首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study we investigated the maturation of the surfactant phospholipids and the role of fetal sex on the effect of betamethasone in male and female rabbit fetuses. Betamethasone was administered to the doe (0.2 mg/kg intramuscularly) 42 and 18 h prior to killing. The fetuses were studied at 27 and 28 days from conception. Results from the alveolar lavage show that male fetuses tended to have a lower disaturated phosphatidylcholine/sphingomyelin ratio and lower levels of phosphatidylinositol. Phosphatidylglycerol was detected in trace amounts. This was apparently due to the high extracellular levels of myo-inositol inhibiting the synthesis of surfactant phosphatidylglycerol while increasing the synthesis of surfactant phosphatidylinositol. Betamethasone increased the recovery of disaturated phosphatidylcholine and phosphatidylinositol from the lung lavage in both sexes. As studied in lung slices in vitro, the betamethasone treatment decreased the incorporation of glucose into phospholipids, including into the fatty acid moiety of disaturated phosphatidylcholine, although it had no significant effect on the incorporation of glucose into the glycerol moiety of disaturated phosphatidylcholine. However, the addition of palmitate increased the incorporation of glucose into the glycerol moiety of disaturated phosphatidylcholine. The betamethasone treatment did not increase the incorporation of [1-14C]pyruvate into disaturated phosphatidylcholine. Following betamethasone administration, the availability of fatty acids may become rate-limiting for the synthesis of surfactant phospholipids. Betamethasone increased the activities of phosphatidic acid phosphohydrolase and phosphatidate cytidyltransferase in a fraction of microsomal membranes. The present evidence suggests that the glucocorticoid-induced lung maturation and the maturation of the normal lung are associated with an increase in the activity of the enzymes which are involved in metabolizing phosphatidic acid to neutral and acidic surfactant secretion of the male fetus was not explained by possible sex-related differences in the biosynthesis of the phospholipids.  相似文献   

2.
There is a developmental increase in fatty acid biosynthesis and surfactant production in late-gestation fetal lung and both are accelerated by glucocorticoids. We have examined the distribution of the newly synthesized fatty acids to determine whether they are preferentially incorporated into surfactant. Explants of 18 day fetal rat lung were cultured with and without dexamethasone for 48 h and then with [3H]acetate for 4 h after which labeled fatty acids were measured. Incorporation of radioactivity from acetate was considered a measure of newly synthesized fatty acids. Phospholipids contained 86% of the newly synthesized fatty acids of which approx. 80% were in phosphatidylcholine. Phosphatidylcholine and disaturated phosphatidylcholine contained a much greater percentage of the labeled fatty acids than of the phospholipid mass determined by phosphorus assay while phosphatidylethanolamine, phosphatidylserine and sphingomyelin contained less. Dexamethasone increased the rate of acetate incorporation into total lipid fatty acids but it had little effect on fatty acid distribution, except that it increased the percentages in phosphatidylglycerol and disaturated phosphatidylcholine. The hormone also increased the mass of these two phospholipids to a greater extent than that of the total. These data suggested that the newly synthesized fatty acids are preferentially incorporated into surfactant phospholipids and that this process is accelerated by dexamethasone. However, since phosphatidylcholine and phosphatidylglycerol are not exclusive to surfactant, we compared isolated lamellar bodies with a residual fraction not enriched in surfactant. The rate of acetate incorporation into fatty acids in lamellar body phosphatidylcholine as well as its specific activity (radioactivity per unit phosphorus) were both increased by dexamethasone. Specific activity, however, was no greater in the lamellar bodies than in the residual fraction in both control and dexamethasone-treated cultures. Therefore, there is no preferential incorporation of newly synthesized fatty acids into phospholipids in surfactant as opposed to those in other components of the lung.  相似文献   

