首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concept of a maturation time (tm) for a product formation by a microbial culture is developed and a simple method is described for determining this parameter and also the product formation rate constant (kp) from batch culture experiments. The concept has been utilized in a general model for the prediction of steady state product concentrations in single-stage continuous-flow culture systems.  相似文献   

2.
Summary Gluconic acid production from corn starch hydrolysates by immobilised mycelia of Aspergillus niger was studied in a laboratory-scale stirred fermentor at different concentrations of glucose (S 0) and dissolved oxygen (DO) in the culture broth. Its evolution was simulated quite well by applying the same unstructured model set up in previous experiments using stirred and airlift fermentors. In particular, increasing S 0 in the range 70–160 g/l, although uninfluential upon the yield coefficient, resulted in an exponential decrease in the gluconic acid formation rate constant. Nevertheless, the greater the oxygen transfer rate used in the fermentor, the smaller the inhibitor effect of the higher concentrations of glucose on gluconate productivity became. This was achieved by enriching the inlet air with pure oxygen so as to maintain the DO level above 75% saturation throughout the fermentation. Offprint requests to: M. Moresi  相似文献   

3.
Glycosylated polyene macrolide antibiotics, as nystatins and amphotericins, are amphiphilic structures known to exert antifungal activity by disrupting the fungal cell membrane, leading to leakage of cellular materials, and cell death. This membrane disruption is strongly influenced by the presence and the exact nature of the membrane sterols. The solution structures of five representative glycosylated members, three tetraenes (pimaricin, nystatin A1 and rimocidin) and two heptaenes (candidin and vacidin A) have been calculated using geometric restraints derived from 1H-NMR data and random searches of their conformational space. Despite a different apparent structural order, the NMR solutions structure indicate that the hydroxyl groups all clustered on one side of the rod-shaped structures, and the glycosyl moieties are structurally conserved both in their conformation and their apparent order. The molecular structures afford an understanding of their selective interaction with the membrane sterols and the design of new polyene macrolides with improved activities.  相似文献   

4.
G Schwarz  J Seelig 《Biopolymers》1968,6(9):1263-1277
Dielectric relaxation of poly(γ-benzyl L -glutamate) in solution has been studied in the 5 kcps-10 Mcps range for various values of the helix content. The results give first experimental evidence for three effects of major significance. (1) The system exhibits dielectric relaxation due to a chemical rate process (namely helix formation). This confirms recent theoretical predictions. (2) The mean relaxation time τ* of the helix–coil transition could be evaluated as a function of the degree of transition. The results are in excellent agreement with a previously developed theory. At the midpoint of transition it is found τ*max = 5 × 10?7 sec. The elementary process of helical growth turns out to be practically diffusion-controlled (with a rate constant of hydrogen bond formation of 1.3 × 1010 sec?1). (3) There is a considerable electric field effect of the helix–coil transition. This indicates that conformation changes in biological systems could be potentially caused by direct action of an electric field.  相似文献   

5.
A highly instrumented computer-coupled bioreactor is used to investigate metabolic changes of Saccharomyces cerevisiae in aerobic fed-batch systems which are generally applied in bankers' yeast manufacture. The four types of metabolism (oxidation of glucose, aerobic fermentation, oxidation of glucose and ethanol, and oxidation of ethanol) appearing in such systems are characterized by four significant fermentation parameters: Respiratory quotient (RQ), glucose uptake rate (Qg), ethanol turnover rate (QEtOH), and growth yield on glucose (Yg). Below the critical glucose concentration glucose and ethanol are utilized simultaneously. The shift from aerobic fermentation to nondiauxic growth on glucose and ethanol is not only dependent on glucose concentration. but also on the precultivation on cells. The uptake of ethanol is controlled by the glucose supply except in the case when ethanol is limiting; the oxygen uptake rate (Qo2), however, is unaffected by the ratio of Qg and QEtOH. Critical glucose concentration is not a constant value for a particular strain, but varies corresponding to the nutritional state of the cells.  相似文献   

