首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
S Chen  E Paucha 《Journal of virology》1990,64(7):3350-3357
A series of replication-competent simian virus 40 (SV40) large T antigens with point and deletion mutations in the amino acid sequence between residues 105 and 115 were examined for the ability to immortalize primary cultures of mouse and rat cells. The results show that certain mutants, including one that deletes the entire region, are able to immortalize. However, consistent with previous data, the immortalized cells are not fully transformed, as judged by doubling time, sensitivity to concentrations of serum, and anchorage-independent growth. The region from 106 to 114 has structural features in common with a region involved in transformation by adenovirus E1a protein (J. Figge, T. Webster, T.F. Smith, and E. Paucha, J. Virol. 62:1814-1818, 1988) and influences the binding of the retinoblastoma gene product to large T (J.A. DeCaprio, J.W. Ludlow, J. Figge, J.-Y. Shew, C.-M. Huang, W.-H. Lee, E. Marsilio, E. Paucha, and D.M. Livingston, Cell 54:275-283, 1988). Together, these results imply that the sequence from 106 to 114 forms part of a domain that is essential for transformation of established cells, is dispensable for immortalization, and is not required for SV40 replication. The results also indicate that the ability of SV40 large T to immortalize primary cells is independent of its ability to bind to the retinoblastoma gene product.  相似文献   

2.
The zinc finger region of simian virus 40 large T antigen   总被引:23,自引:21,他引:2       下载免费PDF全文
Simian virus 40 large T antigen contains a single sequence element with an arrangement of cysteines and histidines that is characteristic of a zinc finger motif. The finger region maps from amino acids 302 through 320 and has the sequence Cys-302LeuLysCys-305IleLysLysGluGlnProSerHisTyrLysTyrHis- 317GluLysHis-320. In a conventional representation, the binding of zinc to the cysteines and histidines at positions 302, 305, 317, and 320 would form two minor loops and one major loop from the intervening amino acids. We made single amino acid substitutions at every position in the finger to identify possible functional elements within the putative metal-binding domain. Amino acids in the zinc finger could be divided into three classes characterized by distinct roles in DNA replication and transformation. Class 1 consisted of amino acids in the two minor loops of the finger and in the amino-terminal part of the major loop. Mutations here did not affect either replication or transformation. Class 2 consisted of the SerHisTyrLysTyr amino acids located in the carboxy terminus of the major loop of the finger. Mutations in this contiguous region reduced replication of the mutant viruses to different degrees. This clustering suggested that the region is an active site important for a specific function in DNA replication. With the exception of a mutation in the histidine at position 313, these mutations had no effect on transformation. Class 3 consisted of the proposed zinc-binding amino acids at positions 302, 305, 317, and 320 and the histidine at position 313 in the major loop of the finger. Mutations in these amino acids abolished the viability of the virus completely and had a distinctive effect on the transforming functions of the protein. Thus, the five cysteines and histidines of class 3 may play an important role in determining the overall structure of the protein. The histidine at position 313 may function both in the active site where it is located and in cooperation with the proposed zinc-binding ligands.  相似文献   

3.
We generated fragments of simian virus 40 large tumor antigen (T antigen) by tryptic digestion and assayed them for helicase activity and helicase substrate (mostly single-stranded DNA)-binding activity in order to map the domain sites on the protein. The N-terminal 130 amino acids were not required for either activity, since a 76-kilodalton (kDa) fragment (amino acids 131 to 708) was just as active as intact T antigen. To map the helicase domain further, smaller tryptic fragments were generated. A 66-kDa fragment (131 to about 616) retained some activity, whereas a slightly smaller 62-kDa fragment (137 or 155 to 616) had none. This suggests that the minimal helicase domain maps from residue 131 to approximately residue 616. To map the helicase substrate-binding domain, we tested various fragments in a substrate-binding assay. The smallest fragment for which we could clearly demonstrate activity was a 46-kDa fragment (131 to 517). To determine the relationship between the helicase substrate domain and the origin-binding domain (131 to 257, minimal core region; 131 to 371, optimal region), we performed binding experiments with competitor DNAs present. We found that origin-containing double-stranded DNA was an excellent competitor of the binding of the helicase substrate to T antigen, suggesting that the two domains overlap. Therefore, full helicase activity requires at least a partial origin-binding domain as well as an active ATPase domain. Additionally, we found that the helicase substrate was a poor competitor of origin-binding activity, indicating that T antigen has a much higher affinity to origin sequences than to the helicase substrate.  相似文献   