3.
The isolated perfused rat lung was used as a model to study the possible hormonal regulation of lipid metabolism in the mammalian adult lung. Experimental diabetes, whether induced by alloxan or streptozotocin, decreased the incorporation of [U-14C]glucose into neutral lipids and phospholipids of both the surfactant fraction and the residual fraction of the lung by 60-80%. Glucose incorporation into phosphatidylcholine and phosphatidylglycerol is decreased in experimental diabetes in both the surfactant and residual fractions to a comparable degree. Glucose incorporation is decreased in both the fatty acid and the glycerophosphocholine moieties of phosphatidylcholine isolated from the surfactant and residual fractions. Insulin treatment of normal animals 30 or 15 min prior to perfusion resulted in an approximate doubling of the incorporation of glucose into the phosphatidylcholine and phosphatidylglycerol isolated from the surfactant and residual fractions of the lung. The incorporation of glucose into palmitic acid isolated from phosphatidylcholine was also shown to increase similarly. The results of these investigations indicate that insulin may play a role in regulating the synthesis of the important lipid components of the mammalian pulmonary surfactant complex.  相似文献   

4.
The labelling of surfactant phosphatidylcholine and disaturated phosphatidylcholine was studied in 19-31-days-old lambs. Following the placement of small bore tracheal catheters, the animals were given radioactively labelled palmitic acid and/or choline by intravenous injection and multiple samples were recovered from the distal airways of each animal via a small catheter. The specific activities of the phosphatidylcholine and/or disaturated phosphatidylcholine were measured in these samples of surfactant. The labelled phospholipids accumulated in the samples of surfactant in a linear fashion; the mean time required to reach maximal specific activities in phosphatidylcholine and saturated phosphatidylcholine with either palmitic acid or choline as precursor was 28 h. Subsequently the specific activities of the labelled phospholipids from the surfactant samples decreased semi-logarithmically. The mean t1/2 for phosphatidylcholine and disaturated phosphatidylcholine labelled with radioactive palmitic acid was 35 h. The saturated phosphatidylcholine labelled with radioactive choline had a t1/2 of 251 h. The results demonstrate that surfactant labelling studies can be done by multiple sampling of single large animals.  相似文献   

5.
The phospholipid content of lung fluid taken from 77 babies during the first day of life was studied. Babies with hyaline membrane disease had low concentrations of the surfactant phospholipids phosphatidylcholine, phosphatidylinositol, and phosphatidylglycerol. The palmitic acid content in phosphatidylcholine was also lower than normal. Surfactant deficiency was not, however, specific for hyaline membrane disease, as similar phospholipid abnormalities were observed in babies with congenital pneumonia and transient tachypnoea of the newborn. These findings have important clinical implications. They are relevant to research into surfactant substitution and cast doubts on the value of the antenatal phospholipid lung profile of amniotic fluid in predicting the risk of hyaline membrane disease.  相似文献   

6.
The labeling with radiolabeled acetate and palmitate of lung, microsomes isolated from lung, and surfactant phospholipids from adult, 3-day-old, and newborn rabbits was studied. The half-life of phosphatidylcholine from lung and microsomal fractions was shorter when labeled with acetate than when labeled with palmitate. Half-time values similarly measured for phosphatidylglycerol, phosphatidylinositol or phosphatidylethanolamine were not different for the two labels. Acetate and palmitate-labeled phospholipids appeared in the surfactant fraction with similar accumulation curves. The relative specific activities of acetate-labeled phosphatidylcholine from adult, 3-day-old, and newborn rabbits, respectively, were 1.30, 1.86 and 1.77 times those measured for those measured for the palmitate label. Surfactant phosphatidylinositol and phosphatidylethanolamine from 3-day-old animals similarly were labeled preferentially with acetate. However, phosphatidylglycerol purified from the surfactant fraction contained equivalent relative amounts of the acetate and palmitate labels in 3-day-old and adult rabbits. These results suggest that the type II pneumocyte may use acetate preferentially for the synthesis of palmitic acid which then is incorporated into surfactant phospholipids.  相似文献   

