首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caffeine which is present in soft drinks has been shown to increase alertness and allays drowsiness and fatigue. The aim of this study is to investigate whether caffeine could produce a long-term effect on the synaptic transmission using extracellular recording technique in the hippocampal slices. Bath application of caffeine (100 microM) reversibly increased the slope of field excitatory postsynaptic potential (fEPSP). Forskolin (25 microM) by its own did not affect the fEPSP significantly. However, in the presence of caffeine, forskolin induced a long-term potentiation (LTP) of fEPSP. Enprofylline which has been shown to exhibit some actions like caffeine but with a low adenosine antagonistic potency did not affect the normal synaptic transmission or the effect of forskolin at a lower concentration (10 microM). However, when the concentrations were increased to 20 and 50 microM, enprofylline significantly enhanced the fEPSP slope and promoted forskolin-induced LTP. The parallel increase of fEPSP and promotion of LTP observed with enprofylline suggests that adenosine A1 antagonism is the primary mechanism behind caffeine's effect. This hypothesis was further strengthened by the finding that promotion of forskolin-induced LTP was mimicked by the non-xanthine adenosine antagonist 9-chloro-2-(furyl)[1,2,4]triazolo [1,5-c]quinazolin-5-amine (CGS 15943). The promotion of forskolin-induced LTP provides a cellular basis behind caffeine's increase in capacity for sustained intellectual performance.  相似文献   

2.
Cannabinoids exert powerful action on various forms of synaptic plasticity. These retrograde messengers modulate GABA and glutamate release from presynaptic terminals by acting on presynaptic CB1 receptors. In particular, they inhibit long-term potentiation (LTP) elicited by electrical stimulation of excitatory pathways in rat hippocampus. Recently, LTP of the field excitatory postsynaptic potential (fEPSP) induced by exogenous ATP has been thoroughly explored. The present study demonstrates that cannabinoids inhibit ATP-induced LTP in hippocampal slices of rat. Administration of 10 μM of ATP led to strong inhibition of fEPSPs in CA1/CA3 hippocampal synapses. Within 40 min after ATP removal from bath solution, robust LTP was observed (fEPSP amplitude comprised 130.1 ± 3.8% of control, n = 10). This LTP never appeared when ATP was applied in addition to cannabinoid receptor agonist WIN55,212-2 (100 nM). Selective CB1 receptor antagonist, AM251 (500 nM), completely abolished this effect of WIN55,212-2. Our data indicate that like canonical LTP elicited by electrical stimulation, ATP-induced LTP is under control of CB1 receptors.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-012-9296-5) contains supplementary material, which is available to authorized users.  相似文献   

3.
Kainate receptors are ionotropic glutamate receptors located postsynaptically, mediating frequency-dependent transmission, and presynaptically, modulating transmitter release. In contrast to the excitatory postsynaptic kainate receptors, presynaptic kainate receptor can also be inhibitory and their effects may involve a metabotropic action. Arachidonic acid (AA) modulates most ionotropic receptors, in particular postsynaptic kainate receptor-mediated currents. To further explore differences between pre- and postsynaptic kainate receptors, we tested if presynaptic kainate receptors are affected by AA. Kainate (0.3-3 microM) and the kainate receptor agonist, domoate (60-300 nM), inhibited by 19-54% the field excitatory postsynaptic potential (fEPSP) slope in rat CA1 hippocampus, and increased by 12-32% paired-pulse facilitation (PPF). AA (10 microM) attenuated by 37-72% and by 62-66% the domoate (60-300 nM)-induced fEPSP inhibition and paired-pulse facilitation increase, respectively. This inhibition by AA was unaffected by cyclo- and lipo-oxygenase inhibitors, indomethacin (20 microM) and nordihydroguaiaretic acid (NDGA, 50 microM) or by the free radical scavenger, N-acetyl-L-cysteine (0.5 mM). The K+ (20 mM)-evoked release of [3H]glutamate from superfused hippocampal synaptosomes was inhibited by 18-39% by domoate (1-10 microM), an effect attenuated by 35-63% by AA (10 microM). Finally, the KD (40-55 nM) of the kainate receptor agonist [3H]-(2S,4R)-4-methylglutamate ([3H]MGA) (0.3-120 nM) binding to hippocampal synaptosomal membranes was increased by 151-329% by AA (1-10 microM). These results indicate that AA directly inhibits presynaptic kainate receptor controlling glutamate release in the CA1 area of the rat hippocampus.  相似文献   

