首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CenA and Cex are beta-1,4-glycanases produced by the cellulolytic bacterium Cellulomonas fimi. Both enzymes are composed of two domains and contain six Cys residues. Two disulfide bonds were assigned in both enzymes by peptide analysis of the isolated catalytic domains. A further disulfide bond was deduced in both cellulose-binding domains from the absence of free thiols under denaturing conditions. Corresponding Cys residues are conserved in eight of nine other known C. fimi-type cellulose-binding domains. CenA and Cex belong to families B and F, respectively, in the classification of beta-1,4-glucanases and beta-1,4-xylanases based on similarities in catalytic domain primary structure. Disulfide bonds in the CenA catalytic domain correspond to the two disulfide bonds in the catalytic domain of Trichoderma reesei cellobiohydrolase II (family B) which stabilize loops forming the active-site tunnel. Sequence alignment indicates the probable occurrence of disulfides at equivalent positions in the two other family B enzymes. Partial resequencing of the gene encoding Streptomyces KSM-9 beta-1,4-glucanase CasA (family B) revealed five errors in the original nucleotide sequence analysis. The corrected amino acid sequence contains an Asp residue corresponding to the proposed proton donor in hydrolysis catalysed by cellobiohydrolase II. Cys residues which form disulfide bonds in the Cex catalytic domain are conserved in XynZ of Clostridium thermocellum and Xyn of Cryptococcus albidus but not in the other eight known family F enzymes. Like other members of its family, Cex catalyses xylan hydrolysis. The catalytic efficiency (kcat/Km) for hydrolysis of the heterosidic bond of p-nitrophenyl-beta-D-xylobioside is 14,385 min-1.mM-1 at 25 degrees C; the corresponding kcat/Km for p-nitrophenyl-beta-D-cellobioside hydrolysis is 296 min-1.mM-1.  相似文献   

2.
Modular glycoside hydrolases that attack recalcitrant polymers generally contain noncatalytic carbohydrate-binding modules (CBMs), which play a critical role in the action of these enzymes by localizing the appended catalytic domains onto the surface of insoluble polysaccharide substrates. Type B CBMs, which recognize single polysaccharide chains, display ligand specificities that are consistent with the substrates hydrolyzed by the associated catalytic domains. In enzymes that contain multiple catalytic domains with distinct substrate specificities, it is unclear how these different activities influence the evolution of the ligand recognition profile of the appended CBM. To address this issue, we have characterized the properties of a family 11 CBM (CtCBM11) in Clostridium thermocellum Lic26A-Cel5E, an enzyme that contains GH5 and GH26 catalytic domains that display beta-1,4- and beta-1,3-1,4-mixed linked endoglucanase activity, respectively. Here we show that CtCBM11 binds to both beta-1,4- and beta-1,3-1,4-mixed linked glucans, displaying K(a) values of 1.9 x 10(5), 4.4 x 10(4), and 2 x 10(3) m(-1) for Glc-beta1,4-Glc-beta1,4-Glc-beta1,3-Glc, Glc-beta1,4-Glc-beta1,4-Glc-beta1,4-Glc, and Glc-beta1,3-Glc-beta1,4-Glc-beta1,3-Glc, respectively, demonstrating that CBMs can display a preference for mixed linked glucans. To determine whether these ligands are accommodated in the same or diverse sites in CtCBM11, the crystal structure of the protein was solved to a resolution of 1.98 A. The protein displays a beta-sandwich with a concave side that forms a potential binding cleft. Site-directed mutagenesis revealed that Tyr(22), Tyr(53), and Tyr(129), located in the putative binding cleft, play a central role in the recognition of all the ligands recognized by the protein. We propose, therefore, that CtCBM11 contains a single ligand-binding site that displays affinity for both beta-1,4- and beta-1,3-1,4-mixed linked glucans.  相似文献   

