首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Leaves from two species, Euonymus kiautschovicus and Arctostaphylos uva-ursi, with a variety of different orientations and exposures, were examined in the field with regard to the xanthophyll cycle (the interconversion of three carotenoids in the chloroplast thylakoid membranes). East-, south-, and west-facing leaves of E. kiautschovicus were sampled throughout the day and all exhibited a pronounced and progressive conversion of violaxanthin to zeaxanthin, followed by a reconversion of zeaxanthin to violaxanthin later in the day. Maximal levels of zeaxanthin and minimal levels of violaxanthin were observed at the time when each leaf (orientation) received the maximum incident light, which was in the morning in east-facing, midday in southfacing, and in the afternoon in west-facing leaves. A very slight degree of hysteresis in the removal of zeaxanthin compared to its formation with regard to incident light was observed. Leaves with a broader range of orientations were sampled from A. uva-ursi prior to sunrise and at midday. All of the examined pigments (carotenoids and chlorophylls) increased somewhat per unit leaf area with increasing total daily photon receipt. The sum of the carotenoids involved in the xanthophyll cycle, violaxanthin + antheraxanthin + zeaxanthin, increased more strongly with increasing growth light than any other pigment. In addition, the amounts of zeaxanthin present at midday also increased markedly with increasing total daily photon receipt. The percentage of the xanthophyll cycle that was converted to zeaxanthin (and antheraxanthin) at peak irradiance was very large (approximately 80%) in the leaves of both E. kiautschovicus and A. uva-ursi. The daily changes in the components of the xanthophyll cycle that paralleled the daily changes in incident light in the leaves of E. kiautschovicus, and the increasing levels of the xanthophyll cycle components with total daily photon receipt in the leaves of A. uva-ursi, are both consistent with the involvement of zeaxanthin (i.e. the xanthophyll cycle) in the photoprotection of the photosynthetic apparatus against damage due to excessive light.Abbreviations A antheraxanthin - EPS epoxidation state of the xanthophyll cycle=(V+0.5A)/(V+A+Z) - PFD photon flux density (400–700 nm) - PFDi photon flux density incident upon the upper leaf surface - Tair air temperature - TL leaf temperature - V violaxanthin - Z zeaxanthin  相似文献   

2.
田间大豆叶片成长过程中的光合特性及光破坏防御机制   总被引:9,自引:0,他引:9  
田间大豆叶片在成长进程中光饱和光合速率持续提高,但气孔导度的增加明显滞后.尽管叶片在成长初期就具有较高的最大光化学效率,但是仍略低于发育成熟的叶片.随着叶片的成长,光下叶片光系统Ⅱ实际效率增加;非光化学猝灭下降.幼叶叶黄素总量与叶绿素之比较高,随着叶面积的增加该比值下降,在光下,幼叶的脱环氧化程度较高.因此认为大豆叶片成长初期就能够有效地进行光化学调节;在叶片生长过程中依赖叶黄素循环的热耗散机制迅速建立起来有效抵御强光的破坏.  相似文献   

3.
Photosynthetic pigment composition and photosystem II (PSII) photochemistry were characterized during the flag leaf senescence of wheat plants grown in the field. During leaf senescence, neoxanthin and beta-carotene decreased concomitantly with chlorophyll, whereas lutein and xanthophyll cycle pigments were less affected, leading to increases in lutein/chlorophyll and xanthophyll cycle pigments/chlorophyll ratios. The chlorophyll a/b ratio also increased. With the progression of senescence, the maximal efficiency of PSII photochemistry decreased only slightly in the early morning (low light conditions), but substantially at midday (high light conditions). Actual PSII efficiency, photochemical quenching and the efficiency of excitation capture by open PSII centres decreased significantly both early in the morning and at midday and such decreases were much greater at midday than in the early morning. At the same time, non-photochemical quenching, zeaxanthin and antheraxanthin contents at the expense of violaxanthin increased both early in the morning and at midday, with a greater increase at midday. The results in the present study suggest that a down-regulation of PSII occurred in senescent leaves and that the xanthophyll cycle plays a role in the protection of PSII from photoinhibitory damage in senescent leaves by dissipating excess excitation energy, particularly when exposed to high light.  相似文献   