6.
Sinha  A.K.  Roitsch  T. 《Photosynthetica》2001,39(4):611-614
The effects of metabolisable sugars sucrose and glucose along with non-metabolisable isomers of sucrose palatinose and turanose were tested. Rate of oxygen evolution (P), electron transport rate (ETR), and photochemical quenching (qp) showed substantial decrease after 24 and 48 h by glucose and sucrose treatments, whereas there was no effect on all these parameters by the treatment with palatinose and turanose. Also the Fv/Fm ratio remained constant through the time of studies revealing that the maximal photochemical capacity of the cells was unchanged. Non-photochemical quenching (qN) showed a decrease compared to the control values by all the treatments. Hence P and Chl fluorescence parameter were affected only by those sugars which are used in the metabolic pathways and not by sugar analogues.  相似文献   

7.
Summary As shown in earlier studies in production scale bioreactors oxygen limited zones occur. Microorganisms in these reactors are therefore subjected to concentrations of oxygen varying with time. To simulate these conditions, the effect of low oxygen concentrations upon product formation and kinetics of oxygen of Gluconobacter oxydans are studied at laboratory scale.Under these oxygen limited conditions comparable kinetic parameters for oxygen are observed as under normally aerated conditions.So, a saturation constant for oxygen K O 2=6.9 mol/l is observed, which is equivalent to a DOT value of about 3% of air saturation.For optimization purposes of production scale conditions, gassing with oxygen enriched air or with pure oxygen is one of the possibilities.To study the effect of high oxygen concentrations upon kinetics and product formation, the organisms are also cultivated under these extreme conditions. Although at oxygen concentrations larger then 60% saturation with pure oxygen, still growth was observed, the growth rate and also the product formation rate were strongly diminished.From these experiments it can be concluded that gassing with pure oxygen to achieve higher oxygen transfer rates at production scale will be restricted.  相似文献   

8.
Two structurally related polyene macrolides are produced by Streptomyces diastaticus var. 108: rimocidin (3a) and CE-108 (2a). Both bioactive metabolites are biosynthesized from the same pathway through type I polyketide synthases by choosing a starter unit either acetate or butyrate, resulting in 2a or 3a formation, respectively. Two additional polyene amides, CE-108B (2b) and rimocidin B (3b), are also produced “in vivo” when this strain was genetically modified by transformation with engineered SCP2*-derived vectors carrying the ermE gene. The two polyene amides, 2b and 3b, showed improved pharmacological properties, and are generated by a tailoring activity involved in the conversion of the exocyclic carboxylic group of 2a and 3a into their amide derivatives. The improvement on some biological properties of the resulting polyenes, compared with that of the parental compounds, encourages our interest for isolating the tailoring gene responsible for the polyene carboxamide biosynthesis, aimed to use it as tool for generating new bioactive compounds. In this work, we describe the isolation from S. diastaticus var. 108 the corresponding gene, pcsA, encoding a polyene carboxamide synthase, belonging to the Class II glutamine amidotransferases and responsible for “in vivo” and “in vitro” formation of CE-108B (2b) and rimocidin B (3b). The fermentation broth from S. diastaticus var. 108 engineered with the appropriate pcsA gene construction, showed the polyene amides to be the major bioactive compounds.  相似文献   

9.
The effect of growth rate on the physiology of Beneckea natriegens was studied in chemostat culture. The molar growth yields (Y) from glucose and oxygen, the specific rates of oxygen (q O 2) and glucose (q glc) consumption and the specific rate of CO2 production (q CO 2) were linearly dependent on the growth rate over the dilution rate 0.17 h-1 to 0.60 h-1. Further increase in the dilution rate resulted in a decrease in growth yield and respiration rate and these changes were coincident with increases in the specific rate of glucose utilisation and of acetate production. The affinity of Beneckea natriegens for glucose was similar when measured either directly in chemostat culture or in a closed oxygen electrode system using harvested bacteria. The total content of cytochromes decreased with increasing growth rate. However, the quantity of CO-binding cytochromes remained independent of growth rate and correlated with the potential respiration rate.  相似文献   

10.
From cell-free extracts of Streptomyces RGU5.3, a tailoring activity of pimaricin, leading to the biosynthesis of its natural carboxamide derivative AB-400, was recently identified. The two polyene macrolides, pimaricin and AB-400, were produced in almost equal quantities and can be detected in the fermentation broth of the producer strain. This report concerns the isolation and partial characterization of the gene, polyene carboxamide synthase (pcsB), responsible for the bioconversion. The gene encoded an asparagine synthase-like protein, belonging to the type II glutamine amidotransferase family, and was named pcsB. The fermentation broth of a recombinant strain carrying the engineered pcsB gene under the control of the inducible tipA promoter within an integrative vector produces the carboxamide AB-400 as the main polyene macrolide.  相似文献   