4.
An 8,000-molecular-weight (8K) T antigen was found in all cells transformed by simian virus 40. The 8K T antigen was weakly labeled in vivo with [35S]methionine or 32Pi. A deletion in the human papovavirus BK genome, in the region coding for the carboxy-terminal end of the large T antigen, reduced the size of the 8K T antigen. The last 80 amino acids of the large T antigen include the sequence Asp-Asp-Asp-Asp unique to the activation peptide of trypsinogen. Large T antigen bound diisopropyl fluorophosphate and was retained by D-phenylalanine coupled to Sepharose beads, an affinity adsorbent that can retain chymotrypsin. The large T antigen and the recA protein of Escherichia coli, a known protease, have several properties in common as well as several similar sequences. Antibodies against large T antigen interacted with native recA protein.  相似文献   

5.
S D Conzen  C A Snay    C N Cole 《Journal of virology》1997,71(6):4536-4543
The ability of DNA tumor virus proteins to trigger apoptosis in mammalian cells is well established. For example, transgenic expression of a simian virus 40 (SV40) T-antigen N-terminal fragment (N-termTag) is known to induce apoptosis in choroid plexus epithelial cells. SV40 T-antigen-induced apoptosis has generally been considered to be a p53-dependent event because cell death in the brain is greatly diminished in a p53-/- background strain and is abrogated by expression of wild-type (p53-binding) SV40 T antigen. We now show that while N-termTags triggered apoptosis in rat embryo fibroblasts cultured in low serum, expression of full-length T antigens unable to bind p53 [mut(p53-)Tags] protected against apoptosis without causing transformation. One domain essential for blocking apoptosis by T antigen was mapped to amino acids 525 to 541. This domain has >60% homology with a domain of adenovirus type 5 E1B 19K required to prevent E1A-induced apoptosis. In the context of both wild-type T antigen and mut(p53-)Tags, mutation of two conserved amino acids in this region eliminated T antigen's antiapoptotic activity in REF-52 cells. These data suggest that SV40 T antigen contains a novel functional domain involved in preventing apoptosis independently of inactivation of p53.  相似文献   

6.
Simian virus 40 large T antigen contains a single sequence element with an arrangement of cysteines and histidines that is characteristic of a zinc finger motif. The finger region maps from amino acids 302 through 320 and has the sequence C-302 L K C-305 I K K E Q P S H Y K Y H-317 E K H-320. Previous genetic analysis has shown that the cysteine and histidine sequences and the contiguous S H Y K Y region in the finger are important for DNA replication in vivo. We show here that representative mutations in either of these elements of the finger prevent the assembly of large T antigen into stable hexamers in vitro. These same mutations have a characteristic effect on the interaction of T antigen with the simian virus 40 core origin of replication. The mutant T antigens bind to the central pentanucleotide domain of the core origin but fail to melt the adjacent inverted repeat domain and to untwist the adenine-thymine domain. These defects would prevent the formation of a replication bubble and the initiation of DNA replication. Finger mutations have lesser effects on the helicase function of T antigen and no observable effect on binding of T antigen to the mouse p53 protein. We propose that the zinc finger region contributes to protein-protein interactions essential for the assembly of stable T-antigen hexamers at the origin of replication and that hexamers are needed for subsequent alterations in the structure of origin DNA. We cannot exclude the possibility that the zinc finger region also makes specific contacts with components of origin DNA.  相似文献   

7.
In mKSA cells (a simian virus 40-transformed BALB/c mouse tumor cell line), plasma membrane-associated large T antigen (large T) is found in two subfractions of the plasma membrane; a minor amount of large T is recovered from the Nonidet P-40 (NP-40)-soluble plasma membrane fraction, whereas the majority is tightly bound to a substructure of the plasma membrane, the plasma membrane lamina (PML). Only PML-associated large T is fatty acid acylated (U. Klockmann and W. Deppert, EMBO J. 2:1151-1157, 1983). We have analyzed whether these two forms of plasma membrane-associated large T might differ in features like cell surface expression or metabolic stability. In addition, we have asked whether one of the two large Ts might represent the hypothetic, large T-related protein T* (D. F. Mark and P. Berg, Cold Spring Harbor Symp. Quant. Biol. 44:55-62, 1979). We show that in mKSA cells grown in suspension culture, large T associated with the PML is also exposed on the cell surface. This form of large T, therefore, exhibits properties of a transmembrane protein. Large T in the NP-40-soluble plasma membrane fraction could not be labeled with radioiodine on the cell surface and, for this reason, does not seem to be oriented towards the cell surface. In contrast, when mKSA cells were grown on substratum (culture dish), we found that in these cells both NP-40-soluble large T as well as large T anchored in the PML could be cell surface iodinated. We also have analyzed the plasma membrane association of surface T antigen in mKSA cells grown in a mouse as ascites tumor. In tumor cells, only PML-bound large T is cell surface associated. We conclude that differences in extractibility of cell surface-associated large T most likely depend on cell shape and are not an artifact of cell culture. Both NP-40-soluble and PML-bound large Ts are associated with the plasma membrane in a metabolically stable fashion. Neither of the two large Ts represents T*.  相似文献   