4.
Assessing leaf pigment content and activity with a reflectometer   总被引:45,自引:1,他引:45  
This study explored reflectance indices sampled with a 'leaf reflectometer' as measures of pigment content for leaves of contrasting light history, developmental stage and functional type (herbaceous annual versus sclerophyllous evergreen). We employed three reflectance indices: a modified normalized difference vegetation index (NDVI), an index of chlorophyll content; the red/green reflectance ratio ( R RED: R GREEN), an index of anthocyanin content; and the change in photochemical reflectance index upon dark–light conversions (ΔPRI), an index of xanthophyll cycle pigment activity. In Helianthus annuus (sunflower), xanthophyll cycle pigment amounts were linearly related to growth light environment; leaves in full sun contained approximately twice the amount of xanthophyll cycle pigments as leaves in deep shade, and at midday a larger proportion of these pigments were in the photoprotective, de-epoxidized forms relative to shade leaves. Reflectance indices also revealed contrasting patterns of pigment development in leaves of contrasting structural types (annual versus evergreen). In H. annuus sun leaves, there was a remarkably rapid increase in amounts of both chlorophyll and xanthophyll cycle pigments along a leaf developmental sequence. This pattern contrasted with that of Quercus agrifolia (coast live oak, a sclerophyllous evergreen), which exhibited a gradual development of both chlorophyll and xanthophyll cycle pigments along with a pronounced peak of anthocyanin pigment content in newly expanding leaves. These temporal patterns of pigment development in Q. agrifolia leaves suggest that anthocyanins and xanthophyll cycle pigments serve complementary photoprotective roles during early leaf development. The results illustrate the use of reflectance indices for distinguishing divergent patterns of pigment activity in leaves of contrasting light history and functional type.  相似文献   

5.
The effects of changes in growth temperature on photosynthesis and carotenoid composition were examined in Zea mays L. leaves of different age and different developmental history. The plants were first grown at sub-optimal temperature (14°C) until the full development of the third leaf. At that time, the mature third leaf and the immature fourth leaf had a low chlorophyll (Chl) content, a low Chl a/b ratio, a high carotenoid/Chl a+b ratio, a high xanthophyll/β-carotene ratio, and about 80% of the xanthophyll cycle pool (violaxanthin [V] + antheraxanthin [A] + zeaxanthin [Z]) was in the form of zeaxanthin and antheraxanthin. When the temperature was increased from 14°C to 24°C for three days, increased Chl synthesis, accompanied by an increase in the Chl a/b ratio, took place. The ratios of lutein, neoxanthin, and V+A+Z to Chl a+b decreased markedly, whereas no significant changes appeared in the β-carotene/Chl a+b ratio. Furthermore, there was a sharp decrease in the xanthophyll/β-carotene ratio and most of zeaxanthin was converted to violaxanthin in the xanthophyll cycle. The third leaf and the tip segment of the fourth leaf, both expanded at 14°C, showed little difference in their pigment contents. However, the rate of CO2 assimilation of the tip segment of the fourth leaf was nearly twice that of the third leaf on the third day at 24°C, while the photosynthetic activity was similar in both leaves before the transfer to 24°C. During the warm period at 24°C, new leaf tissue (basal segment of the fourth leaf and part of a fifth leaf) was formed. On the third day at 24°C, the pigment content of 24°C-grown leaf tissue did not differ much from that of 14°C-grown leaf tissue with the exception that the total carotenoid content was lower in the former as compared to the latter, mainly because of a lower V+A+Z content. The rate of CO2 assimilation of 24°C-grown leaf tissue was comparable to that of the tip segment of the fourth leaf. Regardless of which leaf tissue is considered, reducing the temperature from 24°C to 14°C for 5 days slightly affected the pigment content, but violaxanthin was largely converted to zeaxanthin and antheraxanthin in the xanthophyll cycle. The results indicate that compared to old leaf tissue of mature leaves, physiologically younger leaf tissue of immature leaves is much more able to recover from depressions in the photosynthetic activity induced by growth at sub-optimal temperature when the plants experience optimal growth temperatures, but that factors other than the pigment content must determine this capability.  相似文献   