4.
The effects and the sites of action of 5-Hydroxytryptamine (5HT) were examined in transverse muscular strips of pigeon oesophagus. 5-Hydroxytryptamine (0.001 to 30 microM) induced a concentration-dependent excitatory effect on the EMG activity. This response was mainly characterized by an increase in burst frequency. The maximum 5-HT-induced excitatory effect was not altered by methysergide (10 microM), but was abolished by tetrodotoxin (3 microM). Excitatory response to 5-HT was partly opposed by atropine (1 microM), potentiated by 5-methoxy-N, N-dimethyltryptamine (1 microM) and was not altered by guanethidine (10 microM). These results indicate that 5-HT activates the pigeon oesophagus indirectly via neural elements and has no direct action on the smooth muscle cells. 5-HT is thought to stimulate three different intramural neuron types: excitatory cholinergic neurons, excitatory non-cholinergic neurons and inhibitory non-cholinergic non-adrenergic neurons. The action on these different neurons seems to be mediated via different receptors.  相似文献   

5.
目的:探讨双电极绑定条件下记录大鼠在体海马CA1区长时程增强的可行性。方法:雄性Wistar大鼠乌拉坦麻醉;脑立体定位仪上埋置脑室导管;安装自制的刺激/记录绑定电极;引导基础性场兴奋性突触后电位(fEP-SP);强直刺激诱导长时程增强(LTP)。结果:绑定后的刺激和记录电极能可靠地引起海马CA1区fEPSP,fEPSP的出现率几乎100%;基础性fEPSP记录可保持长时间稳定;高频刺激成功诱导出LTP并维持达3h以上,诱导率约67%;双脉冲易化记录稳定、可靠;脑室注射β淀粉样蛋白(Aβ)对LTP显示出明显的压抑作用。结论:采用双电极绑定技术进行在体海马LTP记录简便易行、节省资源、引导fEPSP和诱导LTP的成功率较高,有望成为一项重要的研究学习和记忆机制的电生理辅助手段。  相似文献   

6.
Liu XJ  Huang FS  Huang C  Yang ZM  Feng XZ 《生理学报》2008,60(2):284-291
通过细胞外记录方法记录场兴奋性突触后电位(field excitatory postsynaptic potential,fEPSP)的变化是研究突触可塑性,诸如长时程增强(long-term potentiation,LTP)和双脉冲可塑性(paired-pulse plasticity,PPP)的最常见方法之一。fEPSP波形的起始斜率、起始面积、峰值及总面积等的变化常用作判断突触可塑性增强或减弱的标准。在相同记录结果中测量fEPSP波形不同部位通常会有不同的结果,因此可能得出不同的结论,这些往往会被研究者忽略。本文通过测量小鼠海马CA1区细胞fEPSP波形的起始斜率、起始面积、峰值、总面积及时间参数等,分析比较高频刺激(high-frequency stimulation,HFS)诱发的突触可塑性,包括LTP和PPP的变化。结果显示,LTP过程中AMPA受体动力学变化加快,且在同一记录中,fEPSP波形不同部位的测量分析可以产生较大幅度的LTP和PPP差异。给予HFS后,双脉冲诱发fEPSP的比率在测量起始面积时略有下降,但在测量起始斜率时则显著增加,这些结果可能导致相反的结论。因此,全面仔细地分析fEPSP波形在整个实验中的变化对正确了解突触可塑性至关重要。  相似文献   

