首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This review discusses some of the approaches and general criteria that we have used to examine the properties of the hexose transport system in undifferentiated L6 rat myoblasts. These approaches include studying the kinetics of hexose transport in whole cells and plasma membrane vesicles, the effects of various inhibitors on hexose transport, the isolation and characterization of hexose transport mutants, and the use of cytochalasin B (CB) to identify the transport component(s). Transport kinetics indicated that two transport systems are present in these cells. 2-Deoxy-D-glucose is transported primarily by the high affinity system, whereas 3-O-methyl-D-glucose is transported by the low affinity system. Furthermore, these two transport systems are inactivated to different extents by CB. CB has a higher binding affinity for the low affinity hexose transport system. The inhibitory effect of various hexose analogues also revealed the presence of two hexose transport systems. The effects of various ionophores and energy uncouplers on hexose transport suggest that the high affinity system is an active transport process, whereas the low affinity system is of the facilitated diffusion type. The high affinity system is also sensitive to sulfhydryl reagents, whereas the low affinity system is not. Further evidence for the presence of two transport systems comes from the characterization of hexose transport mutants. Two of the mutants isolated are shown to be defective in the high affinity transport system, but not in the low affinity transport system. These mutants are also defective in the CB low affinity binding site. Based on our results a tentative working model for hexose transport in L6 rat myoblasts is presented.  相似文献   

2.
The combination of various evanescent optical methods such as surface plasmon spectroscopy, waveguide mode spectroscopy and an integrated optical Mach-Zehnder-interferometer are used to characterize biotinylated self-assembled monolayers as well as the binding of streptavidin to these labels. The aim of designing a highly specific and sensitive, re-usable affinity sensor for antigens on the basis of an integrated optical Mach-Zehnder interferometer is based on a proper understanding of the characteristics of the entire binding matrix architecture. Therefore, a variety of biotin-derivatives immobilized in a monolayer are investigated with respect to their affinity to streptavidin and the possibility to remove the steptavidin layer specifically. The density of the streptavidin layer as well as the optical constants of the involved molecules are measured. Finally the integrated optical Mach-Zehnder interferometer is tested with respect to the sensitivity to an antigen-antibody binding reaction. An attempt to further increase the sensitivity by simultaneous detection of a fluorescence signal failed due to bleaching effects.  相似文献   

3.
Computer simulation of affinity chromatography is a valuable tool for accurate prediction of column performance. In our study affinity pairs based on lectin and antibody interactions with carbohydrates have been used as model systems. In this well-characterized system we have demonstrated the usefulness of the simulation approach for determination of affinity and kinetics. These properties are typically difficult to obtain for many weakly interacting molecular species (i.e., when dissociation constants (K(D)) are greater than 10(-5) M). The influence of affinity and kinetics on peak broadening in affinity chromatography has also been investigated.  相似文献   

4.
Fibroblast growth factors (FGFs) constitute a large family of heparin-binding growth factors with diverse biological activities. FGF9 was originally described as glia-activating factor and is expressed in the nervous system as a potent mitogen for glia cells. Unlike most FGFs, FGF9 forms dimers in solution with a K(d) of 680 nm. To elucidate the molecular mechanism of FGF9 dimerization, the crystal structure of FGF9 was determined at 2.2 A resolution. FGF9 adopts a beta-trefoil fold similar to other FGFs. However, unlike other FGFs, the N- and C-terminal regions outside the beta-trefoil core in FGF9 are ordered and involved in the formation of a 2-fold crystallographic dimer. A significant surface area (>2000 A(2)) is buried in the dimer interface that occludes a major receptor binding site of FGF9. Thus, we propose an autoinhibitory mechanism for FGF9 that is dependent on sequences outside of the beta-trefoil core. Moreover, a model is presented providing a molecular basis for the preferential affinity of FGF9 toward FGFR3.  相似文献   