11.
The mathematical model of an aerobic culture of recombinant yeast presented in work by Zhang et al. (1997) is given by a differential-algebraic system. The classical nonlinear observer algorithms are generally based on ordinary differential equations. In this paper, first we extend the nonlinear observer synthesis to differential-algebraic dynamical systems. Next, we apply this observer theory to the mathematical model proposed in Zhang et al. (1997). More precisely, based on the total cell concentration and the recombinant protein concentration, the observer gives the online estimation of the glucose, the ethanol, the plasmid-bearing cell concentration and a parameter that represents the probability of plasmid loss of plasmid-bearing cells. Numerical simulations are given to show the good performances of the designed observer.Symbols C 1 activity of pacing enzyme pool for glucose fermentation (dimensionless) - C 2 activity of pacing enzyme pool for glucose oxidation (dimensionless) - C 3 activity of pacing enzyme pool for ethanol oxidation (dimensionless) - E ethanol concentration (g/l) - G glucose concentration (g/l) - k a regulation constant for (g glucose/g cell h–1) - k b regulation constant for (dimensionless) - k c regulation constant for (g glucose/g cell h–1) - k d regulation constant for (dimensionless) - K m1 saturation constant for glucose fermentation (g/l) - K m2 saturation constant for glucose oxidation (g/l) - K m3 saturation constant for ethanol oxidation (g/l) - L ( t) time lag function (dimensionless) - p probability of plasmid loss of plasmid-bearing cells (dimensionless) - P recombinant protein concentration (mg/g cell) - q G total glucose flux culture time (g glucose/g cell h) - t culture time (h) - t lag lag time (h) - X total cell concentration (g/l) - X + plasmid-bearing cell concentration (g/l) - Y F X / G cell yield for glucose fermentation pathway (g cell/g glucose) - Y O X / G cell yield for glucose oxidation pathway (g cell/g glucose) - Y X / E cell yield for ethanol oxidation pathway (g cell/g ethanol) - Y E / X ethanol yield for fermentation pathway based on cell mass (g ethanol·g cell) - 2 glucoamylase yield for glucose oxidation (units/g cell) - 3 glucoamylase yield for ethanol oxidation (units/g cell) - µ1 specific growth rate for glucose fermentation (h–1) - µ2 specific growth rate for glucose oxidation (h–1) - µ3 specific growth rate for ethanol oxidation (h–1) - µ1max maximum specific growth rate for glucose fermentation (h–1) - µ2max maximum specific growth rate for glucose oxidation (h–1) - µ3max maximum specific growth rate for ethanol oxidation (h–1)  相似文献   

12.
Glucose metabolism in peripheral blood lymphocytes from the brown trout Salmo trutta has been studied. Glucose is taken up by means of a sodium-independent saturable process (K m=10.8 mmol·l-1), as well as by simple diffusion. Once within the cell, most of glucose is directed to lactate production through either the Embden-Meyerhof pathway or the hexose-monophosphate shunt. Rates of lactate formation are higher than rates of CO2 formation. Glutamine does not exert an effect on either glucose uptake or glucose metabolism. The present study provides information regarding the nature of energy sources for different cell types in salmonids.Abbreviations 3-OMG 3-O-methyl glucose - EM Embden-Meyerhoff pathway - G6D glucose-6-phosphate dehydrogenase - HK hexokinase - HMS hexose monophosphate shunt - ICDH isocitrate dehydrogenase - K m apparent Michaelis constant - LDH lactate dehydrogenase - MCB modified Cortland buffer - PBL peripheral blood lymphocytes - PFK fructose-6-phosphate kinase - PK pyruvate kinase - RBC red blood cells - V max maximal rate of uptake  相似文献   