3.
Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase (Fsbeta-glucanase) catalyzes the specific hydrolysis of beta-1,4 glycosidic bonds adjacent to beta-1,3 linkages in beta-D-glucans or lichenan. This is the first report to elucidate the crystal structure of a truncated Fsbeta-glucanase (TFsbeta-glucanase) in complex with beta-1,3-1,4-cellotriose, a major product of the enzyme reaction. The crystal structures, at a resolution of 2.3 angstroms, reveal that the overall fold of TFsbeta-glucanase remains virtually unchanged upon sugar binding. The enzyme accommodates five glucose residues, forming a concave active cleft. The beta-1,3-1,4-cellotriose with subsites -3 to -1 bound to the active cleft of TFsbeta-glucanase with its reducing end subsite -1 close to the key catalytic residues Glu56 and Glu60. All three subsites of the beta-1,3-1,4-cellotriose adopted a relaxed C(1)4 conformation, with a beta-1,3 glycosidic linkage between subsites -2 and -1, and a beta-1,4 glycosidic linkage between subsites -3 and -2. On the basis of the enzyme-product complex structure observed in this study, a catalytic mechanism and substrate binding conformation of the active site of TFsbeta-glucanase is proposed.  相似文献   

4.
Enzymes active on complex carbohydrate polymers frequently have modular structures in which a catalytic domain is appended to one or more carbohydrate-binding modules (CBMs). Although CBMs have been classified into a number of families based upon sequence, many closely related CBMs are specific for different polysaccharides. In order to provide a structural rationale for the recognition of different polysaccharides by CBMs displaying a conserved fold, we have studied the thermodynamics of binding and three-dimensional structures of the related family 4 CBMs from Cellulomonas fimi Cel9B and Thermotoga maritima Lam16A in complex with their ligands, beta-1,4 and beta-1,3 linked gluco-oligosaccharides, respectively. These two CBMs use a structurally conserved constellation of aromatic and polar amino acid side-chains that interact with sugars in two of the five binding subsites. Differences in the length and conformation of loops in non-conserved regions create binding-site topographies that complement the known solution conformations of their respective ligands. Thermodynamics interpreted in the light of structural information highlights the differential role of water in the interaction of these CBMs with their respective oligosaccharide ligands.  相似文献   

5.
The three-dimensional structure of Aspergillus aculeatus beta-1,4-galactanase (AAGAL), an enzyme involved in pectin degradation, has been determined by multiple isomorphous replacement to 2.3 and 1.8 A resolution at 293 and 100 K, respectively. It represents the first known structure for a polysaccharidase with this specificity and for a member of glycoside hydrolase family 53 (GH-53). The enzyme folds into a (beta/alpha)(8) barrel with the active site cleft located at the C-terminal side of the barrel consistent with the classification of GH-53 in clan GH-A, a superfamily of enzymes with common fold and catalytic machinery but diverse specificities. Putative substrate-enzyme interactions were elucidated by modeling of beta-1,4-linked galactobioses into the possible substrate binding subsites. The structure and modeling studies identified five potential subsites for the binding of galactans, of which one is a pocket suited for accommodating the arabinan side chain in arabinogalactan, one of the natural substrates. A comparison with the substrate binding grooves of other Clan GH-A enzymes suggests that shape complementarity is crucial in determining the specificity of polysaccharidases.  相似文献   

6.
A simple procedure has been elaborated for preparation of 4-nitrophenyl beta-d-xylopyranosyl-1,4-beta-d-xylopyranoside (NPX(2)), a chromogenic substrate of some endo-beta-1,4-xylanases. The procedure is based on a self-transfer reaction from 4-nitrophenyl beta-d-xylopyranoside catalyzed by an Aureobasidium pullulans and Aspergillus niger beta-xylosidases. Both enzymes catalyzed only the formation of 4-nitrophenyl glycosides of beta-1,4-xylobiose with a small admixture of 4-nitrophenyl glycoside of beta-1,3-xylobiose. The highest yields of the NPX(2) (19.4%) was obtained at pH 5.5. The removal of the beta-1,3-isomer from NPX(2) is not necessary for quantification of endo-beta-1,4-xylanase activity since it is not attacked by endo-beta-1,4-xylanases. In contrast to GH family 5 xylanase from Erwinia chrysanthemi, which did not attack NPX(2), all family 10 and 11 xylanases cleaved the chromogenic substrate exclusively between xylobiose and the aromatic aglycone. Significant differences in the K(m) values of GH10 and GH11 xylanases suggested that activities of these enzymes could be selectively quantified in the mixtures using various concentrations of NPX(2). Moreover, NPX(2) could serve as an ideal substrate to follow the interaction of endo-beta-1,4-xylanases with various xylanase inhibitors.  相似文献   