5.
We used affinity chromatography to isolate a specific laminin-binding protein from murine fibrosarcoma cells. These cells bind exogenous laminin to their surface with high affinity (Kd = 2 X 10(-9)M for laminin) with approximately 5 X 10(4) sites per cell. Laminin affinity chromatography of [35S]methionine-labeled cell extracts produced two distinct proteins. One was identified as Type IV (basement membrane) collagen based on its migration pattern on SDS gels and bacterial collagenase sensitivity. The other protein, which migrates as a single band or closely spaced doublet on reduced SDS gels, has a reduced molecular weight of 69,000. Using a nitrocellulose filter disk assay, we found that the latter protein specifically bound 125I-laminin with the same high affinity (Kd = 2 X 10(-9)M for laminin) as did intact fibrosarcoma cells. By iodinating intact cells, we demonstrated that this laminin-binding protein is on the cell surface. We conclude that this protein with reduced molecular weight of 69,000 is a subunit or component of a larger cell surface receptor protein for laminin in this fibrosarcoma model. This laminin receptor may mediate the interaction of the cell with its extracellular matrix.  相似文献   

6.
Summary We have developed a protein extraction technique which uses metal affinity ligands in PEG/salt aqueous two-phase systems. Cu(II)IDA-PEG will partition proteins according to their surface histidine contents in two-phase systems formed from sodium sulfate and polyethylene glycol. The nearly complete separation of human hemoglobin and human serum albumin in a single stage is presented as a demonstration of the effectiveness of metal affinity extraction in PEG/salt systems.  相似文献   

7.
Upon developing therapeutically potent antibodies, there are significant requirements, such as increasing their affinity, regulating their epitope, and using native target antigens. Many antibody selection systems, such as a phage display method, have been developed, but it is still difficult to fulfill these requirements at the same time. Here, we propose a novel epitope-directed antibody affinity maturation system utilizing mammalian cell survival as readout. This system is based on the competition of antibody binding, and can target membrane proteins expressed in a native form on a mammalian cell surface. Using this system, we successfully selected an affinity-matured anti-ErbB2 single-chain variable fragment variant, which had the same epitope as the original one. In addition, the affinity was increased mainly due to the decrease in the dissociation rate. This novel cell-based antibody affinity maturation system could contribute to directly obtaining therapeutically potent antibodies that are functional on the cell surface.  相似文献   

8.
An experimental technique and a simple analysis are presented that can be used to quantitate the affinity of red blood cell membrane for surfaces of small beads or microsomal particles up to 3 micrometers Diam. The technique is demonstrated with an example of dextran-mediated adhesion of small spherical red cell fragments to normal red blood cells. Cells and particles are positioned for contact by manipulation with glass micropipets. The mechanical equilibrium of the adhesive contact is represented by the variational expression that the decrease in interfacial free energy due to a virtual increase in contact area is balanced by the increase in elastic energy of the membrane due to virtual deformation. The surface affinity is the reduction in free energy per unit area of the interface associated with the formation of adhesive contact. From numerical computations of equilibrium configurations, the surface affinity is derived as a function of the fractional extent of particle encapsulation. The range of surface affinities for which the results are applicable is increased over previous techniques to several times the value of the elastic shear modulus. It is shown that bending rigidity of the membrane has little effect on the analytical results for particles 1--3 micrometers Diam and that results are essentially the same for both cup- and disk-shaped red cells. A simple analytical model is shown to give a good approximation for surface affinity (normalized by the elastic shear modulus) as a function of the fractional extent of particle encapsulation. The model predicts that a particle would be almost completely vacuolized for surface affinities greater than or equal to 10 times the elastic shear modulus. Based on an elastic shear modulus of 6.6 x 10(-3) dyn/cm, the range for the red cell-particle surface affinity as measured by this technique is from approximately 7 x 10(-4) to 7 x 10(-2) erg/cm2. Also, an approximate relation is derived for the level of surface affinity necessary to produce particle vacuolization by a phospholipid bilayer surface which possesses bending rigidity and a fixed tension.  相似文献   