6.
The objective of this study was to determine xanthophyll cycle pool size and composition in response to N status and their relationships to non-photochemical quenching in apple leaves. Bench-grafted Fuji/M.26 trees were fertilized with different N concentrations (0-20 mM) in a modified Hoagland's solution for 6 weeks to create a wide range of leaf N status (1-4.4 g m(-2)). Chlorophyll content, xanthophyll cycle pool size, lutein, total carotene, and neoxanthin on a leaf area basis all increased linearly with increasing leaf N. However, only the ratios of the xanthophyll cycle pool and of lutein to chlorophyll were higher in low N leaves than in high N leaves. Under high light at midday, both zeaxanthin (Z), expressed on a chlorophyll basis, and the percentage of the xanthophyll cycle pool present as Z, increased as leaf N decreased. Thermal dissipation of excitation energy, measured as non-photochemical quenching of chlorophyll fluorescence, was positively related to, whereas efficiency of excitation transfer and photosystem II quantum efficiency were negatively related to, Z, expressed on a chlorophyll basis or on a xanthophyll cycle pool basis. It is concluded that both xanthophyll cycle pool size (on a chlorophyll basis) and conversion of violaxanthin to zeaxanthin are enhanced in response to N limitation to dissipate excessive absorbed light under high irradiance.  相似文献   

7.
Leaf Xanthophyll content and composition in sun and shade determined by HPLC   总被引:39,自引:0,他引:39  
As a part of our investigations to test the hypothesis that zeaxanthin formed by reversible de-epoxidation of violaxanthin serves to dissipate any excessive and potentially harmful excitation energy we determined the influence of light climate on the size of the xanthophyll cycle pool (violaxanthin + antheraxanthin + zeaxanthin) in leaves of a number of species of higher plants. The maximum amount of zeaxanthin that can be formed by de-epoxidation of violaxanthin and antheraxanthin is determined by the pool size of the xanthophyll cycle. To quantitate the individual leaf carotenoids a rapid, sensitive and accurate HPLC method was developed using a non-endcapped Zorbax ODS column, giving baseline separation of lutein and zeaxanthin as well as of other carotenoids and Chl a and b.The size of the xanthophyll cycle pool, both on a basis of light-intercepting leaf area and of light-harvesting chlorophyll, was ca. four times greater in sun-grown leaves of a group of ten sun tolerant species than in shade-grown leaves in a group of nine shade tolerant species. In contrast there were no marked or consistent differences between the two groups in the content of the other major leaf xanthophylls, lutein and neoxanthin. Also, in each of four species examined the xanthophyll pool size increased with an increase in the amount of light available during leaf development whereas there was little change in the content of the other xanthophylls. However, the -carotene/-carotene ratio decreased and little or no -carotene was detected in sun-grown leaves. Among shade-grown leaves the -carotene/-carotene ratio was considerably higher in species deemed to be umbrophilic than in species deemed to be heliophilic.The percentage of the xanthophyll cycle pool present as violaxanthin (di-epoxy-zeaxanthin) at solar noon was 96–100% for shade-grown plants and 4–53% for sun-grown plants with zeaxanthin accounting for most of the balance. The percentage of zeaxanthin in leaves exposed to midday solar radiation was higher in those with low than in those with high photosynthetic capacity.The results are consistent with the hypothesis that the xanthophyll cycle is involved in the regulation of energy dissipation in the pigment bed, thereby preventing a buildup of excessive excitation energy at the reaction centers.Abbreviations A antheraxanthin - C -carotene - C -carotene - EPS epoxidation state (V+0.5A)/(V+A+Z) - L lutein - N neoxanthin - PFD photon flux density - V violaxanthin - Z zeaxanthin C.I.W.-D.P.B. Publiation No. 1035  相似文献   