7.
New proteomics methods are required for targeting and identification of subsets of a proteome in an activity-based fashion. Here, we report the first gel-free, mass spectrometry-based strategy for mechanism-based profiling of retaining beta-endoglycosidases in complex proteomes. Using a biotinylated, cleavable 2-deoxy-2-fluoroxylobioside inactivator, we have isolated and identified the active-site peptides of target retaining beta-1,4-glycanases in systems of increasing complexity: pure enzymes, artificial proteomes, and the secreted proteome of the aerobic mesophilic soil bacterium Cellulomonas fimi. The active-site peptide of a new C. fimi beta-1,4-glycanase was identified in this manner, and the peptide sequence, which includes the catalytic nucleophile, is highly conserved among glycosidase family 10 members. The glycanase gene (GenBank accession number DQ146941) was cloned using inverse PCR techniques, and the protein was found to comprise a catalytic domain that shares approximately 70% sequence identity with those of xylanases from Streptomyces sp. and a family 2b carbohydrate-binding module. The new glycanase hydrolyzes natural and artificial xylo-configured substrates more efficiently than their cello-configured counterparts. It has a pH dependence very similar to that of known C. fimi retaining glycanases.  相似文献   

8.
应用基于易错PCR随机突变的体外分子进化技术,来提高淀粉液化芽胞杆菌β-1,3-1,4-葡聚糖酶的热稳定性。利用建立的基于96微孔板高通量筛选模型,经过两轮定向进化与高通量筛选,共筛选得到3株热稳定性明显提高的突变体2-JF-01、2-JF-02和2-JF-03。将野生型β-葡聚糖酶基因和热稳定性提高的突变基因的高效表达产物经镍亲和层析柱纯化后,酶学性质测定表明突变酶2-JF-01、2-JF-02和2-JF-03的T50值分别比野生酶(53℃)提高2.2℃、5.5℃和3.5℃。突变酶2-JF-01、2-JF-02和2-JF-03在60℃下的半衰期t1/2,60℃(min)分别比野生酶(18min)提高4min、13min和17min。突变酶2-JF-01、2-JF-02和2-JF-03的Vmax值为286μmol/(mg·min)、304μmol/(mg·min)和279μmol/(mg·min),分别比野生型下降8.3%、2.6%和10.6%。突变酶2-JF-01、2-JF-02和2-JF-03的Km值分别为6.76mg/mL、6.19μmg/mL和6.84mg/mL,与野生型(6.29mg/mL)基本相同。序列分析表明,3个突变体共发生7个氨基酸替代:2-JF-01(N36S,G213R)、2-JF-02(C86R,S115I,N150G)和2-JF-03(E156V,K105R)。同源建模表明,7个氨基酸替代中5个位于蛋白质表面或表面洞穴中,42.8%的替代氨基酸是精氨酸,也表明精氨酸在提高β-1,3-1,4-葡聚糖酶热稳定性中起重要的作用。  相似文献   

9.
Streptococcus bovis JB1 was found to produce a 25-kDa extracellular enzyme active against beta-(1,3-1,4)-glucans. A gene was isolated encoding a specific beta-(1,3-1,4)-glucanase that corresponds to this size and belongs to glycoside hydrolase family 16. A 4- to 10-fold increase in supernatant beta-glucanase activity was obtained when the cloned beta-glucanase gene was reintroduced into S. bovis JB1 by use of constructs based on the plasmid vector pTRW10 or pIL253. The beta-(1,3-1,4)-glucanase gene was also expressed upon introduction of the pTRW10 construct pTRWL1R into Lactococcus lactis IL2661 and Enterococcus faecalis JH2-SS, although extracellular activity was 8- to 50-fold lower than that in S. bovis JB1. The beta-(1,3-1,4)-glucanase purified from the culture supernatant of S. bovis JB1 carrying pTRWL1R showed a K(m) of 2.8 mg per ml and a Vmax of 338 mumol of glucose equivalents per min per mg of protein with barley beta-glucan as the substrate. The S. bovis beta-(1,3-1,4)-glucanase may contribute to the ability of this bacterium to utilize starch by degrading structural polysaccharides present in endosperm cell walls.  相似文献   