9.
A fractal analysis is presented for the binding and dissociation of different heart-related compounds in solution to receptors immobilized on biosensor surfaces. The data analyzed include LCAT (lecithin cholesterol acyl transferase) concentrations in solution to egg white apoA-I rHDL immobilized on a biosensor chip surface (1), native, mildly oxidized, and strongly oxidized LDL in solution to a heparin-modified Au-surface of a surface plasmon resonance (SPR) biosensor (2), and TRITC-labeled HDL in solution to a bare optical fiber surface (3). Single-and dual-fractal models were used to fit the data. Values of the binding and the dissociation rate coefficient(s), affinity values, and the fractal dimensions were obtained from the regression analysis provided by Corel Quattro Pro 8.0 (4). The binding rate coefficients are quite sensitive to the degree of heterogeneity on the sensor chip surface. Predictive equations are developed for the binding rate coefficient as a function of the degree of heterogeneity present on the sensor chip surface and on the LCAT concentration in solution and for the affinity as a function of the ratio of fractal dimensions present in the binding and the dissociation phases. The analysis presented provided physical insights into these analyte-receptor reactions occurring on different biosensor surfaces.  相似文献   

10.
Liquid-liquid extraction in two-phase aqueous complex-fluid systems has been proposed as a scalable, versatile, and cost-effective purification method for the downstream processing of biotechnological products. In the case of two-phase aqueous micellar systems, careful choices of the phase-forming surfactants or surfactant mixtures allow these systems to separate biomolecules based on size, hydrophobicity, charge, or specific affinity. In this article, we investigate the affinity-enhanced partitioning of a model affinity-tagged protei--green fluorescent protein fused to a family 9 carbohydrate-binding module (CBM9-GFP)--in a two-phase aqueous micellar system generated from the nonionic surfactant n-decyl beta-D-glucopyranoside (C10G1), which acts simultaneously as the phase-former and the affinity ligand. In this simple system, CBM9-GFP was extracted preferentially into the micelle-rich phase, despite the opposing tendency of the steric, excluded-volume interactions operating between the protein and the micelles. We obtained more than a sixfold increase (from 0.47 to 3.1) in the protein partition coefficient (Kp), as compared to a control case where the affinity interactions were "turned off" by the addition of a competitive inhibitor (glucose). It was demonstrated conclusively that the observed increase in Kp can be attributed to the specific affinity between the CBM9 domain and the affinity surfactant C10G1, suggesting that the method can be generally applied to any CBM9-tagged protein. To rationalize the observed phenomenon of affinity-enhanced partitioning in two-phase aqueous micellar systems, we formulated a theoretical framework to model the protein partition coefficient. The modeling approach accounts for both the excluded-volume interactions and the affinity interactions between the protein and the surfactants, and considers the contributions from the monomeric and the micellar surfactants separately. The model was shown to be consistent with the experimental data, as well as with our current understanding of the CBM9 domain.  相似文献   

11.
12.
Direct monitoring of recognition processes at the molecular level is a valuable tool for studying reaction kinetics to assess affinity constants (e.g. drugs to receptors) and for designing rapid single step immunoassays. Methods currently used to gain information about binding processes predominantly depend on surface plasmon resonance. These systems use excitation with coherent light in attenuated total reflection geometry to obtain discrimination between surface-bound and free molecules in solution. Therefore labeling of the compounds is not necessary, but due to the complexity of the measuring setup the method is rather costly. In this contribution we present a simple method for performing kinetic single step biorecognition assays with fluorophore labeled compounds using the fluorescence enhancement properties of surface bound silver colloids. Silver colloids are bound to standard microplates via silanization of the plastic surface. Fluorophores close to this colloid coated surface show a significant gain in fluorescence compared to fluorophores farther away in the bulk solution. Therefore discrimination between surface bound and free fluorophores is possible and the binding of, for example, fluorophore labeled antibodies to antigens immobilized on the colloid surface results in increasing fluorescence intensity. Utilization of standard microplates makes this method fully compatible with conventional microplate processing and reading devices. Neither excitation with coherent laser light nor ATR geometry is required, the measurement is performed in a standard fluorescence microplate reader in front face geometry with a xenon flash lamp as excitation source. Methods for the preparation of colloid-coated microplates and fluorescence-enhanced biorecognition assays are presented. Additionally the dependence of the system performance on the structure and properties of the metal colloid coated surface is described. A two-component biorecognition model system shows a detection limit in the subnanomolar range. The ease of colloid-surface preparation and the high sensitivity makes fluorescence enhancement at colloid-coated microplates a valuable tool for studying reaction kinetics and performing rapid single-step immunoassays.  相似文献   