7.
Sex differences in amniotic fluid and lung lavage surfactant have been found. Although these studies suggest that augmented fetal surfactant synthesis occurs earlier in the female fetus, there is little direct evidence for a sex difference in fetal surfactant synthesis. We studied the synthesis of surfactant by evaluating the appearance of labelled phospholipids in lamellar bodies recovered from sex-specific organ culture of fetal rabbit lungs. Furthermore, we studied the ability of dexamethasone to stimulate surfactant synthesis in male and female fetal lungs. Organ culture was begun on day 21 of gestation. After 5 days the incorporation of [1,3-14C]glycerol into phosphatidylcholine (PC), disaturated phosphatidylcholine, phosphatidylinositol (PI), and phosphatidylglycerol was studied. Female lungs in organ culture synthesized more disaturated PC per milligram protein than male lungs. In the presence of dexamethasone (10(-8) M) and dihydrotestosterone (10(-8) M) an increased synthesis was noted in the female cultures of PC (270%), disaturated PC (234%), PI (281%), and phosphatidylglycerol (754%). No significant increase in the synthesis of PC or disaturated PC was observed in the male cultures. However in the male cultures smaller increases in the synthesis of PI (193%) and of phosphatidylglycerol (360%) were observed. Overall, dexamethasone stimulated synthesis in females but not in males such that significant differences in the synthesis of all phospholipids were found in the presence of 10(-8) M dexamethasone. These studies show that the synthesis of surfactant in the fetal lung is sexually dimorphic, as is the ability of dexamethasone to regulate synthesis. An understanding of the mechanism which causes these differences may provide important insight into the control of the developmental clock which regulates the orderly progression of development.  相似文献   

8.
K Yoshida  V Mohsenin 《Life sciences》1991,49(18):1359-1365
Unsaturated long chain phosphatidylcholines such as phosphatidylcholine dioleoyl and phosphatidylcholine dilinoleoyl in micromolar concentrations inhibited the superoxide production in neutrophils stimulated by the activators of protein kinase C, phorbol 12-myristate 13-acetate and 1,2-dioctanoyl-sn- glycerol. In contrast, the superoxide production induced by surface receptor agonist, formyl-methionyl-leucyl-phenylalanine, was unaffected by the phospholipids. These data suggest that surfactant phosphatidylcholines may have a modulatory role on neutrophil oxidative burst in the lung during inflammation where there is a preponderance of unsaturated phosphatidylcholines.  相似文献   

9.
Persistent mild hyperketonemia is a common finding in neonatal rats and human newborns, but the physiological significance of elevated plasma ketone concentrations remains poorly understood. Recent advances in ketone metabolism clearly indicate that these compounds serve as an indispensable source of energy for extrahepatic tissues, especially the brain and lung of developing rats. Another important function of ketone bodies is to provide acetoacetyl-CoA and acetyl-CoA for synthesis of cholesterol, fatty acids, and complex lipids. During the early postnatal period, acetoacetate (AcAc) and beta-hydroxybutyrate are preferred over glucose as substrates for synthesis of phospholipids and sphingolipids in accord with requirements for brain growth and myelination. Thus, during the first 2 wk of postnatal development, when the accumulation of cholesterol and phospholipids accelerates, the proportion of ketone bodies incorporated into these lipids increases. On the other hand, an increased proportion of ketone bodies is utilized for cerebroside synthesis during the period of active myelination. In the lung, AcAc serves better than glucose as a precursor for the synthesis of lung phospholipids. The synthesized lipids, particularly dipalmityl phosphatidylcholine, are incorporated into surfactant, and thus have a potential role in supplying adequate surfactant lipids to maintain lung function during the early days of life. Our studies further demonstrate that ketone bodies and glucose could play complementary roles in the synthesis of lung lipids by providing fatty acid and glycerol moieties of phospholipids, respectively. The preferential selection of AcAc for lipid synthesis in brain, as well as lung, stems in part from the active cytoplasmic pathway for generation of acetyl-CoA and acetoacetyl-CoA from the ketone via the actions of cytoplasmic acetoacetyl-CoA synthetase and thiolase.  相似文献   

10.
The effects of intratracheally instilled silica (10 mg/rat) on the biosynthesis of surfactant phospholipids was investigated in the lungs of rats. The sizes of the intracellular and extracellular pools of surfactant phospholipids were measured 7, 14 and 28 days after silica exposure. The ability of lung slices to incorporate [14C]choline and [3H]palmitate into surfactant phosphatidylcholine (PC) and disaturated phosphatidylcholine (DSPC) was also investigated. Both intra- and extra-cellular pools of surfactant phospholipids were increased by silica treatment. The intracellular pool increased linearly over the 28-day time period, ultimately reaching a size 62-fold greater than controls. The extracellular pool also increased, but showed a pattern different from that of the intracellular pool. The extracellular pool increased non-linearly up to 14 days, and then declined. At its maximum, the extracellular pool was increased 16-fold over the control. The ability of lung slices to incorporate phospholipid precursors into surfactant-associated PC and DSPC was elevated at all time periods. The rate of incorporation of [14C]choline into surfactant PC and DSPC was maximal at 14 days and was nearly 3-fold greater than the rate in controls. The rate of incorporation of [3H]palmitate was also maximal at 14 days, approx. 5-fold above controls for PC and 3-fold for DSPC. At this same time point, the microsomal activity of cholinephosphate cytidylyltransferase was increased 4.5-fold above controls, but cytosolic activity was not significantly affected by silica treatment. These data indicate that biosynthesis of surfactant PC is elevated after treatment of lungs with silica and that this increased biosynthesis probably underlies the expansion of the intra- and extra-cellular pools of surfactant phospholipids.  相似文献   

