首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calpain, a calcium-activated cysteine protease, is involved in modulating a variety of cell activities such as shape change, mobility, and apoptosis. The two ubiquitous isoforms of this protease, calpain I and II, are considered to be cytosolic proteins that can translocate to various sites in the cell. The activity of calpain is modulated by two regulatory proteins, calpastatin, the specific endogenous inhibitor of calpain, and the 28-kDa regulatory subunit. Using velocity gradient centrifugation, the results of this study confirm and greatly expand upon our previous finding that the calpain/calpastatin network is associated with the endoplasmic reticulum and Golgi apparatus in cells. Moreover, confocal microscopy demonstrates that calpain II colocalizes with specific proteins found in these organelles. Additional experiments reveal that hydrophobic rather than electrostatic interactions are responsible for the association of the calpain/calpastatin network with these organelles. Treatment of the organelles with Na2CO3 or deoxycholate reveal that calpain I, 78-kDa calpain II, and the regulatory subunit are "embedded" within the organelle membranes similar to integral membrane proteins. Proteinase K treatment of the organelles shows that calpain I and II, calpastatin, and the regulatory subunit localize to the cytosolic surface of the organelle membranes, and a subset of calpain II and the regulatory subunit are also found within the lumen of these organelles. These results provide a new and novel explanation for how the calpain/calpastatin network is organized in the cell.  相似文献   

2.
The Rab6 GTPase regulates a retrograde transport route connecting endosomes and the endoplasmic reticulum (ER) via the Golgi apparatus. Recently it was shown that active (GTP-loaded) Rab6A regulates intracellular processing of the amyloid precursor protein (APP). To characterize the role of Rab6A in APP trafficking and to identify effector proteins of the active Rab6A protein, we screened a human placenta cDNA library using the yeast two-hybrid system. We isolated an interacting cDNA clone encoding part of the adaptor protein mint3. The interaction between Rab6A and mint3 is GTP-dependent and requires the complete phosphotyrosine-binding (PTB) domain of the mint protein, which also mediates the association with APP. By confocal microscopy we show that Rab6A, mint3 and APP co-localize at Golgi membranes in HeLa cells. Density gradient centrifugation of cytosolic extracts confirms a common distribution of these three proteins. Our data suggest that mint3 links Rab6A to APP traffic.  相似文献   

3.
Vascular smooth muscle contains large amounts of the Ca2+-dependent protease calpain II. In this study, we compared bovine aortic muscle (muscle phenotype) to cultured bovine aortic cells of smooth muscle origin (modulated phenotype) with respect to major constituents of the calpain—calpastatin system. Bovine aortic muscle contained only calpain II by activity measurements, Western blot of tissue extracts and Northern blot of poly(A)+ RNA. On the other hand, using the same methodologies, both calpains I and II as well as the 110 kDa inhibitor protein, calpastatin, were identified in cultured bovine aortic cells of smooth muscle origin. We conclude that the phenotypic state of smooth muscle cells is associated with differential expression of major components of the calpain—calpastatin system. Moreover, bovine aortic muscle is the only tissue identified to date that contains calpain II exclusively.  相似文献   

4.
Rab1 GTPase coordinates vesicle-mediated protein transport specifically from the endoplasmic reticulum (ER) to the Golgi apparatus. We recently demonstrated that Rab1 is involved in the export of angiotensin II (Ang II) type 1 receptor (AT1R) to the cell surface in HEK293 cells and that transgenic mice overexpressing Rab1 in the myocardium develop cardiac hypertrophy. To expand these studies, we determined in this report whether the modification of Rab1-mediated ER-to-Golgi transport can alter the cell surface expression and function of endogenous AT1R and AT1R-mediated hypertrophic growth in primary cultures of neonatal rat ventricular myocytes. Adenovirus-mediated gene transfer of wild-type Rab1 (Rab1WT) significantly increased cell surface expression of endogenous AT1R in neonatal cardiomyocytes, whereas the dominant-negative mutant Rab1N124I had the opposite effect. Brefeldin A treatment blocked the Rab1WT-induced increase in AT1R cell surface expression. Fluorescence analysis of the subcellular localization of AT1R revealed that Rab1 regulated AT1R transport specifically from the ER to the Golgi in HL-1 cardiomyocytes. Consistent with their effects on AT1R export, Rab1WT and Rab1N124I differentially modified the AT1R-mediated activation of ERK1/2 and its upstream kinase MEK1. More importantly, adenovirus-mediated expression of Rab1N124I markedly attenuated the Ang II-stimulated hypertrophic growth as measured by protein synthesis, cell size, and sarcomeric organization in neonatal cardiomyocytes. In contrast, Rab1WT expression augmented the Ang II-mediated hypertrophic response. These data strongly indicate that AT1R function in cardiomyocytes can be modulated through manipulating AT1R traffic from the ER to the Golgi and provide the first evidence implicating the ER-to-Golgi transport as a regulatory site for control of cardiomyocyte growth.  相似文献   

