首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Most secretory proteins are synthesized as precursors with an amino-terminal signal peptide. Genetic identification of proteins essential for signal peptide dependent translocation to the Escherichia coli periplasm has led to the biochemical dissection of the secretion pathway. Additional mechanisms exist in Gram-negative bacteria for protein secretion to the extracellular environment.  相似文献   

2.
Applied Microbiology and Biotechnology - Bacteriocins are ribosomally synthesised small antimicrobial peptides produced from a wide range of bacteria, and also rich sources for potential...  相似文献   

3.
Bacteriocins of gram-positive bacteria.   总被引:45,自引:0,他引:45       下载免费PDF全文
  相似文献   

4.
Lipoproteins of gram-positive bacteria.   总被引:38,自引:13,他引:25       下载免费PDF全文
  相似文献   

5.
Bacteriocins of gram-positive bacteria.   总被引:21,自引:0,他引:21       下载免费PDF全文
In recent years, a group of antibacterial proteins produced by gram-positive bacteria have attracted great interest in their potential use as food preservatives and as antibacterial agents to combat certain infections due to gram-positive pathogenic bacteria. They are ribosomally synthesized peptides of 30 to less than 60 amino acids, with a narrow to wide antibacterial spectrum against gram-positive bacteria; the antibacterial property is heat stable, and a producer strain displays a degree of specific self-protection against its own antibacterial peptide. In many respects, these proteins are quite different from the colicins and other bacteriocins produced by gram-negative bacteria, yet customarily they also are grouped as bacteriocins. Although a large number of these bacteriocins (or bacteriocin-like inhibitory substances) have been reported, only a few have been studied in detail for their mode of action, amino acid sequence, genetic characteristics, and biosynthesis mechanisms. Nevertheless, in general, they appear to be translated as inactive prepeptides containing an N-terminal leader sequence and a C-terminal propeptide component. During posttranslational modifications, the leader peptide is removed. In addition, depending on the particular type, some amino acids in the propeptide components may undergo either dehydration and thioether ring formation to produce lanthionine and beta-methyl lanthionine (as in lantibiotics) or thio ester ring formation to form cystine (as in thiolbiotics). Some of these steps, as well as the translocation of the molecules through the cytoplasmic membrane and producer self-protection against the homologous bacteriocin, are mediated through specific proteins (enzymes). Limited genetic studies have shown that the structural gene for such a bacteriocin and the genes encoding proteins associated with immunity, translocation, and processing are present in a cluster in either a plasmid, the chromosome, or a transposon. Following posttranslational modification and depending on the pH, the molecules may either be released into the environment or remain bound to the cell wall. The antibacterial action against a sensitive cell of a gram-positive strain is produced principally by destabilization of membrane functions. Under certain conditions, gram-negative bacterial cells can also be sensitive to some of these molecules. By application of site-specific mutagenesis, bacteriocin variants which may differ in their antimicrobial spectrum and physicochemical characteristics can be produced. Research activity in this field has grown remarkably but sometimes with an undisciplined regard for conformity in the definition, naming, and categorization of these molecules and their genetic effectors. Some suggestions for improved standardization of nomenclature are offered.  相似文献   

6.
Conjugative transfer of bacterial plasmids is the most efficient way of horizontal gene spread, and it is therefore considered one of the major reasons for the increase in the number of bacteria exhibiting multiple-antibiotic resistance. Thus, conjugation and spread of antibiotic resistance represents a severe problem in antibiotic treatment, especially of immunosuppressed patients and in intensive care units. While conjugation in gram-negative bacteria has been studied in great detail over the last decades, the transfer mechanisms of antibiotic resistance plasmids in gram-positive bacteria remained obscure. In the last few years, the entire nucleotide sequences of several large conjugative plasmids from gram-positive bacteria have been determined. Sequence analyses and data bank comparisons of their putative transfer (tra) regions have revealed significant similarities to tra regions of plasmids from gram-negative bacteria with regard to the respective DNA relaxases and their targets, the origins of transfer (oriT), and putative nucleoside triphosphatases NTP-ases with homologies to type IV secretion systems. In contrast, a single gene encoding a septal DNA translocator protein is involved in plasmid transfer between micelle-forming streptomycetes. Based on these clues, we propose the existence of two fundamentally different plasmid-mediated conjugative mechanisms in gram-positive microorganisms, namely, the mechanism taking place in unicellular gram-positive bacteria, which is functionally similar to that in gram-negative bacteria, and a second type that occurs in multicellular gram-positive bacteria, which seems to be characterized by double-stranded DNA transfer.  相似文献   