11.
Acyl transferase activities in dog lung microsomes   总被引:3,自引:0,他引:3  
Mammalian lung has a high concentration of dipalmitoyl phosphatidylcholine and other phospholipids in which both fatty acid ester chains are saturated, as opposed to the usual asymmetric phospholipid (one saturated fatty acid and one unsaturated fatty acid). The acyl transferase system in dog lung microsomes was studied by determining the reactivities of various acyl CoA derivatives with 1-lyso-2-acyl- and 1-acyl-2-lyso-phosphatidylcholine. The 16:0 derivative had equal reactivity for both the 1- and 2-lyso positions. The 18:0 derivative also exhibited marked reactivity toward both positions, although the specific activity of the enzyme when palmitoyl CoA was used was approximately twice that compared to when stearoyl CoA was used. The 16:1 derivative showed approximately the same reactivity toward the 1-lyso position as did 16:0 but both 16:1 and 18:1 were more active with the 2-lyso position. These results suggest that acyl transferases may be important in the lung to insure that sufficient amounts of dipalmitoyl phosphatidylcholine will always be present for use in pulmonary surfactant biosynthesis. It is also conceivable that the acyl transferase system described acts on 1- and 2-lyso-palmitoyl phosphatidylcholine (produced by phospholipase hydrolysis of dipalmitoyl phosphatidylcholine) in order to produce phosphatidylcholine species needed for cellular purposes other than surfactant function.  相似文献   

12.
1. Intoxication of rats with carbicron (O-([2-butenoic acid)-N,N-dimethylamide-3-yl]-O,O-dimethylphosphate) induced a reduction of the total phospholipids and phosphatidylcholine in lung alveolar surfactant.2. The lipid transfer protein activity was inhibited due to carbicron treatment.3. No alterations were observed in phospholipase A2 activity in the alveolar surfactant of intoxicated animals. The structural order parameter (SDPH) of bilayer liposomes, prepared from surfactant phospholipids of carbicron-treated rats also remained unchanged.  相似文献   

13.
The role of the lamellar body of the type II pneumocyte in the synthesis and storage of the phospholipids of the surfactant lipoprotein lining the alveolar surface has been investigated. Electron microscopy has been used to establish the purity of the isolated lamellar body, microsomal, and mitochondrial fractions. Additional proof of lamellar body purity was obtained by enzyme marker studies. The phospholipid:protein ratio of each of the above fractions was determined as well as that of surfactant lipoprotein isolated from rat lung. Lamellar body phospholipid:protein ratio was highest, 3.7 μmol of lipid phosphorus/mg of lung protein. The phospholipid composition of the lamellar body fraction was found to be similar to that of the isolated surfactant lipoprotein. Lamellar body phosphatidylcholine and phosphatidylglycerol each contained over 90% saturated fatty acids. The lamellar body fraction was found to possess significant acyltransferase activity between [1-14C]palmitoyl-CoA and phosphatidylcholine. This activity was somewhat higher than in the microsomal fraction and much greater than in the mitochondrial fraction. The activity in all fractions was stimulated by Ca2+ and Mg2+. [1-14C]oleoyl-CoA did not serve as an effective acyl donor. When 1-palmitoyl-2-lysophosphatidylcholine was used as the acceptor molecule and [1-14C]palmitoyl-CoA the donor, acyltransferase activity was increased over that found with phosphatidylcholine as donor in all fractions. The microsomal fraction had the greatest activity and the lamellar body fraction the least. The data obtained support the hypothesis that the lamellar body is involved in the synthesis and storage of the phospholipids of the surfactant lipoprotein complex.  相似文献   