13.
There is widespread interest in capacitance immunosensor systems which directly detect antigen binding to immobilized antibody. Our system comprises an active biolayer of antibodies bound to a silicon--silicon dioxide--silicon nitride (Si-SiO2-Si3N4) surface. As with other groups, our system initially gave poorly reproducible responses on addition of antigen. We mechanically degraded the Si-SiO2-Si3N4 surface, and the responses on addition of transferrin were monitored. The mechanical degradation allowed the affinity reaction to be 'seen' capacitively. Once the system was established, a comparison of capture antibodies was performed to establish the most effective biolayer. Three affinity reactions were examined: (a) 1D2A4, monoclonal antibody (mAb) to human transferrin, as the capture layer; (b) polyclonal goat anti-human transferrin antibody (PcAb) as the capture layer; and (c) 1D2A4 with transferrin (Tf) prebound as the capture layer. There was no response to addition of transferrin where 1D2A4 was the capture layer. Addition of transferrin when the polyclonal antibody was used as the primary layer resulted in a drop in measured capacitance. Addition of goat anti-human transferrin antibody to a device with 1D2A4 plus transferrin as the capture layer also resulted in a measured capacitance decrease. There is a difference in dielectric/blocking effectiveness between the monoclonal and polyclonal antibodies.  相似文献   

14.
Biosorption with algae: a statistical review   总被引:4,自引:0,他引:4  
The state of the art in the field of biosorption using algae as biomass is reviewed. The available data of maximum sorption uptake (qmax) and biomass-metal affinity (b) for Cd2 +, Cu2 +, Ni2 +, Pb2 + and Zn2 + were statistically analyzed using 37 different algae (20 brown algae, 9 red algae and 8 green algae). Metal biosorption research with algae has used mainly brown algae in pursuit of treatments, which improve its sorption uptake. The information available in connection with multimetallic systems is very poor. Values of qmax were close to 1 mmol/g for copper and lead and smaller for the other metals. Metal recovery performance was worse for nickel and zinc, but the number of samples for zinc was very small. All the metals except lead present a similar affinity for brown algae. The difference in the behavior of lead may be due to a different uptake mechanism. Brown algae stand out as very good biosorbents of heavy metals. The best performer for metal biosorption is lead.  相似文献   

15.
Two transport systems for glucose were detected: a high affinity system with a Km of 27 muM, and a low affinity system with a Km of 3.3 mM. The high affinity system transported glucose, 2-deoxy-D-glucose (Km = 26 muM), 3-O-methylglucose (Km = 19 muM), D-glucosamine (Km = 652 muM), D-fructose (Km = 2.3 mM) and L-sorbose (Km = 2.2 mM). All sugars were accumulated against concentration gradients. The high affinity system was strongly or completely inhibited by N-ethylmaleimide, quercetin, 2,4-dinitrophenol and sodium azide. The system had a distinct pH optimum (7.4) and optimum temperature (45 degrees C). The low affinity system transported glucose, 2-deoxy-D-glucose (Km = 7.5 mM), and 3-O-methylglucose (Km = 1.5 mM). Accumulation again occurred against a concentration gradient. The low affinity system was inhibited by N-ethylmaleimide, quercetin and 2,4-dinitrophenol, but not by sodium azide. The rate of uptake by the low affinity system was constant over a wide temperature range (30--50 degrees C) and was not much affected by pH; but as the pH of the medium was altered from 4.5 to 8.9 a co-ordinated increase in affinity for 2-deoxy-D-glucose (from 52.1 mM to 0.3 mM) and decrease in maximum velocity (by a factor of five) occurred. Both uptake systems were present insporelings germinated in media containing sodium acetate as sole carbon source. Only the low affinity system could initially be demonstrated in glucose-grown tissue, although the high affinity system was restored by starvation inglucose-free medium. The half-ti me for restoration of high affinity activity was 3.5 min and the process was unaffected by cycloheximide. Addition of glucose to an acetate-grown culture inactivated the high affinity system with a half-life of 5--7.5 s. Addition of cycloheximide to an acetate-grown culture caused decay of the high affinity system with a half-life of 80 min. Regulation is thus thought to depend on modulation of protein activity rather than synthesis, and the kinetics of glucose, 2-deoxy-D-glucose and 3-O-methylglucose uptake would be consistent with there being a single carrier showing negative co-operativity. Analysis of transport defective mutants revealed defects in both transport systems although the mutants used were alleles of a single gene. It is concluded that this gene (the ftr cistron) is the structural gene for an allosteric molecule which serves both transport systems.  相似文献   

