduction of hemE and thiA markers (frequency of co-transduction, 41 to 44%). The results of the genetic analysis suggest the gene order rif, hemE, thiA, metA; however, they do not totally exclude the gene order rif, thiA, hemE, metA.  相似文献   

18.
Hemin-deficient mutants of Escherichia coli K-12.   总被引:32,自引:16,他引:16  
  相似文献   

19.
20.
hisT is part of a multigene operon in Escherichia coli K-12.   总被引:14,自引:8,他引:6       下载免费PDF全文
The Escherichia coli K-12 hisT gene has been cloned, and its organization and expression have been analyzed on multicopy plasmids. The hisT gene, which encodes tRNA pseudouridine synthase I (PSUI), was isolated on a Clarke-Carbon plasmid known to contain the purF gene. The presence of the hisT gene on this plasmid was suggested by its ability to restore both production of PSUI enzymatic activity and suppression of amber mutations in a hisT mutant strain. A 2.3-kilobase HindIII-ClaI restriction fragment containing the hisT gene was subcloned into plasmid pBR322, and the resulting plasmid (designated psi 300) was mapped with restriction enzymes. Complementation analysis with different kinds of hisT mutations and tRNA structural analysis confirmed that plasmid psi 300 contained the hisT structural gene. Enzyme assays showed that plasmid psi 300 overproduced PSUI activity by ca. 20-fold compared with the wild-type level. Subclones containing restriction fragments from plasmid psi 300 inserted downstream from the lac promoter established that the hisT gene is oriented from the HindIII site toward the ClaI site. Other subclones and derivatives of plasmid psi 300 containing insertion or deletion mutations were constructed and assayed for production of PSUI activity and production of proteins in minicells. These experiments showed that: (i) the proximal 1.3-kilobase HindIII-BssHII restriction fragment contains a promoter for the hisT gene and encodes a 45,000-dalton polypeptide that is not PSUI; (ii) the distal 1.0-kilobase BssHII-ClaI restriction fragment encodes the 31,000-dalton PSUI polypeptide; (iii) the 45,000-dalton polypeptide is synthesized in an approximately eightfold excess compared with PSUI; and (iv) synthesis of the two polypeptides is coupled, suggesting that the two genes are part of an operon. Insertion of mini-Mu d1 (lac Km) phage into plasmid psi 300 confirmed that the hisT gene is the downstream gene in the operon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号