5.
Rice (Oryza sativa) glutelins are synthesized on the endoplasmic reticulum as larger precursors, which are then transported via the Golgi to the protein storage vacuole (PSV), where they are processed into acidic and basic subunits. Three independent glutelin precursor mutant4 (glup4) rice lines, which accumulated elevated levels of proglutelin over the wild type, were identified as loss-of-function mutants of Rab5a, the small GTPase involved in vesicular membrane transport. In addition to the plasma membrane, Rab5a colocalizes with glutelins on the Golgi apparatus, Golgi-derived dense vesicles, and the PSV, suggesting that Rab5a participates in the transport of the proglutelin from the Golgi to the PSV. This spatial distribution pattern was dramatically altered in the glup4 mutants. Numerous smaller protein bodies containing glutelin and α-globulin were evident, and the proteins were secreted extracellularly. Moreover, all three independent glup4 allelic lines displayed the novel appearance of a large dilated, structurally complex paramural body containing proglutelins, α-globulins, membrane biomarkers for the Golgi apparatus, prevacuolar compartment, PSV, and the endoplasmic reticulum luminal chaperones BiP and protein disulfide isomerase as well as β-glucan. These results indicate that the formation of the paramural bodies in glup4 endosperm was due to a significant disruption of endocytosis and membrane vesicular transport by Rab5a loss of function. Overall, Rab5a is required not only for the intracellular transport of proglutelins from the Golgi to the PSV in rice endosperm but also in the maintenance of the general structural organization of the endomembrane system in developing rice seeds.  相似文献   

6.
Rab GTPases are localized to various intracellular compartments and are known to play important regulatory roles in membrane trafficking. Here, we report the subcellular distribution and function of Rab14. By immunofluorescence and immunoelectron microscopy, both endogenous as well as overexpressed Rab14 were localized to biosynthetic (rough endoplasmic reticulum, Golgi, and trans-Golgi network) and endosomal compartments (early endosomal vacuoles and associated vesicles). Notably overexpression of Rab14Q70L shifted the distribution toward the early endosome associated vesicles, whereas the S25N and N124I mutants induced a shift toward the Golgi region. A similar, although less pronounced, redistribution of the transferrin receptor was also observed in cells overexpressing Rab14 mutants. Impairment of Rab14 function did not however affect transferrin uptake or recycling kinetics. Together, these findings suggest that Rab14 is involved in the biosynthetic/recycling pathway between the Golgi and endosomal compartments.  相似文献   

7.
The small GTPase Rab6 regulates retrograde membrane traffic from endosomes to the Golgi apparatus and from the Golgi to the endoplasmic reticulum (ER). We examined the role of a Rab6-binding protein, TMF/ARA160 (TATA element modulatory factor/androgen receptor-coactivator of 160 kDa), in this process. High-resolution immunofluorescence imaging revealed that TMF signal surrounded Rab6-positive Golgi structures and immunoelectron microscopy revealed that TMF is concentrated at the budding structures localized at the tips of cisternae. The knockdown of either TMF or Rab6 by RNA interference blocked retrograde transport of endocytosed Shiga toxin from early/recycling endosomes to the trans-Golgi network, causing missorting of the toxin to late endosomes/lysosomes. However, the TMF knockdown caused Rab6-dependent displacement of N-acetylgalactosaminyltransferase-2 (GalNAc-T2), but not beta1,4-galactosyltransferase (GalT), from the Golgi. Analyses using chimeric proteins, in which the cytoplasmic regions of GalNAc-T2 and GalT were exchanged, revealed that the cytoplasmic region of GalNAc-T2 plays a crucial role in its TMF-dependent Golgi retention. These observations suggest critical roles for TMF in two Rab6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER.  相似文献   

