首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Plant cell suspension cultures of Catharanthus roseus and Nicotiana tabacum were grown in stirred tank bioreactors operated in batch and continuous mode. The stoichiometry of growth of both species in steady-state glucose limited chemostats was studied at a range of different dilution rates. A linear relation was applied to describe specific glucose uptake, oxygen consumption, and carbon dioxide production as a function of the growth rate. Specific respiration deviated greatly from the linear relation. An unstructured mathematical model, based on the observed stoichiometry in the glucose limited chemostats, was applied to describe the growth in batch culture. From a comparison between the observed growth pattern in batch fermentors and computer simulations it appeared that the stoichiometry of growth of the C. roseus culture was different under steady-state and dynamic conditions. It was concluded that a mathematical model for the growth of suspension culture plant cells in which the biomass is considered to be a single compound with an average chemical composition is of limited value because large changes in the conmposition of the biomass may occur. (c) 1992 John Wiley & Sons, Inc.  相似文献   

2.
Scale-up from shake flasks to fermenters has been hampered by the lack of knowledge concerning the influence of operating conditions on mass transfer, hydromechanics, and power input. However, in recent years the properties of shake flasks have been described with empirical models. A practical scale-up strategy for everyday use is introduced for the scale-up of aerobic cultures from shake flasks to fermenters in batch and continuous mode. The strategy is based on empirical correlations of the volumetric mass transfer coefficient (k(L) a) and the pH. The accuracy of the empirical k(L) a correlations and the assumptions required to use these correlations for an arbitrary biological medium are discussed. To determine the optimal pH of the culture medium a simple laboratory method based on titration curves of the medium and a mechanistic pH model, which is solely based on the medium composition, is applied. The effectiveness of the scale-up strategy is demonstrated by comparing the behavior of Corynebacterium glutamicum on lactic acid in shake flasks and fermenters in batch and continuous mode. The maximum growth rate (micro(max) = 0.32 h(-1)) and the oxygen substrate coefficient (Y O2 /S= 0.0174 mol/l) of C. glutamicum on lactic acid were equal for shake flask, fermenter, batch, and continuous cultures. The biomass substrate yield was independent of the scale, but was lower in batch cultures (Y(X/S) = 0.36 g/g) than in continuous cultures (Y(X/S) = 0.45 g/g). The experimental data (biomass, respiration, pH) could be described with a simple biological model combined with a mechanistic pH model.  相似文献   

3.
A defined medium for Aquaspirillum serpens VHL allows the replacement of the complex media now in use. It was developed by batch culture methods but supports growth in continuous culture. A basal salts medium supplemented with L-aspartic acid, L-alanine, and L-glutamic acid provided the best growth (turbidity), as long as ammonium chloride was omitted. Ammonium chloride caused either a lag or a reduction or a complete inhibition of the growth of A. serpens VHL on the above amino acids and other organic supplements depending on the combination used. Ammonium sulfate and ammonium hydroxide with L-glutamic acid allowed growth, but the lag period was increased in shake flask cultures. Vitamins, cysteine hydrochloride, and carbon dioxide had no effect on the growth rate. Viability (less than 50%) was inadequate to maintain continuous culture with L-glutamic acid as the sole source of carbon and nitrogen. Combinations of amino and carboxylic acids were then tested and, of these, L-glutamic acid (1 g/liter) and L-histidine (75 mg/liter) without ammonium chloride in the basal salts medium supported growth in batch and continuous culture. L-Glutamic acid was the limiting substrate for growth.  相似文献   