14.
In this work, we investigated surface active properties and biochemical composition of pulmonary surfactant under emotional stress in condition of neuropeptides pool exhaustion in capsaicin-sensitive afferents of the vagus nerve. It is shown that stress is accompanied by decrease of lung surface active properties and increase of total phospholipids content as result of phosphatidylcholine and lysophospholipid fraction rise. After capsaicin application on the cervical part of the right vagus nerve stress-induced alterations in ipsilateral lung become less considerable, whereas all spectra of changes in contralateral lung is remained.  相似文献   

15.
Phospholipids in the lung fractions, i.e. alveolar free cells, extracellular pulmonary surfactant, intracellular pulmonary surfactant (lamellar bodies) and microsomal fractions, of rats were examined 28 days after intratracheal injection of silica (40 mg/kg). Significant accumulations of phospholipids were observed in the extracellular- and intracellular-surfactant fractions of rats exposed to silica. The prominent phospholipid accumulated was phosphatidylcholine (PC), consisting mainly of the dipalmitoyl species. However, a compositional change in acidic phospholipids of surfactant fractions was produced by the silica treatment. The percentage of phosphatidylglycerol (PG) was significantly decreased; in contrast, that of phosphatidylinositol (PI) was increased. Thus the ratio PG/PI in the surfactant fractions was markedly decreased in response to silica. This compositional change in both acidic phospholipids occurred even in the early stages, i.e. before appreciable accumulations of alveolar phospholipids were noticed. The molecular-species profiles of both acidic phospholipids in the surfactant fractions were distinctly different from each other. The dipalmitoyl species accounted for more than 30% of PG and less than 6% of PI, respectively. These species patterns of PG and PI were similar in control and silica-treated rats. These findings suggest two possibilities that (1) PG and PI destined for pulmonary surfactant are synthesized from each specific CDP-diacylglycerol (DG) pool having different molecular species in the lung, or (2) individual enzymes responsible for synthesis of surfactant PG and PI have substrate specificities for molecular species of CDP-DG, thereby producing PG and PI having different molecular species in surfactant compartments.  相似文献   

16.
Studies of the metabolism and distribution of lung surfactant are aided by use of radiolabeled surfactant or surfactant components. These studies have often made use of [3H]- or [14C]phosphatidylcholine. Analysis of the lung content of surfactant containing these beta-emitting labels usually requires tissue digestion, use of scintillation fluids, and significant correction for quenching of photon production. Because use of a gamma-emitting isotope would obviate these requirements, we have investigated the use of 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID), a lipophilic photoactivatable compound, to radiolabel pulmonary surfactant. Our results indicate that, during photoactivation, products of [125I]TID are produced that result in radiolabeling of both the lipid and protein components of extracted porcine surfactant. Separation of radiolabeled surfactant from hydrophobic nonlabelling photolysis products was accomplished by gel chromatography. Exposure of surfactant (34 mumol/ml) to [125I]TID under labeling conditions resulted in incorporation of 45.3 +/- 5.1% of the radiolabel. Incorporation of radiolabel in the various phospholipids of lung surfactant was approximately equivalent. Lipophilic surfactant apoproteins were also radiolabeled. Finally, both in vitro and in vivo testing of radiolabeled surfactant (0.1 microCi/mg) revealed full retention of surface tension lowering ability.  相似文献   

17.
Pulmonary surfactant is a complex of phospholipids and proteins lining the alveolar walls of the lung. It reduces surface tension in the alveoli, and is critical for normal respiration. Pulmonary surfactant phospholipids consist mainly of phosphatidylcholine (PC) and phosphatidylglycerol (PG). Although the phospholipid composition of pulmonary surfactant is well known, the enzyme(s) involved in its biosynthesis have remained obscure. We previously reported the cloning of murine lysophosphatidylcholine acyltransferase 1 (mLPCAT1) as a potential biosynthetic enzyme of pulmonary surfactant phospholipids. mLPCAT1 exhibits lysophosphatidylcholine acyltransferase (LPCAT) and lysophosphatidylglycerol acyltransferase (LPGAT) activities, generating PC and PG, respectively. However, the enzymatic activity of human LPCAT1 (hLPCAT1) remains controversial. We report here that hLPCAT1 possesses LPCAT and LPGAT activities. The activity of hLPCAT1 was inhibited by N-ethylmaleimide, indicating the importance of some cysteine residue(s) for the catalysis. We found a conserved cysteine (Cys211) in hLPCAT1 that is crucial for its activity. Evolutionary analyses of the close homologs of LPCAT1 suggest that it appeared before the evolution of teleosts and indicate that LPCAT1 may have evolved along with the lung to facilitate respiration. hLPCAT1 mRNA is highly expressed in the human lung. We propose that hLPCAT1 is the biosynthetic enzyme of pulmonary surfactant phospholipids.  相似文献   