8.
Wild-type and J domain mutant simian virus 40 large T antigens alter the cell cycle and bud morphology of Saccharomyces cerevisiae. In contrast, yeast cells expressing mutant T antigen lacking the carboxy-terminal 150 aa exhibit normal morphology, indicating that this region of T antigen is required for cell cycle disruption.  相似文献   

9.
Simian virus 40 large T antigen is a multifunctional protein that is encoded by the early region of the viral genome. We constructed fusion proteins between simian virus 40 large T antigen and beta-galactosidase by cloning HindIII fragments A and D of the virus into the HindIII sites of expression vectors pUR290, pUR291, and pUR292. Large amounts of the fusion protein were synthesized when the DNA fragment encoding part of simian virus 40 large T antigen was in frame with the lacZ gene of the expression vector. Using Western blotting and a competition radioimmunoassay, we assessed the binding of existing anti-T monoclonal and polyclonal antibodies to the two fusion proteins. Several monoclonal antibodies reacted with the protein encoded by the fragment A construction, but none reacted with the protein encoded by the fragment D construction. However, mice immunized with pure beta-galactosidase-HindIII fragment D fusion protein produced good levels of anti-T antibodies, which immunoprecipitated simian virus 40 large T antigen from lytically infected cells, enabling derivation of monoclonal antibodies to this region of large T antigen. Therefore, the fusion proteins allowed novel epitopes to be discovered on large T antigen and permitted the precise localization of epitopes recognized by existing antibodies. The same approach can also be used to produce antibodies against defined regions of any gene.  相似文献   

10.
The position of phosphothreonine in the predicted primary structure of simian virus 40 large T antigen was determined by different methods. After digestion of large T antigen with trypsin and subsequent two-dimensional peptide mapping, a single peptide containing phosphothreonine could be separated from the bulk of phosphoserine-containing peptides. Its amino acid composition was determined by differential labeling with various amino acids in vivo. The high yield of proline (4.5 mol) within the phosphothreonine peptide indicated that it was derived from the carboxy terminus of large T antigen and had in its unphosphorylated form the sequence Lys-Pro-Pro-Thr-Pro-Pro-Pro-Glu-Pro-Glu-Thr-COOH. A phosphopeptide generated by chymotrypsin could be converted into the tryptic phosphothreonine peptide, indicating that the latter was part of the chymotryptic peptide. The origin of the phosphothreonine-containing peptides was independently confirmed by using an antiserum directed against the carboxy terminus of large T antigen. This serum reacted specifically with the proline-rich, phosphothreonine-containing peptides. Further analysis by partial acid hydrolysis indicated that the internal threonine was phosphorylated. The unusual amino acid composition on both sides of the phosphothreonine and the possible function of this phosphorylation site are discussed.  相似文献   

11.
Simian virus 40 large T antigen from lytically infected cells has been purified to near homogeneity by immunochromatography of the cell extract on a protein A-Sepharose-monoclonal antibody column. The resulting T antigen retains biochemical activity; i.e., it hydrolyzes ATP and binds to simian virus 40 DNA at the origin of replication.  相似文献   

12.
The nondefective adenovirus type 2 (Ad2)-simian virus 40 (SV40) hybrid viruses, Ad2+ND2 and Ad2+ND4, have been used to determine which regions of the SV40 genome coding for the large tumor (T) antigen are involved in specific and nonspecific DNA binding. Ad2+ND2 encodes 45,000 M4 (45K) and 56,000 Mr (56K) T antigen-related polypeptides. The 45K polypeptide did not bind to DNA, but the 56K polypeptide bound nonspecifically to calf thymus DNA, Ad2+ND4 encodes 50,000 Mr (60K), 66,000 Mr (66K), 70,000 Mr (70K), 74,000 Mr (74K), and 90,000 Mr (90K) T antigen-related polypeptides, all of which bound nonspecifically to calf thymus DNA. However, in more stringent assays, where tight binding to viral origin sequences was tested, only the 90K protein specified by Ad2A+ND4 showed specific high affinity for sequences at the viral origin of replication. From these results and previously published experiments describing the SV40 DNA integrated into these hybrid viruses, it was concluded that SV40 early gene sequences located between 0.39 and 0.44 SV40 map units contribute to nonspecific DNA binding, whereas sequences located between 0.50 and 0.63 SV40 map units are necessary for specific binding to the viral origin of replication.  相似文献   