8.
This study was performed in order to investigate whether the actual requirement for defence against photo-oxidative stress is reflected by the alpha-tocopherol (alpha-Toco) content in leaves of pedunculate oak (Quercus robur L.). Antioxidants and pigments were quantified in leaves that were collected on six days between May and September 2000 in a mixed pine/oak forest at canopy positions differing in light environment. Pools of hydrophilic antioxidants and photo-protective xanthophyll cycle pigments (V + A + Z) reflected the anti-oxidative demand, as these pools increased with the average light intensity to which the leaves were acclimated. The photo-protective demand was not the determinant of the alpha-Toco content of oak leaves, as (1) foliage of a young oak, exposed to low light levels in the understorey, contained higher amounts of this lipophilic antioxidant than leaves sampled from semimature oaks at canopy positions with a similar light environment, and (2) a strong increase in the alpha-Toco content over the growing season was detected at each investigated crown position, whereas the V + A + Z pool did not show a concomitant accumulation during leaf ageing. The rate of alpha-Toco accumulation differed distinctly between samples taken at different canopy positions.  相似文献   

9.
Some processes of excess radiation dissipation have been associated with changes in leaf reflectance near 531 nm. We aimed to study the relations between the photochemical reflectance index (PRI) derived from this signal, and photosynthetic radiation-use efficiency (defined as net CO2 assimilation rate/incident photon flux density) in a cereal canopy. Measurements of reflectance, fluorescence, gas exchange and xanthophyll cycle pigments were made in the morning, midday and afternoon in barley canopies with two levels of nitrogen fertilization. The photosynthetic radiation-use efficiency decreased at midday, mainly in the third leaf, in both treatments, with lower values for the nitrogen deficient leaves. The zeaxanthin content showed the inverse pattern, increasing at midday and in the nitrogen deficient treatment. The photosynthetic radiation-use efficiency was well correlated with the epoxidation state, EPS (violaxanthin + 0.5 antheraxanthin)/(violaxanthin + antheraxanthin + zeaxanthin). The PRI [here defined as (R539 - R570)/(R539+ R570)] was significantly correlated with epoxidation state and zeaxanthin and with photosynthetic radiation-use efficiency. These results validate the utility of PRI in the assessment of radiation-use efficiency at canopy level.  相似文献   

10.
One-year-old grapevines (Vitis labrusca L. cv. Concord) were supplied with 0, 5, 10, 15, or 20 mM nitrogen (N) in a modified Hoagland's solution twice weekly for 4 weeks. As leaf N decreased in response to N limitation, leaf chlorophyll (Chl) decreased linearly whereas leaf absorptance declined curvilinearly. Compared with high N leaves, low N leaves had lower quantum efficiency of PSII as a result of both an increase in non-photochemical quenching (NPQ) and an increase in closure of PSII reaction centres at midday under high photon flux density (PFD). Both the xanthophyll cycle pool size on a Chl basis and the conversion of violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z) at noon increased with decreasing leaf N. NPQ was closely related to A+Z expressed either on a Chl basis or as a percentage of the xanthophyll cycle pool. As leaf N increased, superoxide dismutase (SOD) activity on a Chl basis decreased linearly; activities of catalase (CAT) and glutathione reductase (GR) on a Chl basis increased linearly; activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR) and dehydroascorbate reductase (DHAR) expressed on the basis of Chl decreased rapidly first, then gradually reached a low level. In response to N limitation, the contents of ascorbate (AsA), dehydroascorbate (DAsA), reduced glutathione (GSH), and oxidized glutathione (GSSG) increased when expressed on a Chl basis, whereas the ratios of both AsA to DAsA and GSH to GSSG decreased. It is concluded that, in addition to decreasing light absorption by lowering Chl concentration, both xanthophyll cycle-dependent thermal energy dissipation and the antioxidant system are up-regulated to protect low N leaves from photo-oxidative damage under high light.  相似文献   