18.
Lung development is associated with increases in specific phospholipids and proteins that function as critical pulmonary surfactant components. Attempts to characterize the pattern of surfactant development in fetal rat lungs have been hampered by the lack of a micromethod which will permit quantitative isolation of surface active components from small tissue specimens. As part of studies designed to elucidate the metabolic regulation of lung development in the rat, we developed sucrose density gradient centrifugation procedures to separate pulmonary phospholipids and proteins into a presumed surfactant (S) fraction and a residual (R) fraction. Electron microscopy of S pellets from mature fetuses identified predominant lamellar bodies and minimal contamination; incubation with 5 mM CaCl2 induced the appearance of tubular myelin figures, implying functional potential. This was confirmed by demonstrating low surface tension (less than 1 dyn/cm) in S, but not R, fractions at term gestation (21.5 days) and in 1-day-old neonatal lung isolates, based on dynamic measurements using the oscillating bubble technique. Surface activity was also high in the S pellets from fetuses at 20.5 days of gestation; however, at 19.5 days, minimum surface tension values of at least 19 dyne/cm were seen. These results correlated directly with biochemical analyses which indicated striking increases in three surfactant-associated proteins (SP-A, SP-B, and SP-C) after 19.5 days of gestation; a finding in agreement with previously reported data on the developmental increase of disaturated phosphatidylcholine in fetal rat lung. We conclude that isolation of S fraction components is valuable for demonstrating maturation of the fetal rat lung and may provide a useful tool for the study of regulatory mechanisms influencing surfactant production and function.  相似文献   

19.
An investigation of the effect of change of total CO(2) concentration from 7 to 43 mM at pH 7.35 in the medium perfusing isolated rat lungs on [U-(14)C]glucose incorporation into lung phospholipids has been carried out. The incorporation of [U-(14)C]glucose into phosphatidylcholine and phosphatidylglycerol of the surfactant fraction and of the remaining lung tissue (residual fraction) was observed. Increased CO(2) concentration increased [U-(14)C]glucose incorporation into phosphatidylcholine of the surfactant fraction and residual fraction by 43 and 50%, respectively, during a 2 hr perfusion. Likewise, incorporation of [U-(14)C]glucose into phosphatidylglycerol was increased 22 and 34% into the surfactant and residual fractions, respectively. The percentage of [U-(14)C]glucose incorporated into the fatty acid moieties of phosphatidylcholine of both fractions increased as a result of increased CO(2) concentration. The increase in the incorporation of [U-(14)C]glucose into the fatty acid moieties of phosphatidylcholine was confirmed by an average increase of 56 and 77% in the specific activity of palmitic acid isolated from phosphatidylcholine of the surfactant and residual fraction, respectively, as a result of increased CO(2) concentration. The results suggest that alteration in extracellular CO(2) concentration affects the de novo synthesis from glucose of phosphatidylcholine and phosphatidylglycerol of the surfactant-lipoprotein fraction of lung.  相似文献   

20.
1. The effect of 100 mg/kg of semicarbazide on phosphatidylcholine, phosphatidylethanolamine, sphingomyeline, phosphatidylserine and lysophosphatidylcholine of the pulmonary surfactant was studied in offspring of treated rats on the 10th day of gestation. 2. The relative percentages of phosphatidylcholine were smaller in the offspring of treated rats than in controls, but the opposite was observed with the other phospholipids. 3. Significant statistical differences at almost all ages studied were observed in phosphatidylcholine and phosphatidylethanolamine. 4. The ratio of phosphatidylcholine to sphingomyeline, an index of lung maturity, was smaller in the offspring of treated rats, with statistically significant differences just before birth and on the first day of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号