16.
The hexose transport system of undifferentiated L6 rat myoblasts was investigated. 2-Deoxy-D-glucose (2-DOG) and 2-deoxy-2-fluoro-D-glucose (2FG) were used as analogues to investigate the rate-limiting step of hexose uptake into the cell. Virtually all of the 2-DOG or 2FG taken up into the cell was found to be in the phosphorylated form. No significant pool of intracellular free sugar could be detected. This demonstrates that hexose transport, not phosphorylation, is the rate-limiting step. The inhibitory effect of various glucose analogues on 2-DOG and 3-O-methyl-D-glucose (3-OMG) uptake revealed that these two sugars may be taken up into the cell by different carriers. In addition, kinetics analysis of the transport of both sugars also indicates that two hexose transport systems may be present in L6 cells. 2-DOG is transported by high and low affinity transport systems (Km 0.6 mM and 2.9 mM, respectively), whereas 3-OMG is transported by a low affinity system (Km 3.5 mM). Treatment of cells with ionophores or energy uncouplers results in inactivation of the high affinity system, but not the low affinity system.  相似文献   

17.
18.
The active centre of a protease on the surface of tumour cells can be located by its affinity for an active site-directed inhibitor, 9-amino acridine. Cells which have uninhibited proteases, bind 9-amino acridine and fluoresce in resin sections. The leukaemic rat was used as a model system to provide tumour cells in a well defined location. Drugs when coupled to a ligand (directed to the active centre of the protease) compete for this binding site with 9-amino acridine. Thus, competitive inhibition of the tumour cell surface protease provides a rapid technique for demonstrating the delivery of liganded molecules to the surface of tumour cells in vitro.  相似文献   

19.
Random peptide libraries displayed on the surface of filamentous bacteriophage are widely used as tools for the discovery of ligands for biologically relevant macromolecules, including antibodies, enzymes, and cell surface receptors. Phage display results in linkage of an affinity-selectable function (the displayed peptide) to the DNA encoding that function, allowing selection of individual binding clones by iterative cycles of in vitro panning and in vivo amplification. Critical to the success of a panning experiment is the complexity of the library: the greater the diversity of clones within the library, the more likely the library contains sequences that will bind a given target with useful affinity. A method for construction of high-complexity (> or = 10(9) independent clones) random peptide libraries is presented. The key steps are highly efficient binary ligation under conditions where the vector is relatively dilute, with only a modest molar excess of insert, followed by efficient electrotransformation into Escherichia coli. Library design strategies and a protocol for rapid sequence characterization are also presented.  相似文献   

20.
Characterizing protein-protein interactions in a biologically relevant context is important for understanding the mechanisms of signal transduction. Most signal transduction systems are membrane associated and consist of large multiprotein complexes that undergo rapid reorganization—circumstances that present challenges to traditional structure determination methods. To study protein-protein interactions in a biologically relevant complex milieu, we employed a protein footprinting strategy based on isotope-coded affinity tag (ICAT) reagents. ICAT reagents are valuable tools for proteomics. Here, we show their utility in an alternative application—they are ideal for protein footprinting in complex backgrounds because the affinity tag moiety allows for enrichment of alkylated species prior to analysis. We employed a water-soluble ICAT reagent to monitor cysteine accessibility and thereby to identify residues involved in two different protein-protein interactions in the Escherichia coli chemotaxis signaling system. The chemotaxis system is an archetypal transmembrane signaling pathway in which a complex protein superstructure underlies sophisticated sensory performance. The formation of this superstructure depends on the adaptor protein CheW, which mediates a functionally important bridging interaction between transmembrane receptors and histidine kinase. ICAT footprinting was used to map the surfaces of CheW that interact with the large multidomain histidine kinase CheA, as well as with the transmembrane chemoreceptor Tsr in native E. coli membranes. By leveraging the affinity tag, we successfully identified CheW surfaces responsible for CheA-Tsr interaction. The proximity of the CheA and Tsr binding sites on CheW suggests the formation of a composite CheW-Tsr surface for the recruitment of the signaling kinase to the chemoreceptor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号