11.
Abstract: Excitation energy dissipation, including the xanthophyll cycle, during senescence in wheat flag leaves grown in the field was investigated at midday and in the morning. With progress of senescence, photosynthesis (Pn) and actual PSII photochemical efficiency (ΦPSII) decreased markedly at midday. The decrease in extent of Pn was greater than that of ΦPSII. However, there was no significant decline in Pn and ΦPSII observed in the morning, except in leaves 60 days after anthesis. The kinetics of xanthophyll cycle activity, thermal dissipation (NPQ), and qf observed at midday during senescence exhibited two distinct phases. The first phase was characterized by an increase of xanthophyll cycle activity, NPQ, and qf during the first 45 days after anthesis. The second phase took place 45 days after anthesis, characterized by a dramatic decline in the above parameters. However, the qI, observed both at midday and in the morning, always increased along with senescence. A larger proportion of NPQ insensitive to DTT (an inhibitor of the de-epoxidation of V to Z) was also observed in severely senescent leaves. In the morning, only severely senescent leaves showed higher xanthophyll cycle activity, NPQ, qf, and qI. It was demonstrated that, at the beginning of senescence or under low light, wheat leaves were able to dissipate excess light energy via NPQ, depending on the xanthophyll cycle. However, the xanthophyll cycle was insufficient to protect leaves against photodamage under high light, when leaves became severely senescent. The ratio of (Fj - Fo)/(Fp - Fo) increased gradually during the first 45 days after anthesis, but dramatically increased 45 days after anthesis. We propose that another photoprotection mechanism might exist around reaction centres, activated in severely senescent leaves to protect leaves from photodamage.  相似文献   

12.
The influence of leaf angle on the response of plants to high light was studied in Salvia broussonetii, a species endemic of the Canary Islands that shows hyponastic leaf growth. The response of vertical, naturally oriented leaves was compared with that of horizontal, artificially held leaves for 1, 13, 24 and 29 days in terms of photoinhibition [efficiency of photosystem II (PSII)], photoprotection (by the xanthophyll cycle, alpha-tocopherol and beta-carotene) and progression of leaf senescence. Vertical leaves not only showed a decreased photoprotective demand compared with horizontal leaves but also kept the maximum efficiency of PSII (F(v)/F(m) ratio) constant throughout the experiment, thus reflecting the capacity of naturally oriented leaves to avoid photooxidative stress in the field. By contrast, horizontal leaves, which were exposed to higher light intensities, showed a higher photoprotective demand (reflected by a higher de-epoxidation of the xanthophyll cycle, carotenoid losses and increases in alpha-tocopherol), damage to PSII (as indicated by decreases in the F(v)/F(m) ratio) and accelerated leaf senescence, which was associated with cell death after 24 days of high light exposure. It is concluded that hyponastic leaf growth prevents photoinhibition and decreases the photoprotective demand of leaves by reducing the incident light, which helps maintaining leaf vigor and delaying the progression of leaf senescence in S. broussonetii plants. Hyponastic leaf growth is therefore one of the first photoprotection mechanisms activated in this species to avoid the negative impact of high-light stress in the field.  相似文献   