4.
This work concerns mathematical modeling of the rate of microbial growth on inhibitory levels of nutrients as affected by pH, concentration of the nutrients, temperature, cultivation method, and method of data analysis. Candida utilis (ATCC 9226) was grown with sodium acetate as growth-limiting carbon and energy source in mineral salts medium in shake flask and continuous cultures to study inhibition by excess acetate. Differential shake flask cultures were grown at low yeast concentrations at temperatures (T) of 25 and 30°C, pH's between 5.5 and 7.0, and acetate concentrations (S) between 0.25 and 3.0% (w/v). Growth data were exponential with correlation coefficients greater than 0.995 in 49 of 56 experiments; the lowest correlation coefficient was 0.986. Specific growth rates (μ) determined by graphical methods showed only fair correlation with those determined by regression analysis. Both sets of specific growth rate data were grouped at constant T and pH and fitted to the three parameter equation, The improvement in use of the fitted equation instead of the mean value was significant with greater than 70% confidence in all (14 groups) and 90% confidence in only half of the data groups; the correlation does not improve with the increasing acetate inhibition at lower pH. Both defects in the model and insufficient data at each pH are responsible. A modified six parameters with hydrogen ion concentration(H+) as follows: Specific growth rates calculated with the six parameter equation matched observed values in all groups of isothermal data better than the means with greater than 99% confidence. The six parameter model adequately represents effects of acetate and hydrogen ion concentrations under constant or slowly changing environmental conditions and balanced growth; although better models probably exist. Thus steady-stste and transient continuous culture experiments agreed with many published growth yields, but specific growth rates could only be predicted qualitatively from the model fit to the shake flask data. The data and present models could be incorporated into published models for transient growth at low nutrient concentrations to correlate and perhaps predict microbial growth kinetics over a much wider range of growth conditions than now possible.  相似文献   

5.
High-throughput analyses that are central to microbial systems biology and ecophysiology research benefit from highly homogeneous and physiologically well-defined cell cultures. While attention has focused on the technical variation associated with high-throughput technologies, biological variation introduced as a function of cell cultivation methods has been largely overlooked. This study evaluated the impact of cultivation methods, controlled batch or continuous culture in bioreactors versus shake flasks, on the reproducibility of global proteome measurements in Shewanella oneidensis MR-1. Variability in dissolved oxygen concentration and consumption rate, metabolite profiles, and proteome was greater in shake flask than controlled batch or chemostat cultures. Proteins indicative of suboxic and anaerobic growth (e.g., fumarate reductase and decaheme c-type cytochromes) were more abundant in cells from shake flasks compared to bioreactor cultures, a finding consistent with data demonstrating that “aerobic” flask cultures were O2 deficient due to poor mass transfer kinetics. The work described herein establishes the necessity of controlled cultivation for ensuring highly reproducible and homogenous microbial cultures. By decreasing cell to cell variability, higher quality samples will allow for the interpretive accuracy necessary for drawing conclusions relevant to microbial systems biology research.  相似文献   

6.
An often underestimated problem when working with different clones in microtiter plates and shake flask screenings is the non‐parallel and non‐equal growth of batch cultures. These growth differences are caused by variances of individual clones regarding initial biomass concentration, lag‐phase or specific growth rate. Problems arising from unequal growth kinetics are different induction points in expression studies or uneven cultivation periods at the time of harvest. Screening for the best producing clones of a library under comparable conditions is thus often impractical or even impossible. A new approach to circumvent the problem of unequal growth kinetics of main cultures is the application of fed‐batch mode in precultures in microtiter plates and shake flasks. Fed‐batch operation in precultures is realized through a slow‐release system for glucose. After differently growing cultures turn to glucose‐limited growth, they all consume the same amount of glucose due to the fixed feed profile of glucose provided by the slow‐release system. This leads to equalized growth. Inherent advantages of this method are that it is easy to use and requires no additional equipment like pumps. This new technique for growth equalization in high‐throughput cultivations is simulated and verified experimentally. The growth of distinctly inoculated precultures in microtiter plates and shake flasks could be equalized for different microorganisms such as Escherichia coli and Hansenula polymorpha. Biotechnol. Bioeng. 2009;103: 1095–1102. © 2009 Wiley Periodicals, Inc.  相似文献   

7.
基因工程人α心钠素发酵研究   总被引:2,自引:0,他引:2  
本研究采用的基因工程菌为酵母Y33::YFD71-3,其基因型为α,his,1eu,ade,suc.摇瓶培养时心钠素的表达水平为l~2rag/L。在含有葡萄糖、YNB以及不同量腺嘌呤、组氨酸和亮氨酸的YG培养基中作摇瓶培养.当细胞的生长由腺嘌呤限制时,蛋白的分泌有明显增加·在YG培养基中加入5g/L的CAA后腺嘌呤成为限制性基质,培养基中腺嘌呤、YNB和亮氪酸用量对心钠素的表达有很大影响。在5L反应器中进行补料分批培养,流加葡萄糖、YNB、cAA、腺嘌呤、组氨酸和亮氨酸,心钠素的最高浓度达到24.8mg/L。  相似文献   