10.
Two beta-1,4-glucanases (DI and DIII fractions) were purified to homogeneity from the culture filtrate of a cellulolytic bacteria, Cellulomonas sp. CS1-1, which was classified as a novel species belonging to Cellulomonas uda based on chemotaxanomic and phylogenetic analyses. The molecular mass was estimated as 50,000 Da and 52,000 Da for DI and DIII, respectively. Moreover, DIII was identified as a glycoprotein with a pI of 3.8, and DI was identified as a non-glycoprotein with a pI of 5.3. When comparing the ratio of the CMC-saccharifying activity and CMC-liquefying activity, DI exhibited a steep slope, characteristic of an endoglucanase, whereas DIII exhibited a low slope, characteristic of an exoglucanase. The substrate specificity of the purified enzymes revealed that DI efficiently hydrolyzed CMC as well as xylan, whereas DIII exhibited a high activity on microcrystalline celluloses, such as Sigmacells. A comparison of the hydrolysis patterns for pNP-glucosides (DP 2-5) using an HPLC analysis demonstrated that the halosidic bond 3 from the nonreducing end was the preferential cleavage site for DI, whereas bond 2, from which the cellobiose unit is split off, was the preferential cleavage site for DIII. The partial N-terminal amino acid sequences for the purified enzymes were 1Ala-Gly-Ser-Thr-Leu-Gln-Ala-Ala-Ala-Ser-Glu-Ser-Gly-Arg-Tyr15- for DI and 1Ala-Asp-Ser-Asp-Phe-Asn-Leu-Tyr-Val-Ala-Glu-Asn-Ala-Met-Lys15- for DIII. The apparent sequences exhibited high sequence similarities with other bacterial beta-1,4-glucanases as well as beta-1,4-xylanases.  相似文献   

11.
In the present study, we characterized the gene (Cyanobase accession number slr0897) designated Ssglc encoding a beta-1,4-glucanase-like protein (SsGlc) from Synechocystis PCC6803. The deduced amino acid sequence for Ssglc showed a high degree of similarity to sequences of GH (glycoside hydrolase) family 9 beta-1,4-glucanases (cellulases) from various sources. Surprisingly, the recombinant protein obtained from the Escherichia coli expression system was able to hydrolyse barley beta-glucan and lichenan (beta-1,3-1,4-glucan), but not cellulose (beta-1,4-glucan), curdlan (beta-1,3-glucan), or laminarin (beta-1,3-1,6-glucan). A 1H-NMR analysis of the enzymatic products revealed that the enzyme hydrolyses the beta-1,4-glycosidic linkage of barley beta-glucan through an inverting mechanism. The data indicated that SsGlc was a novel type of GH9 glucanase which could specifically hydrolyse the beta-1,3-1,4-linkage of glucan. The growth of mutant Synechocystis cells in which the Ssglc gene was disrupted by a kanamycin-resistance cartridge gene was almost the same as that of the wild-type cells under continuous light (40 micromol of photons/m2 per s), a 12 h light (40 micromol of photons/m2 per s)/12 h dark cycle, cold stress (4 degrees C), and high light stress (200 micromol of photons/m2 per s). However, under salt stress (300-450 mM NaCl), growth of the Ssglc-disrupted mutant cells was significantly inhibited as compared with that of the wild-type cells. The Ssglc-disrupted mutant cells showed a decreased rate of O2 consumption and NaHCO3-dependent O2 evolution as compared with the wild-type cells under salt stress. Under osmotic stress (100-400 mM sorbitol), there was no difference in growth between the wild-type and the Ssglc-disrupted mutant cells. These results suggest that SsGlc functions in salt stress tolerance in Synechocystis PCC6803.  相似文献   