13.
We investigated the formation of native complexes between simian virus 40 large T antigen and the cellular protein p53 (T-p53) by using simian virus 40 tsA58-transformed mouse fibroblasts (tsA58 F2b). We observed that newly synthesized p53 bound to all structural subclasses of large T antigen detectable on sucrose density gradients. This led to various intermediates of T-p53 complexes which converted within 2 h into typical mature aggregates. The final levels of stable T-p53 complexes seemed to be determined by p53 rather than by large T antigen.  相似文献   

14.
Simian virus 40 large T antigen (T) can transform cultured cells, but the mechanisms by which it functions are not entirely understood. Several lines of evidence have suggested that the amino-terminal approximately 130 residues of T may be sufficient to confer the transforming capability. Oligonucleotide-directed mutagenesis was used to generate a series of deletion and substitution mutants within the amino-terminal 82 residues of T, the segment which is shared with simian virus 40 small t antigen (t). Results of stability and transformation assays of these mutants strongly suggest that the 1-to-82 region of T contains sequences which govern T transforming activity and affect in vivo stability. Instability and a defect in transforming activity could be separated from one another genetically. Thus, the 1-to-82 region appears to contain a specific region that contributes to the transforming function of the protein. This segment operates by means other than the simple binding of pRb and/or p107.  相似文献   

15.
In simian virus 40-transformed cells, simian virus 40 large T antigen can be detected in different forms separable by sucrose density gradient centrifugation. In our experiments, light forms sedimented around 5 to 7S, oligomers such as tetramers were detected around 16S, and higher aggregates sedimented in a broad distribution reaching above 23S. The oligomers sedimenting at and above 16S could be disassembled into the slowly sedimenting 5 to 7S forms by chelating agents [EDTA or ethylene bis(oxonitrilo)tetraacetate]. After the addition of divalent cations (CaCl2 or MgCl2) in excess of chelating agents, oligomeric forms reassembled and appeared in a sedimentation pattern resembling that observed before treatment with chelating agents. Time course studies permitted the identification of the 5 to 7S forms as precursors upon pulse-labeling (15 min); the 16S and higher oligomers were identified as the successors after a 14-h chase. Treatment of extracts of pulse-chase-labeled cells with chelating agents again disassembled the oligomers, whereas pulse-labeled precursors did not change their 5 to 7S sedimentation pattern. Adding an excess of divalent cations reassembled the pulse-chase-labeled T antigen to oligomers but did not influence the sedimentation behavior of pulse-labeled 5 to 7S precursors. It is therefore reasonable to assume that a posttranslational modulation induces divalent cation binding, leading finally to the oligomerization of T antigen. Thus, some of the multifunctional activities of T antigen can be dictated by divalent cation binding properties.  相似文献   

16.
We investigated the molecular properties of eight temperature-sensitive mutants of simian virus 40 large T antigen (tsA mutants). The mutants have single amino acid substitutions that block DNA replication at 39 to 41 degrees C in vivo. In vitro, five of the mutant proteins were highly sensitive to a brief heat shock at 39 degrees C, while the three remaining proteins were only partially sensitive at 41 degrees C. We characterized the five most defective mutant proteins, using a variety of biochemical assays for replication functions of T antigen. Heat shock of purified T antigen with a mutation at amino acid 422 significantly impaired the oligomerization, origin-binding, origin-unwinding, ATPase, and helicase functions of T antigen. In contrast, substitution of amino acid 186, 357, 427, or 438 had more selective, temperature-sensitive effects on T-antigen functions. Our findings are consistent with the conclusion that T antigen functions via a hierarchy of interrelated domains. Only the ATPase activity remained intact in the absence of all other functions. Hexamer formation appears to be necessary for core origin-unwinding and helicase activities; the helicase function also requires ATPase activity. All five tsA mutants were impaired in functions important for the initiation of DNA replication, but three mutants retained significant elongation functions.  相似文献   