8.
We studied the relationship between growth rate and genome-wide gene expression, cell cycle progression, and glucose metabolism in 36 steady-state continuous cultures limited by one of six different nutrients (glucose, ammonium, sulfate, phosphate, uracil, or leucine). The expression of more than one quarter of all yeast genes is linearly correlated with growth rate, independent of the limiting nutrient. The subset of negatively growth-correlated genes is most enriched for peroxisomal functions, whereas positively correlated genes mainly encode ribosomal functions. Many (not all) genes associated with stress response are strongly correlated with growth rate, as are genes that are periodically expressed under conditions of metabolic cycling. We confirmed a linear relationship between growth rate and the fraction of the cell population in the G0/G1 cell cycle phase, independent of limiting nutrient. Cultures limited by auxotrophic requirements wasted excess glucose, whereas those limited on phosphate, sulfate, or ammonia did not; this phenomenon (reminiscent of the "Warburg effect" in cancer cells) was confirmed in batch cultures. Using an aggregate of gene expression values, we predict (in both continuous and batch cultures) an "instantaneous growth rate." This concept is useful in interpreting the system-level connections among growth rate, metabolism, stress, and the cell cycle.  相似文献   

9.
Citrate Fermentation by Lactococcus and Leuconostoc spp   总被引:1,自引:0,他引:1  
Citrate and lactose fermentation are subject to the same metabolic regulation. In both processes, pyruvate is the key intermediate. Lactococcus lactis subsp. lactis biovar diacetylactis homofermentatively converted pyruvate to lactate at high dilution (growth) rates, low pH, and high lactose concentrations. Mixed-acid fermentation with formate, ethanol, and acetate as products was observed under conditions of lactose limitation in continuous culture at pH values above 6.0. An acetoin/butanediol fermentation with alpha-acetolactate as an intermediate was found upon mild aeration in continuous culture and under conditions of excess pyruvate production from citrate. Leuconostoc spp. showed a limited metabolic flexibility. A typical heterofermentative conversion of lactose was observed under all conditions in both continuous and batch cultures. The pyruvate produced from either lactose or citrate was converted to d-lactate. Citrate utilization was pH dependent in both L. lactis and Leuconostoc spp., with maximum rates observed between pH 5.5 and 6.0. The maximum specific growth rate was slightly stimulated by citrate, in L. lactis and greatly stimulated by citrate in Leuconostoc spp., and the conversion of citrate resulted in increased growth yields on lactose for both L. lactis and Leuconostoc spp. This indicates that energy is conserved during the metabolism of citrate.  相似文献   

10.
Corynebacterium glutamicum is well-known as an industrial workhorse, most notably for its use in the bulk production of amino acids in the feed and food sector. Previous studies of the effect of gradients in scale-down reactors with complex media disclosed an accumulation of several carboxylic acids and a parallel decrease of growth and product accumulation. This study, therefore, addresses the impact of carboxylic acids, for example, acetate and l -lactate, on the cultivation of the cadaverine producing strain C. glutamicum DM1945Δact3:Ptuf-ldcCopt and their potential role in scale up related performance losses. A fluctuating power input in shake flask and stirred tank cultivations with mineral salt was applied to mimic discontinuous oxygen availability. Results demonstrate, whenever sufficient oxygen was available, C. glutamicum recovered from previously occurring stressful conditions like an oxygen limiting phase. Reassimilation of acids was detected simultaneously. In cultures, which were supplemented with either acetate or l -lactate, a rapid cometabolization of both acids in presence of glucose was observed, showing conversion rates of 7.8 and 3.8 mmol gcell dry weight−1 hr−1, respectively. Uptake of these acids was accompanied by increased oxygen consumption. Proteins related to oxidative stress response, glycogen synthesis, and the main carbon metabolism were found in altered concentrations under oscillatory cultivation conditions. (Proteomics data are available via ProteomeXchange with identifier PXD012760). Virtually no impact on growth or product formation was observed. We conclude that the reduced growth and product formation in scale-down cultivations when complex media was used is not caused by the accumulation of carboxylic acids.  相似文献   