12.
Cellodextrins (CD), water-soluble derivatives of cellulose composed of beta-1,4 glucoside residues, have been shown to induce a variety of defence responses in grapevine (Vitis vinifera L.) cells. The larger oligomers of CD rapidly induced transient generation of H2O2 and elevation in free cytosolic calcium, followed by a differential expression of genes encoding key enzymes of the phenylpropanoid pathway and pathogenesis-related (PR) proteins as well as stimulation of chitinase and beta-1,3 glucanase activities. Most of these defence reactions were also induced by linear beta-1,3 glucans (betaGlu) and alpha-1,4 oligogalacturonides (OGA) of different degree of polymerization (DP), but the intensity of some reactions induced by CD was different when compared with betaGlu and OGA effects. Moreover, desensitization assays using H2O2 production showed that cells treated with CD remained fully responsive to a second application of OGA, suggesting a different mode of perception of these oligosaccharides by grape cells. None of CD, betaGlu, or OGA induced HSR gene expression nor did they induce cell death. In accordance with elicitor activity in grapevine cells, CD-incubated leaves challenged with Botrytis cinerea also resulted in a significant reduction of the disease. Data suggest that CD could operate via other distinct reaction pathways than betaGlu and OGA. They also highlight the requirement of a specific DP for each oligosaccharide to induce the defence response.  相似文献   

13.
A beta-1,3-xylanase gene (txyA) from a marine bacterium, Alcaligenes sp. strain XY-234, has been cloned and sequenced. txyA consists of a 1,410-bp open reading frame that encodes 469 amino acid residues with a calculated molecular mass of 52,256 Da. The domain structure of the beta-1,3-xylanase (TxyA) consists of a signal peptide of 22 amino acid residues, followed by a catalytic domain which belongs to family 26 of the glycosyl hydrolases, a linker region with one array of DGG and six repeats of DNGG, and a novel carbohydrate-binding module (CBM) at the C terminus. The recombinant TxyA hydrolyzed beta-1,3-xylan but not other polysaccharides such as beta-1,4-xylan, carboxymethylcellulose, curdlan, glucomannan, or beta-1,4-mannan. TxyA was capable of binding specifically to beta-1,3-xylan. The analysis using truncated TxyA lacking either the N- or C-terminal region indicated that the region encoding the CBM was located between residues 376 and 469. Binding studies on the CBM revealed that the K(d) and the maximum amount of protein bound to beta-1,3-xylan were 4.2 microM and 18.2 micromol/g of beta-1,3-xylan, respectively. Furthermore, comparison of the enzymatic properties between proteins with and without the CBM strongly indicated that the CBM of TxyA plays an important role in the hydrolysis of beta-1,3-xylan.  相似文献   

14.
The synergistic interaction among three beta-specific glycosidases from the hyperthermophilic archaeon Pyrococcus furiosus, namely two endoglucanases (EglA and LamA) and an exo-acting beta-glucosidase (Bgl), on barley-glucan and laminarin, was examined. In addition to following glucose release and the generation of reducing sugar ends, the distribution and amounts of oligomeric products from beta-1,3- and beta-1,4-linked substrates were determined as a function of extent of hydrolysis at 98 degrees C. Positive interactions were noted between endo/exo glucanase combinations, leading to enhanced and rapid degradation of the larger complex carbohydrates to oligosaccharides. The EglA/LamA endo-acting combination was also synergistic in degrading barley-glucan. However, hydrolysis was most efficient when a blend of all three hydrolases was used, possibly due to the relief of product inhibition by the exoglyosidase. Furthermore, by monitoring the distribution of oligosaccharides present during hydrolysis, patterns of enzymatic attack could be followed in addition to determining the specific contributions of each hydrolase to the overall process.  相似文献   