7.
Production of superoxide anions in the incubation medium of hippocampal slices can induce long-term potentiation (LTP). Other reactive oxygen species (ROS) such as hydrogen peroxide are able to modulate LTP and are likely to be involved in aging mechanisms. The present study explored whether intracerebro-ventricular (ICV) injection of oxidant or antioxidant molecules could affect LTP in vivo. With this aim in mind, field excitatory post-synaptic potentials (fEPSPs) elicited by stimulation of the perforant pathway were recorded in the dentate gyrus of the hippocampal formation in urethane-anesthetized rats. N-acetyl-L-cysteine, hydrogen peroxide (H2O2) or hypoxanthine/xanthine-oxidase solution (a superoxide producing system) were administrated by ICV injection. The control was represented by a group injected with saline ICV. Ten minutes after the injection, LTP was induced in the granule cells of the dentate gyrus by high frequency stimulation of the perforant pathway. Neither the H(2)O(2) injection or the N-acetyl-L-cysteine injection caused any variation in the fEPSP at the 10-min post-injection time point, whereas the superoxide generating system caused a significant increase in the fEPSP. Moreover, at 60 min after tetanic stimulation, all treatments attenuated LTP compared with the control group. These results show that ICV administration of oxidant or antioxidant molecules can modulate LTP in vivo in the dentate gyrus. Particularly, a superoxide producing system can induce potentiation of the synaptic response. Interestingly, ICV injection of oxidants or antioxidants prevented a full expression of LTP compared to the saline injection.  相似文献   

8.
The aim of this study was to investigate the role of β-adrenergic receptors in modulating associative long-term depression (LTD) at CA1 synapses in rat hippocampal slices. Standard extracellular electrophysiological techniques were employed to record field excitatory post-synaptic potential (fEPSP) activity and to induce associative LTD. Two independent Schaffer collateral pathways were elicited in hippocampal CA1 areas. In one (weak) pathway, the stimulating intensity was adjusted to elicit small fEPSP activity (20–30% of the maximum response). In contrast, 80–90% of the maximum response was evoked in the other (strong) pathway. Associative LTD of weak pathway could be induced by paired stimulation of weak and the strong pathways, repeated 100 times at 0.167 Hz. The associative LTD of weak pathway was NMDA receptor- and phophatase 2B dependent, because bath application of 50 μM D, L-AP5 or 10 μM cypermethrin blocked its induction. Bath application of 1 μM isoproterenol inhibited associative LTD, and this effect was blocked by timolol, suggesting the involvement of β-adrenergic receptors. The inhibitory effect of β-adrenergic receptors on LTD induction was blocked in slices pretreated with inhibitors of protein kinase A and mitogen-activated protein kinase, suggesting that these signal cascades are downstream effectors following activation of β-adrenergic receptors. Nevertheless, bath application of timolol or cypermethrin alone did not have significant effect on associative LTD induction, suggesting neither endogenous function of β-adrenergic receptor nor endogenous PKA activity does have a role in associative LTD induction.  相似文献   

9.
1. The development of synaptic transmission and indicators of short- and long-term plasticity was studied by recording from areas CA1 and CA3 upon activation of monosy- naptic excitatory inputs in rat hippocampal brain slices obtained from Wistar rats of different ages.2. Although population field excitatory postsynaptic potentials (fEPSPS) are small in animals at postnatal day 10 (P10), both areas already exhibited short-term [posttetanic potentiation (PTP) and paired pulse potentiation (PPF)] and long-term [long-term potentiation (LTP)] plastic responses.3. The amplitudes of the fEPSP and LTP increased with age in both regions, but peaked at P30 in CA3 while they were still increasing at the oldest age studied (P60) in CA1. In CA3, but not CA1, LTP at P60 was less than at P30.4. PTP did not show clear alterations with age in either region. PPF decreased with age in CA1 but not CA3.  相似文献   

10.
The electrophysiological effects of phencyclidine (PCP) were measured intracellularly in guinea pig hippocampal CA1 neurons in vitro. At all doses tested (0.2 microM - 10 mM), PCP increased the width of action potentials (APs). Doses of 10 microM and higher were associated with decreased action potential amplitude. PCP decreased inhibitory postsynaptic potentials and excitatory postsynaptic potentials but did not alter responses to focally applied GABA. At the lowest dose (0.2 microM), PCP decreased the input resistance (Rin), while at all other doses Rin was increased. PCP decreased post-spike train afterhyperpolarizations at low and medium doses. PCP effects persisted in low calcium medium and also in medium containing 10(-6) M tetrodotoxin. It is concluded that in these central neurons, PCP primarily blocks potassium conductances at all doses and, at anesthetic doses, depresses sodium-dependent spikes.  相似文献   