13.
The relationships between photosynthetic efficiency, non-radiative energy dissipation and carotenoid composition were studied in leaves ofLigustrum ovalifolium developed either under full sunlight or in the shade. Sun leaves contained a much greater pool of xanthophyll cycle components than shade leaves. The rate of non-radiative energy dissipation, measured as non-photochemical fluorescence quenching (NPQ), was strictly related to the deepoxidation state (DPS) of xanthophyll cycle components in both sun and shade leaves, indicating that zeaxanthin (Z) and antheraxanthin (A) are involved in the development of NPQ. Under extreme conditions of excessive energy, sun leaves showed higher maximum DPS than shade leaves. Therefore, sun leaves contained not only a greater pool of xanthophyll cycle components but also a higher proportion of violaxanthin (V) actually photoconvertible to A and Z, compared to shade leaves. Both these effects contributed to the higher NPQ in sun versus shade leaves. The amount of photoconvertible V was strongly related to chla/b ratio and inversely to leaf neoxanthin content. This evidence indicates that the amount of photoconvertible V may be dependent on the degree of thylakoid membrane appression and on the organization of chlorophyll-protein complexes, and possible explanations are discussed. Exposure to chilling temperatures caused a strong decline in the photon yield of photosynthesis and in the intrinsic efficiency of PS II photochemistry in sun leaves, but little effects in shade leaves. These effects were accompanied by increases in the pool of xanthophyll cycle components and in DPS, more pronounced in sun than in shade leaves. This corroborates the view that Z and A may play a photoprotective role under unfavorable conditions. In addition to the xanthophyll-related non-radiative energy dissipation, a slow relaxing component of NPQ, independent from A and Z concentrations, has been found in leaves exposed to low temperature and high light. This quenching component may be attributed either to other regulatory mechanism of PS II efficiency or to photoinactivation.Research supported by National Research Council of Italy, Special Project RAISA, Sub-Project 2, Paper N. 1587.  相似文献   

14.
张金玲  程达  李玉灵 《植物学报》2017,52(3):278-289
为探明毛乌素沙地3年生臭柏(Sabina vulgaris)实生苗在不同光照和水分条件下的光抑制响应机制,研究了各处理臭柏实生苗的最大光化学效率(F_v/F_m)及叶绿素(Chla+Chlb)和叶黄素(A+V+Z)含量,分析了其叶绿素循环和叶黄素循环的变化规律。结果表明,77%透光区通过减少Chlb含量,升高Chla/Chlb,避免光能过剩;同时,增加A+V+Z及热散逸色素(A+Z)含量、提高(A+V+Z)/(Chla+Chlb)和(A+V)/(A+V+Z)值,耗散过剩光能,避免光破坏。25%透光区的叶绿素和叶黄素循环机制随着水分条件的变化迅速发生改变。10%透光区通过增加Chlb含量,降低Chla/Chlb,捕捉更多的光能,几乎不存在光抑制。毛乌素臭柏实生幼苗能够适应不同的光照和水分条件,在恶劣的沙漠中完成天然更新,形成独特的群落景观,与叶绿素循环和叶黄素循环有着密切的关系。  相似文献   

15.
Seasonal differences in PSII efficiency (Fv/Fm), the conversion state of the xanthophyll cycle (Z + A)/ (V + A + Z), and leaf adenylate status were investigated in Euonymus kiautschovicus. On very cold days in winter, Fv/Fm assessed directly in the field remained low and Z + A high throughout day and night in both sun and shade leaves. Pre-dawn transfer of leaves from subfreezing temperatures in the field to room temperature revealed that recovery (increases in Fv/Fm and conversion of Z + A to violaxanthin) consisted of one, rapid phase in shade leaves, whereas in sun leaves a rapid phase was followed by a slow phase requiring days. The pre-dawn ATP/ADP ratio, as well as that determined at midday, was similar when comparing overwintering leaves with those sampled in the summer, although pre-dawn levels of ATP + ADP were elevated in all leaves during winter relative to summer. After a natural transition to warmer days during the winter, pre-dawn Fv/Fm and Z + A in shade leaves had returned to values typical for summer, whereas in sun leaves Fv/Fm and Z + A levels remained intermediate between the cold day in winter and the summer day. Thus two distinct forms of sustained (Z + A)-dependent energy dissipation were identified based upon their differing characteristics. The form that was sustained on cold days but relaxed rapidly upon warming occurred in all leaves and may result from maintenance of a low lumenal pH responsible for the nocturnal engagement of (Z + A)-dependent thermal dissipation exclusively on very cold days in the winter. The form that was sustained even upon warming and correlated with slow Z + A to violaxanthin conversion occurred only in sun leaves and may represent a sustained engagement of (Z + A)-dependent energy dissipation associated with an altered PSII protein composition. In the latter, warm-sustained form, uncoupler or cycloheximide infiltration had no effect on the slow phase of recovery, but lincomycin infiltration inhibited the slow increase in Fv/Fm and the conversion of Z + A to violaxanthin.  相似文献   