8.
The calpain–calpastatin system, which consists of calpains I and II (two ubiquitously distributedcium-activated pa-like cysteine proteases), as well as calpastatin (the endogenous calpain inhibitor), plays an important role in cell proliferation and differentiation in many tissues. However, its contribution to the regulation of osteoprogenitor or pluripotent stem cell proliferation and differentiation into osteoblasts remains poorly defined. In these studies, rat pluripotent mesodermal cells (ROB-C26) and mouse MC3T3-E1 preosteoblasts were induced to differentiate into osteoblasts by long-term culture or in response to bone morphogenetic protein (BMP). The occurrence and distribution of calpain–calpastatin system proteins were determined by immunofluorescent microscopy, measurement of calcium-dependent proteolytic activity, and Western blotting. Treatment of intact MC3T3-E1 cells with an irreversible, membrane-permeable cysteine protease inhibitor attenuated proliferation and alkaline phosphatase upregulation under differentiation-enhancing conditions. Calpain II activity increased during differentiation of MC3T3-E1 cells in postconfluent culture. When ROB-C26 cells were maintained in long-term culture, neutral protease, calpain I, and calpain II activities increased 2- to 3-fold in the absence of BMP. In the presence of partially purified native BMP, neutral protease and calpain I activities also increased similarly, but calpain II activity increased by 10-fold in 3 days. The maximal increase in alkaline phosphatase occurred 4 to 11 days after the calpain II activity had peaked. Induction of differentiation in long-term MC3T3-E1 cultures was associated with higher calpain II and 70- and 110-kDa calpastatin protein levels and lower 17-kDa calpastatin degradation product levels. In conclusion, cysteine protease activity is essential for preosteoblastic proliferation and differentiation. The calpain–calpastatin system is regulated during osteoprogenitor proliferation and differentiation, as it is in other cells, and bone morphogenetic protein is a specific regulator of calpain II.  相似文献   

9.
Members of the Rab family of small molecular weight GTPases regulate the fusion of transport intermediates to target membranes along the biosynthetic and endocytic pathways. We recently demonstrated that Rab1 recruitment of the tethering factor p115 into a cis -SNARE complex programs coat protein II vesicles budding from the endoplasmic reticulum (donor compartment) for fusion with the Golgi apparatus (acceptor compartment) (Allan BB, Moyer BD, Balch WE. Science 2000; 289: 444–448). However, the molecular mechanism(s) of Rab regulation of Golgi acceptor compartment function in endoplasmic reticulum to Golgi transport are unknown. Here, we demonstrate that the cis -Golgi tethering protein GM130, complexed with GRASP65 and other proteins, forms a novel Rab1 effector complex that interacts with activated Rab1-GTP in a p115-independent manner and is required for coat protein II vesicle targeting/fusion with the cis -Golgi. We propose a 'homing hypothesis' in which the same Rab interacts with distinct tethering factors at donor and acceptor membranes to program heterotypic membrane fusion events between transport intermediates and their target compartments.  相似文献   

10.
Modification by ubiquitin plays a major role in a broad array of cellular functions. Although reversal of this process, deubiquitination, likely represents an important regulatory step contributing to cellular homeostasis, functions of deubiquitination enzymes still remain poorly characterized. We have previously shown that the ubiquitin protease Ubp3p requires a co-factor, Bre5p, to specifically deubiquitinate the coat protein complex II (COPII) subunit Sec23p, which is involved in anterograde transport between endoplasmic reticulum and Golgi compartiments. In the present report, we show that disruption of BRE5 gene also led to a defect in the retrograde transport from the Golgi to the endoplasmic reticulum. Further analysis indicate that the COPI subunit beta'-COP represents another substrate of the Ubp3p.Bre5p complex. All together, our results indicate that the Ubp3p.Bre5p deubiquitination complex co-regulates anterograde and retrograde transports between endoplasmic reticulum and Golgi compartments.  相似文献   