11.
在戊巴比妥钠麻醉的Sprague-Dawley大鼠上,运用海马Schaffer-CA1双通路条件化作用(低频配对,600对脉冲,5Hz,配对刺激相应的兴奋性突触后电位峰值时间间隔为10ms)在两条Schaffer-CA1条件化通路上同时诱导出突触可塑性,呈现出海马组合突触可塑性。结果显示:不管海马Schaffer-CA1双通路独立与否,双通路条件化作用均可以同时诱导出长时程增强(long-term potentiation,LTP)和长时程抑制(long-term depression,LTD),呈现出LTP/LTD组合突触可塑性。结果表明:海马Schaffer-CA1双通路技术,可实现海马突触可塑性的双向诱导,可塑性的方向取决于突触的自身状态。由此提示,与传统的高频诱导LTP低频诱导LTD相比,在海马Schaffer-CA1双通路条件化作用诱导出的组合突触可塑性可以更好地编码海马相关的学习记忆,体现了海马突触可塑性的灵活性与稳定性。  相似文献   

12.
To date, 9 FMRFamide-related peptides (FaRPs) have been structurally characterised from Caenorhabditis elegans. Radioimmunometrical screening of an ethanolic extract of C. elegans revealed the presence of two additional FaRPs that were purified by reverse-phase HPLC and subjected to Edman degradation analysis and gas-phase sequencing. Unequivocal primary structures for the two FaRPs were determined as Ala-Ala-Asp-Gly-Ala-Pro-Leu-Ile-Arg-Phe-NH(2) and Ser-Val-Pro-Gly-Val-Leu-Arg-Phe-NH(2). Using MALDI-TOF mass spectrometry, the molecular masses of the peptides were found to be 1032 Da (MH) and 875 Da (MH)(+), respectively. Two copies of AADGAPLIRFamide are predicted to be encoded on the precursor gene termed flp-13, while one copy of SVPGVLRFamide is located on flp-18. Synthetic replicates of the peptides were tested on Ascaris suum somatic muscle to assess bioactivity. ADDGAPLIRFamide had inhibitory effects on A. suum muscle strips, which occurred over a range of concentrations from a threshold for activity of 10 nM to 10 microM. SVPGVLRFamide was excitatory on A. suum somatic musculature from a threshold concentration for activity of 1 nM to 10 microM. The inhibitory and excitatory effects of AADGAPLIRFamide and SVPGVLRFamide, respectively, were the same for dorsal and ventral muscle strips as well as innervated and denervated preparations, suggesting that these physiological effects are not nerve cord dependent. Addition of ADDGAPLIRFamide (10 microM) to muscle strips preincubated in high-K(+) and -Ca(2+)-free medium resulted in a normal inhibitory response. Peptide addition to muscle strips preincubated in Cl(-)-free medium showed no inhibitory response, suggesting that the inhibitory response of the peptide may be chloride mediated. A normal excitatory response was noted following the addition of 10 microM SVPGVLRFamide to muscle strips preincubated in high-K(+), Ca(2+)- and Cl(-)-free media.  相似文献   

13.
A hypothetic mechanism explaining the influence of various neuromodulators and modifiable disynaptic inhibition on the long-term potentiation and depression (LTP and LTD) of excitatory inputs to granule and pyramidal hippocampal cells is proposed. According to this mechanism, facilitation of the LTD/LTP of excitatory inputs to an inhibitory interneuron caused by the action of a neuromodulator on a receptor bound with Gi/0/(Gs or Gq/11) protein can reduce/augment the GABA release, weaken/intensify the target cell inhibition, and promote the induction of the LTP/LTD of excitatory inputs to this cell. In the absence of the inhibition, the same neuromodulator would promote the LTD/LTP induction in the target cell by activating the same receptor types. The resulting effect of a neuromodulator on a target cell depends on the ratio between the "strengths" of its excitatory and inhibitory inputs, on the presence of receptors of the same or different types at the interneuron and the target cell, and on the neuromodulator concentration due to its different affinity for receptors, interaction with which provide its influence on postsynaptic processes in opposite directions. The consequences of suggested mechanism are in agreement with the known experimental data.  相似文献   