16.
Seasonal changes in pigment composition of sun and shade leavesof cork oak (Quercus suber) were studied under field conditionsin Portugal. Expanding leaves showed a high concentration ofxanthophyll cycle components, violaxanthin, antheraxanthin andzeaxanthin. The pool of violaxanthin plus antheraxanthin pluszeaxanthin (V+A+Z) varied greatly between the seasons, beinghigher at the end of summer and in winter when photosynthesiswas limited by water stress and cold, respectively. The sizeof V+A+Z pool was associated to synthesis of zeaxanthin in responseto an excess of light. In sun leaves, midday A+Z relative contentwas positively correlated with the V+A+Z pool, whereas in shadeleaves A+Z decreased with leaf ageing. In both leaf types A+Zwas positively correlated with the non-photochemical quenching(NPQ) of chlorophyll a fluorescence. However, in winter NPQdid not change significantly throughout the day, whereas the(A+Z)/(V+A+Z) increased following the typical daily trend observedin other seasons. Key words: Chlorophyll fluorescence, pigments, Quercus suber, thermal dissipation, xanthophylls  相似文献   

17.
BACKGROUND AND AIMS: Quercus coccifera, as a long-lived sprouter, responds plastically to environmental variation. In this study, the role of foliar plasticity as a mechanism of habitat selection and modification within the canopy and across contrasted habitats was characterized. An examination was made of the differential contribution of inner and outer canopy layers to the crown plasticity expressed in the field by adult individuals and its dependence on environmental and genetic factors. METHODS: Within-crown variation in eight foliar traits was examined in nine populations dominated by Q. coccifera. The difference between mean trait values at the inner and outer canopy layers was used as a proxy for crown plasticity to light. Correlations between geographic distances, environmental differences (climatic and edaphic) and phenotypic divergence (means and plasticities) were assessed by partial Mantel tests. A subset of field measurements was compared with data from a previous common garden experiment. KEY RESULTS: Phenotypic adjustment of sun leaves contributed significantly to the field variation in crown plasticity. Plasticity in leaf angle, lobation, xanthophyll cycle pigments and beta-carotene content was expressed in sun and shade leaves concurrently and in opposite directions. Phenotypic plasticity was more strongly correlated with environmental variation than mean trait values. Populations of taller plants with larger, thinner (higher specific leaf area) and less spiny leaves exhibited greater plasticity. In these populations, the midday light environment was more uniform at the inner than at the outer canopy layers. Field and common garden data ranked populations in the same order of plasticity. CONCLUSIONS: The expression of leaf plasticity resulted in a phenotypic differentiation that suggests a mechanism of habitat selection through division of labour across canopy layers. Signs of plasticity-mediated habitat modification were found only in the most plastic populations. Intracanopy plasticity was sensitive to environmental variation but also exhibited a strong genetic component.  相似文献   