15.
In spite of marked changes in the glycosylation upon malignant transformation of cells, no biological significance of beta-1, 4-galactosyltransferase (beta-1,4-GalT) activities has been elucidated. When beta-1,4-GalT activities toward 1 mM GlcNAcbeta-S-pNP were determined using homogenates of NIH3T3 and its transformant, MTAg, MTAg contained 1.3 times higher activities. Northern blot analysis, however, revealed that the beta-1,4-GalT V gene expression increases by three times with a decrease in that of beta-1,4-GalT II by one-fifth and without significant changes in those of other beta-1,4-GalTs in MTAg. Analysis of beta-1,4-GalT V acceptor-specificity showed that the GlcNAcbeta1-->6Man group of the GlcNAcbeta1-->6(GlcNAbeta1-->2)Manalpha1- branch is galactosylated. These results indicate that changes in beta-1,4-GalT II and V activities are important for the altered glycosylation.  相似文献   

16.
In this paper, we present the first detailed analysis of the modes of action of three purified, thermostable endo-beta-D-glucanases (EG V-VII) against a range of soluble beta-linked glucans. Studies indicated that EG V-VII, purified to homogeneity from a new source, the thermophilic fungus Talaromyces emersonii, are strict beta-glucanases that exhibit maximum activity against mixed-link 1,3;1,4-beta-D-glucans. Time-course hydrolysis studies of 1,4-beta-D-glucan (carboxymethylcellulose; CMC), 1,3;1,4-beta-D-glucan from barley (BBG) and lichenan confirmed the endo-acting nature of EG V-VII and verified preference for 1,3;1,4-beta-D-glucan substrates. The results suggest that EG VI and EG VII belong to EC 3.2.1.6, as both enzymes also exhibit activity against 1,3-beta-glucan (laminaran), in contrast to EG V. Although cellobiose, cellotriose and glucose were the main glucooligosaccharide products released, the range and relative amount of each product was dependent on the particular enzyme, substrate and reaction time. Kinetic constants (Km, Vmax, kcat and kcat/Km) determined for EG V-VII with BBG as substrate yielded similar Km and Vmax values for EG V and EG VI. EG VII exhibited highest affinity for BBG (Km value of 9.1 mg ml(-1)) and the highest catalytic efficiency (kcat/Km of 12.63 s(-1) mg(-1) ml).  相似文献   

17.
1,3-1,4-beta-Glucanases (or lichenases, EC 3.2.1.73) hydrolyse linear beta-glucans containing beta-1,3 and beta-1,4 linkages such as cereal beta-glucans and lichenan, with a strict cleavage specificity for beta-1,4 glycosidic bonds on 3-O-substituted glucosyl residues. The bacterial enzymes are retaining glycosyl hydrolases of family 16 with a jellyroll beta-sandwich fold and a substrate binding cleft composed of six subsites. The present paper reviews the structure-function aspects of the enzymatic action including mechanistic enzymology, protein engineering and X-ray crystallographic studies.  相似文献   

18.
Five cellulose-binding polypeptides were detected in Cellulomonas fimi culture supernatants. Two of them are CenA and CenB, endo-beta-1,4-glucanases which have been characterized previously; the other three were previously uncharacterized polypeptides with apparent molecular masses of 120, 95, and 75 kDa. The 75-kDa cellulose-binding protein was designated endoglucanase D (CenD). The cenD gene was cloned and sequenced. It encodes a polypeptide of 747 amino acids. Mature CenD is 708 amino acids long and has a predicted molecular mass of 74,982 Da. Analysis of the predicted amino acid sequence of CenD shows that the enzyme comprises four domains which are separated by short linker polypeptides: an N-terminal catalytic domain of 405 amino acids, two repeated sequences of 95 amino acids each, and a C-terminal domain of 105 amino acids which is > 50% identical to the sequences of cellulose-binding domains in Cex, CenA, and CenB from C. fimi. Amino acid sequence comparison placed the catalytic domain of CenD in family A, subtype 1, of beta-1,4-glycanases. The repeated sequences are more than 40% identical to the sequences of three repeats in CenB and are related to the repeats of fibronectin type III. CenD hydrolyzed the beta-1,4-glucosidic bond with retention of anomeric configuration. The activities of CenD towards various cellulosic substrates were quite different from those of CenA and CenB.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号