14.
5-HT(4) receptor agonists facilitate synaptic transmission in the enteric nervous system, and these drugs are used to treat constipation. In the present study, we investigated the effects of the 5-HT(4) receptor agonist, renzapride, on rundown and recovery of fast excitatory postsynaptic potentials (fEPSPs) during and after trains of stimulation and on transmitter release from individual myenteric neuronal varicosities. Intracellular electrophysiological methods were used to record fEPSPs from neurons in longitudinal muscle myenteric plexus preparations of guinea pig ileum in vitro. During trains of supramaximal electrical stimulation (10 Hz, 2 s), fEPSP amplitude declined (time constant = 0.6 +/- 0.1 s) from 17 +/- 2 mV to 0.7 +/- 0.3 mV. Renzapride (0.1 microM) did not change the time constant for fEPSP rundown, but it decreased the time constant for recovery of fEPSP amplitude after the stimulus train from 7 +/- 2 s to 1.6 +/- 0.2 s (P < 0.05). 5-HT (0.1 microM) also increased fEPSPs and facilitated recovery from rundown. The adenylate cyclase activator, forskolin (1 muM), mimicked the actions of renzapride and 5-HT, whereas H-89, a protein kinase A (PKA) inhibitor, blocked the effects of renzapride. We used nicotinic acetylcholine receptor containing outside-out patches obtained from myenteric neurons maintained in primary culture to detect acetylcholine release from single varicosities. Renzapride (0.1 microM) increased release probability twofold. We conclude that 5-HT(4) receptors activate the adenylyl cyclase-PKA pathway to increase acetylcholine release from single varicosities and to accelerate recovery from synaptic rundown. These responses may contribute to the prokinetic actions of 5-HT(4) receptor agonists.  相似文献   

15.
We studied the effects of opioid peptide leu-enkephaline, a specific antagonist of acetylcholine receptors atropine, and non-selective opiate antagonist naloxone on synaptic transmission and responses evoked by acetylcholine in semicircular organs of the frog. A decrease in frequency of acetylcholine (0.1-5.0 microM) responses under leu-enkephaline (10 nM) id not differ from the frequency decline induced by leu-enkephaline alone. Atropine (1 microM) left the response to leu-enkephaline intact while blocking the excitatory effect of acetylcholine. No modification of the acetylcholine response under leu-enkephaline was observed in the presence of naloxone (1 microM). The findings suggest that no interaction exists between the acetylcholine-mediated excitatory action on resting activity in the isolated semicircular canal preparation and the suppressive action of leu-enkephaline.  相似文献   

16.
The relationship between longitudinal and circular muscle tension in the mouse colon and mechanosensory excitatory synaptic input to neurons in the superior mesenteric ganglion (SMG) was investigated in vitro. Electrical activity was recorded intracellularly from SMG neurons, and muscle tension was simultaneously monitored in the longitudinal, circumferential, or both axes. Colonic intraluminal pressure and volume changes were also monitored simultaneously with muscle tension changes. The results showed that the frequency of fast excitatory postsynaptic potentials (fEPSPs) in SMG neurons increased when colonic muscle tension decreased, when the colon relaxed and refilled with fluid after contraction, and during receptive relaxation preceding spontaneous colonic contractions. In contrast, fEPSP frequency decreased when colonic muscle tension increased during spontaneous colonic contraction and emptying. Manual stretch of the colon wall to 10-15% beyond resting length in the circumferential axis of flat sheet preparations increased fEPSP frequency in SMG neurons, but stretch in the longitudinal axis to 15% beyond resting length in the same preparations did not. There was no increase in synaptic input when tubular colon segments were stretched in their long axes up to 20% beyond their resting length. The circumferential stretch-sensitive increase in the frequency of synaptic input to SMG neurons persisted when the colonic muscles were relaxed pharmacologically by nifedipine (2 microM) or nicardipine (3 microM). These results suggest that colonic mechanosensory afferent nerves projecting to the SMG function as length or stretch detectors in parallel to the circular muscle layer.  相似文献   