7.
Presence of squalene in gram-positive bacteria.   总被引:3,自引:1,他引:2       下载免费PDF全文
The presence of the isoprenoid squalene, synthesized de novo, was demonstrated in 64 out of 73 strains of gram-positive bacteria by thin-layer chromatography. This observation was confirmed by gas-liquid chromatography, chemical reactivity, incorporation of radiolabeled precursor, and by gas chromatography mass spectroscopy of thin-layer chromatography-recovered material.  相似文献   

8.
Nocardia globerula CL1 produced a glutathione-independent maleylacetoacetate isomerase after growth on L-tyrosine. Partial purification of this isomerase demonstrated its independence of low-molecular-weight cofactors such as glutathione. Similar glutathione-independent maleylacetoacetate isomerases were present in three other gram-positive bacteria grown on tyrosine.  相似文献   

9.
Progress in the genetic and biochemical dissection of the hrp-encoded type III secretion pathway has revealed new mechanisms by which phytopathogenic bacteria infect plants. The suggestion that bacterial gene products are 'delivered to' and 'perceived by' plants cells has fundamentally changed the way in which plant-bacterial interactions are now being viewed.  相似文献   

10.
Uptake of glycerol and other carbohydrates by Staphylococcus aureus cells is sensitive to regulation by sugar substrates of the phosphoenolpyruvate:sugar phosphotransferase system. Inhibition requires an intact phosphotransferase system. In contrast to results obtained with Gram-negative bacteria, it appears that intracellular sugar phosphate is the inhibiting species.  相似文献   

11.
The cell wall peptidoglycan of Gram-positive bacteria functions as a surface organelle for the transport and assembly of proteins that interact with the environment, in particular, the tissues of an infected host. Signal peptide-bearing precursor proteins are secreted across the plasma membrane of Gram-positive bacteria. Some precursors carry C-terminal sorting signals with unique sequence motifs that are cleaved by sortase enzymes and linked to the cell wall peptidoglycan of vegetative forms or spores. The sorting signals of pilin precursors are cleaved by pilus-specific sortases, which generate covalent bonds between proteins leading to the assembly of fimbrial structures. Other precursors harbour surface (S)-layer homology domains (SLH), which fold into a three-pronged spindle structure and bind secondary cell wall polysaccharides, thereby associating with the surface of specific Gram-positive microbes. Type VII secretion is a non-canonical secretion pathway for WXG100 family proteins in mycobacteria. Gram-positive bacteria also secrete WXG100 proteins and carry unique genes that either contribute to discrete steps in secretion or represent distinctive substrates for protein transport reactions.  相似文献   

12.
New thermosensitive plasmid for gram-positive bacteria.   总被引:22,自引:7,他引:22       下载免费PDF全文
E Maguin  P Duwat  T Hege  D Ehrlich    A Gruss 《Journal of bacteriology》1992,174(17):5633-5638
We isolated a replication-thermosensitive mutant of the broad-host-range replicon pWV01. The mutant pVE6002 is fully thermosensitive above 35 degrees C in both gram-negative and gram-positive bacteria. Four clustered mutations were identified in the gene encoding the replication protein of pVE6002. The thermosensitive derivative of the related plasmid pE194 carries a mutation in the analogous region but not in the same position. Derivatives of the thermosensitive plasmid convenient for cloning purposes have been constructed. The low shut-off temperature of pVE6002 makes it a useful suicide vector for bacteria which are limited in their own temperature growth range. Using pVE6002 as the delivery vector for a transposon Tn10 derivative in Bacillus subtilis, we observed transposition frequencies of about 1%.  相似文献   

13.
Atypical lipoteichoic acids of gram-positive bacteria.   总被引:6,自引:4,他引:2       下载免费PDF全文
  相似文献   

14.
In contrast to other organisms, gram-negative bacteria have evolved numerous systems for protein export. Eight types are known that mediate export across or insertion into the cytoplasmic membrane, while eight specifically mediate export across or insertion into the outer membrane. Three of the former secretory pathway (SP) systems, type I SP (ISP, ABC), IIISP (Fla/Path) and IVSP (Conj/Vir), can export proteins across both membranes in a single energy-coupled step. A fourth generalized mechanism for exporting proteins across the two-membrane envelope in two distinct steps (which we here refer to as type II secretory pathways [IISP]) utilizes either the general secretory pathway (GSP or Sec) or the twin-arginine targeting translocase for translocation across the inner membrane, and either the main terminal branch or one of several protein-specific export systems for translocation across the outer membrane. We here survey the various well-characterized protein translocation systems found in living organisms and then focus on the systems present in gram-negative bacteria. Comparisons between these systems suggest specific biogenic, mechanistic and evolutionary similarities as well as major differences.  相似文献   