13.
Summary Cultures of Rhizobium trifolii, Rh. leguminosarum, Rh. meliloti and Rh. japonicum were grown in the Novy-Soule type of respiration apparatus and the oxygen consumed, CO 2 produced and glucose fermented determined. From these data the respiratory quotient, the percentage of glucose used, and the carbon of the glucose used that appeared as CO2-carbon were calculated. Since very little acids or neutral products are formed by these organisms, the carbohydrate destroyed and not appearing as CO2 is a measure of gum production by the organisms.With Rh. trifolii, Rh. leguminosarum and Rh. meliloti, the glucose used, the rate of respiration, and to some extent the glucose that appeared as CO2, increase with increasing p O2. About 60 to 80 per cent of the carbon in the glucose utilized appears in the CO2 produced. All of these cultures had an R. Q. close to unity which was independent of the p O2. The respiratory quotient of Rh. leguminosarum was inclined to be erratic.With Rh. japonicum, the rate of respiration, total oxygen consumed, and total CO2 produced were much lower than the values observed for the other cultures, Also the glucose used increased with decreasing p O2. The apparatus used was not sufficiently sensitive to detect marked differences in the rate of respiration under the various tensions of oxygen with this organism, but there appeared to be a small increase in the rate of respiration with the higher tensions of oxygen.With all organisms, excellent fermentation of glucose with a high conversion into CO2 was observed under low tensions of oxygen (five per cent or less), provided the absolute quantity of this gas was present in excess of the requirements of the organisms.Herman Frasch Foundation in Agricultural Chemistry Paper No. 66.  相似文献   

14.
Changes in the catabolic pattern of Saccharomyces cerevisiae, growing in continuous culture, were effected by altering the glucose feed rate or the dissolved oxygen concentration. The cytochrome concentrations and the adenosine phosphate pool level of the yeast in a series of steady states and during three transitions were measured and compared with the glucose uptake rate (QG), the respiration rate (QO2), and the rate of ethanolic fermentation (QE). Respiration was decreased at high glucose feed rates only if oxygen was low but cytochromes were glucose repressible at both high and low oxygen concentrations. In the main, QE and the levels of ATP, ADP, and AMP were decreased and cytochrome concentration were elevated at low QG values. No consistent relationship between any of the adenosine phosphate parameters and QO2 was discernible. Evidence is presented for the concept that the QG directly controls the adenosine phosphate pool level and that a relationship between the concentration of adenosine phosphate anhydride bonds and the adenosine phosphate level is constantly maintained.  相似文献   

15.
Use of the glucose oxidase system to measure oxygen transfer rates   总被引:1,自引:0,他引:1  
This investigation used the glucose oxidase system to simulate oxygen transfer rate in fermentation broths. It was demonstrated that the fungal preparation contained sufficient lactonase activity so that D -glucono-δ-lactone did not accumulate and that the rate of production of gluconic acid was proportional to the oxygen uptake rate. Enzyme concentrations of 1.5–2 g/1 were found adequate to determine oxygen absorption rates in shake flasks while maintaining the dissolved oxygen concentration of low levels. The apparent Michaelis constant for oxygen, Km(O2), was found to be 27% saturation with air; this value along with experimentally determined uptake rates could be used to calculate dissolved oxygen concentration in lieu of using a dissolved oxygen probe. Enzyme concentrations of 5 g/l were sufficient to give linear acid production and low dissolved oxygen concentrations in a bench-scale fermenter with no foaming or enzyme deactivation. The method is considered more valid and easier to employ than previously utilized techniques such as sulfite oxidation. Extension of the system to evaluating aeration effectiveness and scaleup of fermentation equipment is discussed.  相似文献   

16.
The coil–helix transition has been studied for alkali metal salts of poly (L -glutamic acid) (PLG), i.e., PLGLi, -Na, -K, and -Cs, in aqueous organic solvent systems. Dependence of the transition on the solvent composition has been qualitatively discussed in terms of the solvent dielectric constant D, Gutmann's acceptor number AN, and water activity aw. The helix formation induced by addition of alkali chlorides has also been studied. The sharpness of the transition has been interpreted as a measure of reduction of electrostatic energy of helical PLG through contact ion-pair formation between a counterion and carboxyl anion.  相似文献   