17.
Adenosine is released from the compromised brain and exerts a predominately neuroprotective influence. However, the time-course of adenosine release and its relationship to synaptic activity during metabolic stress is not fully understood. Here, we describe experiments using an enzyme-based adenosine sensor to show that adenosine potently (IC50 approximately 1 microm) inhibits excitatory synaptic transmission in area CA1 during oxygen/glucose deprivation ('ischaemia'), and that the prolonged post-ischaemic presence of extracellular adenosine sustains the depression of the field excitatory postsynaptic potential (fEPSP). N-methyl-D-aspartate (NMDA) receptor antagonism promotes post-ischaemic recovery of the fEPSP, in parallel with reduced release of adenosine. Paradoxically, however, after ischaemia the fEPSP recovers in the face of concentrations of adenosine capable of fully eliminating synaptic transmission during ischaemia. This hysteresis is not prevented by NMDA receptor antagonism, is observed during repeated ischaemia when adenosine release is reduced, and does not reflect desensitization of adenosine A1 receptors. We conclude that adenosine exerts powerful inhibitory actions on excitatory synaptic transmission both during, and for some considerable time after, ischaemia. Therapeutic strategies designed to exploit both the continued presence of adenosine and activity of A1 receptors could provide benefits in individuals who have suffered acute injury to the CNS.  相似文献   

18.
The effects of the mono- and tetrasialogangliosides, GM1 and GQ1b, on ATP-induced long-term potentiation (LTP) were studied in CA1 neurons of guinea pig hippocampal slices. Application of 5 or 10 microM ATP for 10 min resulted in a transient depression followed by a slow augmentation of synaptic transmission, leading to LTP. LTP induced by treatment with 5 microM ATP was facilitated in hippocampal slices prepared from animals treated for 6 days with a ceramide analog, L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propranol, which stimulates ganglioside biosynthesis. In addition, LTP induced by 5 microM ATP was significantly enhanced when naive slices were incubated with GQ1b but not with GM1. These results suggest that a cooperative effect between extracellular ATP and GQ1b enhances ATP-induced LTP in hippocampal CA1 neurons. In addition, the LTP induced by 10 microM ATP was blocked by coapplication of the NMDA antagonist AP5 (5 microM or 50 microM), and this effect was partially inhibited by GQ1b pretreatment of the slices, suggesting that in hippocampal CA1 neurons, the enhancing effect of GQ1b on ATP-induced LTP is mediated by modulation of NMDA receptors/Ca(2+) channels.  相似文献   

19.
20.
褪黑素对大鼠空间学习记忆的影响及其机制研究   总被引:11,自引:4,他引:7  
Feng Y  Zhang LX  Chao DM 《生理学报》2002,54(1):65-70
本研究运用Morris水迷宫和电生理学方法 ,以逃避潜伏期、穿环系数和海马CA1区突触长时程增强(long termpotentiation ,LTP)为指标 ,研究褪黑素对大鼠空间学习记忆能力的影响。实验结果显示 :( 1)在Morris水迷宫 6d训练中 ,对照组大鼠后 4d平均逃避潜伏期为 18 4 4± 2 7s,褪黑素组为 3 0 0 2± 3 6s,两者有显著差异 (P <0 0 1) ;训练 6d后 ,褪黑素组穿环系数为 2 5 68± 2 3 2 % ,明显小于对照组的 4 3 3 3± 2 85 % (P <0 0 1)。( 2 )采用微量注射法给予海马CA1区褪黑素 ,强直后 60min ,fEPSP斜率为基准值的 114 2 8± 1 80 % ,显著低于对照组的 169 71±6 4 8% (P <0 0 1)。( 3 )预先给予东莨菪碱 ,不影响褪黑素对海马CA1区LTP的抑制 ,强直后 60minfEPSP斜率为基准值的 113 70± 5 5 5 %。( 4 )提前给予荷包牡丹碱后给予褪黑素 ,强直后 60minfEPSP斜率为基准值的 162 2 9±10 5 2 % ,明显大于褪黑素组 (P <0 0 1) ,而与对照组无显著差异 (P >0 0 5 )。上述结果表明 ,褪黑素对大鼠的空间学习记忆能力及海马CA1区LTP均有明显的抑制作用 ,两者相关 ;东莨菪碱不能阻断褪黑素对海马CA1区LTP的抑制作用 ,而荷包牡丹碱可以阻断褪黑素对LTP的抑制 ,提示褪黑素的作用可能不是由胆碱能系统所介  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号