18.
Seeds of Suaeda salsa were cultured in dark for 3 d and betacyanin accumulation in seedlings was promoted significantly. Then the seedlings with accumulated betacyanin (C+B) were transferred to 14/10 h light/dark and used for chilling treatment 15 d later. Photosystem 2 (PS2) photochemistry, D1 protein content, and xanthophyll cycle during the chilling-induced photoinhibition (exposed to 5 °C at a moderate photon flux density of 500 μmol m−2 s−1 for 3 h) and the subsequent restoration were compared between the C+B seedlings and the control (C) ones. The maximal efficiency of PS2 photochemistry (Fv/Fm), the efficiency of excitation energy capture by open PS2 centres (Fv′/Fm′), and the yield of PS2 electron transport (ΦPS2) of the C+B and C leaves both decreased during photoinhibition. However, smaller decreases in Fv/Fm, Fv′/Fm′, and ΦPS2 were observed in the C+B leaves than in C ones. At the same time, the deepoxidation state of xanthophyll cycle, indicated by (A+Z)/(V+A+Z) ratio, increased rapidly but the D1 protein content decreased considerably during the photoinhibition. The increase in rate of (A+Z)/(V+A+Z) was higher but the D1 protein turnover was slower in C+B than C leaves. After photoinhibition treatment, the plants were transferred to a dim irradiation (10 μmol m−2 s−1) at 25 °C for restoration. During restoration, the chlorophyll (Chl) fluorescence parameters, D1 protein content, and xanthophyll cycle components relaxed gradually, but the rate and level of restoration in the C+B leaves was greater than those in the C leaves. The addition of betacyanins to the thylakoid solution in vitro resulted in similar changes of Fv/Fm, D1 protein content, and (A+Z)/(V+A+Z) ratio during the chilling process. Therefore, betacyanin accumulation in S. salsa seedlings may result in higher resistance to photoinhibition, larger slowing down of D1 protein turnover, and enhancement of non-radiative energy dissipation associated with xanthophyll cycle, as well as in greater restoration after photoinhibition than in the control when subjected to chilling at moderate irradiance.  相似文献   

19.
Photosynthesis, photosystem II (PSII) photochemistry, photoinhibition and the xanthophyll cycle in the senescent flag leaves of wheat (Triticum aestivum L.) plants grown in the field were investigated. Compared to the non-senescent leaves, photosynthetic capacity was significantly reduced in senescent flag leaves. The light intensity at which photosynthesis was saturated also declined significantly. The light response curves of PSII photochemistry indicate that a down-regulation of PSII photochemistry occurred in senescent leaves in particular at high light. The maximal efficiency of PSII photochemistry in senescent flag leaves decreased slightly when measured at predawn but substantially at midday, suggesting that PSII function was largely maintained and photoinhibition occurred in senescent leaves when exposed to high light. At midday, PSII efficiency, photochemical quenching and the efficiency of excitation capture by open PSII centers decreased considerably, while non-photochemical quenching increased significantly. Moreover, compared with the values at early morning, a greater decrease in CO2 assimilation rate was observed at midday in senescent leaves than in control leaves. The levels of antheraxanthin and zeaxanthin via the de-epoxidation of violaxanthin increased in senescent flag leaves from predawn to midday. An increase in the xanthophyll cycle pigments relative to chlorophyll was observed in senescent flag leaves. The results suggest that the xanthophyll cycle was activated in senescent leaves due to the decrease in CO2 assimilation capacity and the light intensity for saturation of photosynthesis and that the enhanced formation of antheraxanthin and zeaxanthin at high light may play an important role in the dissipation of excess light energy and help to protect photosynthetic apparatus from photodamage. Our results suggest that the well-known function of the xanthophyll cycle to safely dissipate excess excitation energy is also important for maintaining photosynthetic function during leaf senescence.  相似文献   

20.
The daily changes in the behavior of xanthophyll cycle and antioxidant systems in flag leaves of superhigh-yield hybrid rice were investigated in relation to various developing stages. Dark-adapted Fv/Fm decreased with the increasing incident light intensity on leaf surface in the morning and then minimized at midday; Deepoxidation State showed an opposed daily pattern to Fv/Fm at different developing stage. As compared with increased deepoxidation state maximum value, the relative content of xanthophyll cycle pigments remained almost constant during development. The daily changes in activities of superoxide dismutase, ascorbate-peroxidase and glutathione reductase and the content of ascorbate and glutathione displayed a similar pattern, where they increased from 8:00 and reached maximum at midday, however, a lower daily fluctuation of superoxide dismutase activity was observed in senescent leaves. The enhanced contribution of xanthophyll cycle and Mehler-ascorbate peroxidase reaction to photoprotection in old leaves could be partially due to the altered leaf posture. In conclusion, daily changes of xanthophyll cycle and antioxidant systems in leaves of rice at various developing stages were dependent on leaf age, leaf angle and intensity of solar irridiance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号