15.
16.
In lactococci, the study of chromosomal genes and their regulation is limited by the lack of an efficient transposon mutagenesis system. We associated the insertion sequence ISS1 with the thermosensitive replicon pG+ host to generate a mutagenic tool that can be used even in poorly transformable strains. ISS1 transposition is random in different lactococcal strains as well as in Enterococcus faecalis and Streptococcus thermophilus. High-frequency random insertion (of about 1%) obtained with this system in Lactococcus lactis allows efficient mutagenesis, with typically one insertion per cell. After ISS1 replicative transposition, the chromosome contains duplicated ISS1 sequences flanking pG+ host. This structure allows cloning of the interrupted gene. In addition, efficient excision of the plasmid leaves a single ISS1 copy at the mutated site, thus generating a stable mutant strain with no foreign markers. Mutants obtained by this transposition system are food grade and can thus be used in fermentation processes.  相似文献   

17.
The xcp genes are required for protein secretion by Pseudomonas aeruginosa. They are involved in the second step of the process, i.e. the translocation across the outer membrane, after the exoproteins have reached the periplasm in a signal peptide dependent fashion. The nucleotide sequence of a 2.5 kb DNA fragment containing xcp genes showed at least two complete open reading frames, potentially encoding proteins with molecular weights of 41 and 19 kd. Products with these apparent molecular weights were identified after expression of the DNA fragment in vitro and in vivo. Subcloning and complementation experiments showed that both proteins are required for secretion. The two products are located in the inner membrane and share highly significant homologies with the PulL and PulM proteins which are required for the specific secretion of pullulanase in Klebsiella pneumoniae. These homologies reveal the existence of a common mechanism for protein secretion in Pseudomonas aeruginosa and Klebsiella pneumoniae.  相似文献   

18.
19.
Heterogenetic antigens of gram-positive bacteria   总被引:5,自引:0,他引:5  
Chorpenning, Frank W. (The Ohio State University, Columbus), and Matthew C. Dodd. Heterogenetic antigens of gram-positive bacteria. J. Bacteriol. 91:1440-1445. 1966.-Soluble antigens obtained by various methods from gram-positive bacteria were used to modify erythrocytes whose hemagglutinating reactions with immune rabbit sera and normal human sera were then studied. Antigens from all gram-positive organisms studied except corynbacteria altered red cells, causing them to react with specific bacterial antisera and with normal human sera; however, cross-absorption and inhibition tests indicated that at least three different specificites were involved. One of these antigens seemed to be similar to Rantz's streptococcal NSS, which is shared with Staphylococcus aureus and Bacillus spp., and is therefore heterogenetic. Another was found in streptococci but was apparently not present in S. aureus and Bacillus spp. A third antigen, also heterogenetic, appeared to be shared by several species of Bacillus and by S. aureus, but not by streptococci or any gram-negative bacteria. The third antigen was heat-stable at pH 8.0, and appeared to be essentially polysaccharide in nature. Normal human sera varied in their content of antibodies which reacted with erythrocytes modified by extracts from gram-positive bacteria. Whereas some sera reacted very broadly with red cells modified by extracts of practically any gram-positive organism, other sera agglutinated only cells which had been modified by streptococcal antigen.  相似文献   

20.
Madden JC  Ruiz N  Caparon M 《Cell》2001,104(1):143-152
Type III secretion for injection of effector proteins into host cells has not been described for Gram-positive bacteria despite their importance in disease. Here, we describe an injection pathway for the Gram-positive pathogen Streptococcus pyogenes that utilizes streptolysin O (SLO), a cholesterol-dependent cytolysin. The data support a model in which an effector is translocated through the SLO pore by a polarized process. The effector, SPN (S. pyogenes NAD-glycohydrolase), is capable of producing the potent second messenger cyclic ADP-ribose, and SLO and SPN act synergistically to trigger cytotoxicity. These data provide a novel paradigm for the function of the cholesterol-dependent cytolysin family and its wide distribution suggests that cytolysin-mediated translocation (CMT) may be the equivalent of type III secretion for Gram-positive pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号