17.
K A Jones  R M Myers    R Tjian 《The EMBO journal》1984,3(13):3247-3255
We have tested the effects of various mutations within SV40 T antigen DNA recognition sites I and II on specific T antigen binding using the DNase footprint technique. In addition, the replication of plasmid DNA templates carrying these T antigen binding site mutations was monitored by Southern analysis of transfected DNA in COS cells. Deletion mapping of site I sequences defined a central core of approximately 18 bp that is both necessary and sufficient for T antigen recognition; this region contains the site I contact nucleotides that were previously mapped using methylation-interference and methylation-protection experiments. A similar deletion analysis delineated sequences that impart specificity of binding to site II. We find that T antigen is capable of specific recognition of site II in the absence of site I sequences, indicating that binding to site II in vitro is not dependent on binding of T antigen at site I. Site II binding was not diminished by small deletion or substitution mutations that perturb the 27-bp palindrome central to binding site II, whereas extensive substitution of site II sequences completely eliminated specific site II binding. Analysis of the replication in COS7 cells of plasmids that contain these mutant origins revealed that sequences both at the late side of binding site I and within the site II palindrome are crucial for viral DNA replication, but are not involved in binding T antigen.  相似文献   

18.
The location of phosphorylation sites in the large T antigen of simian virus 40 has been studied both by partial chemical cleavage and by partial proteolysis of various forms of large T. These included the full-size wild-type molecule with an apparent molecular weight of 88,000, deleted molecules coded for by the mutants dl1265 and dl1263, and several shortened derivatives generated by the action of a cellular protease. These molecules differed from each other by variations in the carboxy-terminal end. In contrast, a ubiquitous but minor large T form with a molecular weight of 91,000 was found to be modified in the amino-terminal half of the molecule. In addition to the phosphorylation of threonine at position 701 (K.-H. Scheidtmann et al., J. Virol. 38:59-69, 1981), two other discrete domains of phosphorylation were recognized, one at either side of the molecule. The amino-terminal region was located between positions 81 and 124 and contained both phosphothreonine and phosphoserine residues. The carboxy-terminal region was located between approximate positions 500 and 640 and contained at least one phosphoserine residue but no phosphothreonine. The presence in the phosphorylated domains of large T of known recognition sequences for different types of protein kinases is discussed, together with possible functions of large T associated with these domains.  相似文献   

19.
Four (groups of) phosphorylation sites exist in the large T antigen of simian virus 40, and they involve at least two serine and two threonine residues (Van Roy et al. J. Virol. 45:315-331, 1983). All the phosphorylation sites were found to be modified and again dephosphorylated at discrete rates, with phosphoserine residues having the highest turnover rate. The measured half-lives ranged between 3 h (for the carboxy-terminal phosphoserine site) and 5.5 h (for the amino-terminal phosphothreonine site). The influence of four temperature-sensitive A mutations on phosphorylation of large T antigen was also examined. At restrictive temperature, phosphorylation of the carboxy-terminal phosphoserine in mutated large T antigen was found to be particularly impaired. These data emphasize the physiological importance of the latter phosphorylation site.  相似文献   

20.
The simian virus 40 (SV40) large T antigen was immunoprecipitated from extracts of infected monkey cells and cleaved with trypsin under conditions of mild proteolysis. The digestion generated fragments from the NH2-terminal region of T antigen which were released from the immunoprecipitates. Pulse-chase experiments showed that most of the newly made T antigen (form A) generated an NH2-terminal fragment of 17 kDa in size, whereas most of the T antigen that had aged in the cell (form C) generated a fragment of 20 kDa. An intermediate form of T antigen (form B), which generated an 18.5- kDa NH2-terminal fragment, was produced in part from form A and was converted to form C during the chase. Phosphate-labeling experiments showed that form C was the species of T antigen that incorporated the most 32P radioactivity at the NH2-terminal region, although some label was also incorporated into forms A and B. In vitro dephosphorylation of gel-purified 18.5- and 20-kDa fragments labeled with [35S]methionine increased the electrophoretic mobility of the fragments to that of 17 kDa. This signified that phosphorylation of the NH2-terminal fragments was directly responsible for their aberrant behavior in acrylamide gels. Although peptide maps of the methionine-labeled tryptic peptides of the 17-, 18.5-, and 20-kDa fragments were very similar to one another, maps of the 32P-labeled tryptic Pronase E peptides of these fragments contained qualitative and quantitative differences. Analysis of the labeled phosphoamino acids of various peptides from these fragments indicated that the 20-kDa fragment was highly phosphorylated at Ser 123 and Thr 124, whereas the 17- and 18.5-kDa fragments were mostly unphosphorylated at these sites. These experiments indicated that T antigen is phosphorylated at the NH2-terminal region in a specific stepwise process and, therefore, that this post-translational modification of T antigen is tightly regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号