11.
Escherichia coli strains were grown in batch cultures in different media, and cell size and DNA content were analyzed by flow cytometry. Steady-state growth required large dilutions and incubation for many generations at low cell concentrations. In rich media, both cell size and DNA content started to decrease at low cell concentrations, long before the cultures left the exponential growth phase. Stationary-phase cultures contained cells with several chromosomes, even after many days, and stationary-phase populations exclusively composed of cells with a single chromosome were never observed, regardless of growth medium. The cells usually contained only one nucleoid, as visualized by phase and fluorescence microscopy. The results have implications for the use of batch cultures to study steady-state and balanced growth and to determine mutation and recombination frequencies in stationary phase.  相似文献   

12.
Compared with cultures grown aerobically in batch culture with glucose, aerated cultures of lactic streptococci had a less homolactic type of metabolism when galactose was the carbohydrate source in batch cultures, or when glucose was limiting in chemostat cultures. Differences in end-products of sugar metabolism between aerated and unaerated cultures were observed. In addition to lactate, formate, acetate and ethanol were produced in anaerobic cultures, whereas acetate and acetoin were formed in aerated cultures. Acetate production in aerated cultures depended on lipoic acid, an essential cofactor of the pyruvate dehydrogenase complex. In a chemically defined medium with glucose as the energy substrate, lipoic acid (or acetate) was an essential growth factor. Formation of acetoin was inversely related to lipoic acid concentration in the growth medium. Although not observed in unaerated cultures, acetoin (and 2,3-butanediol) was produced in unaerated buffered suspensions metabolizing pyruvate. Aeration caused a modest increase in the activities of aP-acetolactate synthetase and phosphate acetyl trans-ferase, but it is unlikely that the increases were sufficient to account for the changes in end-products of sugar metabolism observed.  相似文献   

13.
Summary The concentration of several surface active agents required to inhibit the initiation of growth ofAspergillus foetidus in both solid and liquid media was estimated. The culturing in liquid media involved both shake flask and fermenter cultures.  相似文献   

14.
Acinetobacter calcoaceticus was cultivated in a well-aerated stirred tank reactor and its phosphate uptake capacity was investigated. Statistical media optimization was done to figure out favourable growth conditions of Acinetobacter calcoaceticus NRRLB-552. Plackett–Burman design was used to figure out the key nutrients (sodium acetate, ammonium chloride and calcium chloride) featuring high growth and/or uptake of phosphate. The optimal concentrations for these nutrients were (sodium acetate 5.0 g/l, ammonium chloride 0.67 g/l, calcium chloride 0.05 g/l) obtained by central composite design (CCD) protocols and verified in shake flask cultivations. Predicted and experimental dry cell weights obtained using the optimized media were 2.046 and 2.54 g/l indicating 97% agreement. The optimal values of pH and temperature for growth and phosphate uptake were found to be 7.69 and 31.86 °C, respectively, using CCD. Batch kinetics was also established in shake flask and fermenter using optimized medium and environmental conditions. Phosphate uptakes of 21 mg/g biomass and 36 mg/g biomass were obtained in shake flask and fermenter, respectively. The possible inhibition of nutrients (carbon, nitrogen and phosphate) was also established under shake flask cultivation conditions. Growth of the bacteria was inhibited at a concentration higher than 0.4% carbon and 0.6% nitrogen. However increasing concentration of phosphate did not show any inhibitory effect on growth. The above kinetics and inhibition data will serve as suitable database for the development of a mathematical model for growth and its use will be able to facilitate appropriate reactor design for the removal of phosphates from industrial effluents.  相似文献   

15.
Culture conductivity and on-line NADH fluorescence were used to measure cellular growth in plant cell suspension cultures ofPodophyllum hexandrum. An inverse correlation between dry cell weight and medium conductivity was observed during shake flask cultivation. A linear relationship between dry cell weight and culture NADH fluorescence was obtained during the exponential phase of batch cultivation in a bioreactor under the pH stat (pH 6) conditions. It was observed that conductivity measurement were suitable for biomass characterisation under highly dynamic uncontrolled shake flask cultivation conditions. However, if the acid/alkali feeding is done for pH control the conductivity measurement could not be applied. On the other hand the NADH fluorescence measurement allowed online-in situ biomass monitoring of rather heterogenous plant cell suspension cultures in bioreactor even under the most desirable pH stat conditions.  相似文献   