17.
Summary Intraparticle diffusion resistance was studied for Papaver somniferum cells immobilized by Ca alginate gel. In callus tissue, these plant cells convert codeinone to codeine. First, the diffusion rates of substrates in the gel were measured, followed by investigation of the consumption rates of the substrates by free cells. The consumption rate of sucrose was zero order in relation to sucrose concentration, whereas that of codeinone was first order in relation to its concentration. The oxygen consumption rate obeyed Michaelis-Menten type kinetics with respect to dissolved oxygen concentration. Combining the reaction rates and diffusion rates allows calculation of the extent of the effect of diffusion limitation on the overall reaction rates. The analysis showed that the effectiveness factor for each substrate was about unity and that the influence of diffusion resistance was negligible. However, the oxygen concentration decreased considerably inside the particle, and this may affect the activity of the plant cell for repeated use over a long time period. Thus, deactivation proceeds due to the oxygen deficit although the temporal reaction rate is not affected.Abbreviations C c cell concentration (g/l) - C cod codeinone concentration (g/l) - c O 2 dissolved oxygen concentration (g/l) - K m constant in Eq. (3) (g/l) - K cod rate constant in Eq. (1) (l/g of cells per second) - k suc rate constant in Eq. (2) (g sucrose/g of cells per second) - R radius of particles (mm) - r distance from the centre of the particle (mm) - r cod consumption rate of codeinone (g codeinone/g of cells per second) - r O 2 consumption rate of O2 (g oxygen/g of cells per second) - r suc consumption rate of sucrose (g sucrose/g of cells per second) - V m maximum respiration rate (g oxygen/g of cells per second) T. Nozawa is now with the Department of Agricultural Chemistry, University of TokyoT. Isohara is now with the Nippon Steel Corporation  相似文献   

18.
The electronic structures of small, odd-membered, all-trans polyenes doped with one Na atom at various positions have been investigated using Hartree-Fock and density functional (B3LYP) theory with a 6-31G(d) basis set. Two distinctly different structural motifs have been identified. In one motif, the dopant atom interacts with an allylic polyene unit in a 4-electron interaction that results in a planar polyene backbone. The other motif has the dopant atom interacting with a pentadienyl polyene unit in a 6-electron interaction, which produces a significantly warped polyene backbone. Independent of structural motif at the doping site, the portion of the polyene structure outside the interaction region remains largely undisturbed in terms of planarity and bond length alternation. For a particular formula unit and potential energy surface, the stationary points corresponding to minima and transition states are remarkably close in energy despite the pronounced changes that occur in the dihedral angles of the polyene backbone at the dopant sites. Whereas internal and external instabilities are found in the Hartree-Fock wavefunctions for NaC7H9 and NaC9H11 structures, the restricted B3LYP wavefunctions are stable for all structures investigated.Electronic Supplementary Material available.  相似文献   

19.
Optimal enzyme feed rate profiles have been calculated, based on a model for a fed-batch simultaneous enzymatic and microbial reaction (SEMR) process. The model parameters corresponded to a relatively slow citric acid fermentation. The profiles were calculated using an iterative algorithm based on the minimum principle. Penalty functions were used to enforce inequality constraints on the enzyme feed rate. Significant improvements in the objective function relative to that for the best constant enzyme feed rate were found. The effect on the optimal profiles of changes in the parameters of the model and the objective function were investigated, as was the effect of introducing the stationary state assumption to eliminate glucose concentration as a state variable. Major differences between bang-bang control variable profiles and singular arcs were found, with the singular arc solution slightly better than the optimal bang-bang control.List of Symbols a N-vector of initial conditions - b 1–b10 parameters defined in Table 2 - c vector of cost parameters - c 1–c6 penalty function parameters - E enzyme concentration (U/l) - f N-vector of functions - F enzyme feed rate (U/l-h) - g N-vector of functions - G glucose concentration (g/l) - H Hamiltonian - J objective function - J * modified objective function - L number of integration steps per time interval - L number of control variables - M number of time intervals - n iteration index - N number of state variables - P product concentration (g/l) - r 1 glucose formation rate (g/l-h) - r 2 product formation rate (g/l-h) - t time (h) - T final time (h) - u L-vector of control variables - x N-vector of state variables - z N-vector of adjoint variables - Z total enzyme fed (U/l) Greek convergence parameter The support of one of the authors by the National Science Foundation (Grant CBT-84-20552) is gratefully acknowledged.  相似文献   

20.
Four software sensors based on standard on-line data from fermentation processes and simple mathematical models were used to monitor a number of state variables in Escherichia coli fed-batch processes: the biomass concentration, the specific growth rate, the oxygen transfer capacity of the bioreactor, and the new R O/S sensor which is the ratio between oxygen and energy substrate consumption. The R O/S variable grows continuously in a fed-batch culture with constant glucose feed, which reflects the increasing maintenance demand at declining specific growth rate. The R O/S sensor also responded to rapid pH shift-downs reflecting the increasing demand for maintenance energy. It is suggested that this sensor may be used to monitor the extent of physiological stress that demands energy for survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号