16.
《Process Biochemistry》1999,34(5):477-481
The effects of initial glucose concentration and light intensity on specific growth rate, phycocyanin concentration and cell dry weight concentration in mixotrophic batch cultivation of Spirulina platensis using both shake flask and fermenter were investigated. Based on experimental results in shake flask culture, a number of mathematical models were constructed, and the optimal initial glucose concentration and the optimal light intensity were calculated to be Sopt=2.4471 g liter−1 and Lopt=3.8632 klx. Finally, a time-dependent kinetic model for mixotrophic batch cultivation of Spirulina platensis in fermenter was also proposed. This was in good agreement with the experimental results and could be employed to predict the production of biomass and phycocyanin, and the consumption of glucose in fermenter culture.  相似文献   

17.
Abstract The effect of different concentrations of sulfide and sulfur on the assimilation of acetate by Chlorobium phaeobacteroides was investigated in batch and continuous cultures.
In batch cultures the assimilation of acetate strictly depends on the initial concentration of sulfide. In continuous cultures the uptake of acetate depends not only on the reservoir concentration of sulfide but also on the dilution rate. The more severe the limitation of sulfide the higher the incorporation of acetate.
The very efficient uptake of acetate was also observed in batch cultures, but only immediately prior to sulfide depletion. After sulfide depletion, with sulfur still available, the uptake of acetate per mmol reducing power increased even further. This phenomenon, which has been overlooked since growth decreases drastically after sulfide depletion due to incapacity for assimilatory sulfate reduction is of ecological importance in the formation of blooms of brown Chlorobium species.  相似文献   

18.
The hydrogen (H2) production potential of the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1 was evaluated at 85 degrees C. In batch cultivation using a complex medium supplemented with elemental sulfur (S0), evolution of H2S and CO2 was observed in the gas phase. When S0 was omitted and pyruvate or starch was added in the medium, the cells produced H2 at high levels instead of H2S. As the level of H2 appeared to correlate with the specific growth rate, analysis in continuous cultures was performed to develop a continuous H2 production system. In a steady-state condition at a dilution rate of 0.2 h-1, a continuous H2 production rate (per gram dry weight, gdw) of 24.9 and 14.0 mmol gdw-1 h-1 was observed in media supplemented with pyruvate and starch, respectively. In both cultivations, a high accumulation of acetate and alanine was found as metabolites. When the dilution rates were elevated in the medium with pyruvate, steady-state growth was observed up to 0.8 h-1, and a maximum H2 production rate of 59.6 mmol gdw-1 h-1 was obtained. Based on the experimental results along with data of the entire genome sequence, the metabolic pathway of the strain relating to starch and pyruvate degradation is discussed.  相似文献   

19.
Summary Lignin peroxidases produced byPhanerochaete chrysosporium have several important potential industrial applications based on their ability to degrade lignin and lignin-like compounds. A stirred tank reactor system for the production of lignin peroxidases is described here. Included in this study is an examination of the mechanics of pellet biocatalyst formation and the optimization of an acetate buffered medium. Higher levels of lignin peroxidase were obtained with acetate buffer compared to the other buffer systems tested. Concentrations of 0.05% (w/v) Tween 80 and 0.4 mM veratryl alcohol gave optimal lignin peroxidase activity in acetate buffered medium. In shake flask cultures, mycelial fragments in the inoculum aggregated into pellets during the first eight hours of incubation and thereafter increased in size through the eighth day. The agitation rate in shake flask cultures affected pellet size, the number of pellets formed, and lignin peroxidase activity. Transfer of fungal pellets from shake flask culture to a continuously oxygenated baffled stirred tank reactor (STR) resulted in production of high lignin peroxidase titres comparable to those of shake flask cultures when the agitation rate, oxygen dispersion and foaming were closely controlled.  相似文献   

20.
Summary Hybridoma concentrations were reduced in shake flask and continuous culture by medical-grade PVC and polyurethane samples. Cell viability was unaffected and nutrient uptake rates were increased. No inhibition was observed for silicone, C-Flex or Teflon samples. The inhibition by PVC could be reduced by conditioning the sample with complete medium. The reduction in final cell yield and growth rate may result from extraction of one or more growth factors from the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号