11.
All mammalian cells contain a calcium-dependent proteolytic system, composed by a proteinase, calpain, and an inhibitor, calpastatin. In some cell types an activator protein has also been identified. Moreover, two calpain isoforms, distinguishable on the basis of a different calcium requirement, can be present in a single cell. Both calpain forms are heterodimers composed of a heavy subunit (80 kDa) that contains the catalytic site and a smaller (regulatory?) subunit (30 kDa). Calpain I expresses full activity at 10-50 microM Ca2+, whereas calpain II requires calcium concentrations in the millimolar range. The removal by autoproteolysis of a fragment from the N-terminus of both calpain subunits generates a proteinase form that can express catalytic activity at concentrations of Ca2+ close to the physiological range. This process is significantly accelerated in the presence of cell membranes or phospholipid vesicles. Calpastatin, the specific inhibitor of calpain, prevents activation and the expression of catalytic activity of calpain. It is in itself a substrate of the proteinase and undergoes a degradation process which correlates with the general mechanism of regulation of the intracellular proteolytic system. The natural calpain activator specifically acts on calpain II isoform, by reducing the Ca2+ required for the autoproteolytic activation process. Based on the general properties of the calpain-calpastatin system and on the substrate specificity, its role in the expression of specific cell functions can be postulated.  相似文献   

12.
Toxoplasma gondii relies on protein secretion from specialized organelles for invasion of host cells and establishment of a parasitophorous vacuole. We identify T. gondii Rab6 as a regulator of protein transport between post-Golgi dense granule organelles and the Golgi. Toxoplasma Rab6 was localized to cisternal rims of the late Golgi and trans-Golgi network, associated transport vesicles, and microdomains of dense granule and endosomal membranes. Overexpression of wild-type Rab6 or GTP-activated Rab6(Q70L) rerouted soluble dense granule secretory proteins to the Golgi and endoplasmic reticulum and augmented the effect of brefeldin A on Golgi resorption to the endoplasmic reticulum. Parasites expressing a nucleotide-free (Rab6(N124I)) or a GDP-bound (Rab6(T25N)) mutant accumulated dense granule proteins in the Golgi and associated transport vesicles and displayed reduced secretion of GRA4 and a delay in glycosylation of GRA2. Activated Rab6 on Golgi membranes colocalized with centrin during mitosis, and parasite clones expressing Rab6 mutants displayed a partial shift in cytokinesis from endodyogeny (formation of two daughter cells) to endopolygeny (multiple daughter cells). We propose that Toxoplasma Rab6 regulates retrograde transport from post-Golgi secretory granules to the parasite Golgi.  相似文献   

13.
MYOC, a gene involved in different types of glaucoma, encodes myocilin, a secreted glycoprotein of unknown function, consisting of an N-terminal leucine-zipper-like domain, a central linker region, and a C-terminal olfactomedin-like domain. Recently, we have shown that myocilin undergoes an intracellular endoproteolytic processing. We show herein that the proteolytic cleavage in the linker region splits the two terminal domains. The C-terminal domain is secreted to the culture medium, whereas the N-terminal domain mainly remains intracellularly retained. In transiently transfected 293T cells, the cleavage was prevented by calpain inhibitors, such as calpeptin, calpain inhibitor IV, and calpastatin. Since calpains are calcium-activated proteases, we analyzed how changes in either intra- or extracellular calcium affected the cleavage of myocilin. Intracellular ionomycin-induced calcium uptake enhanced myocilin cleavage, whereas chelation of extracellular calcium by EGTA inhibited the proteolytic processing. Calpains I and II cleaved myocilin in vitro. However, in cells in culture, only RNA interference knockdown of calpain II reduced myocilin processing. Subcellular fractionation and digestion of the obtained fractions with proteinase K showed that full-length myocilin resides in the lumen of the endoplasmic reticulum together with a subpopulation of calpain II. These data revealed that calpain II is responsible for the intracellular processing of myocilin in the lumen of the endoplasmic reticulum. We propose that this cleavage might regulate extracellular interactions of myocilin, contributing to the control of intraocular pressure.  相似文献   

14.
Calcium-activated neutral proteases (calpain, EC 3.4.22.17) bind to agarose matrices (Bio-Gel A-150m, Sepharose 4B, and Ultrogel AcA 34) with high affinity in the presence of calcium. 6-O-beta-Galactopyranosyl-D-galactose, a disaccharide which closely resembles the repeating unit of the agarose matrices, completely blocks the binding of calpains and can release agarose-bound enzymes in the presence of calcium. At least 1 microM level of free calcium is required for binding. Other calcium binding proteins, including calmodulin, calpastatin, casein, and neurofilament proteins, fail to bind under the same conditions. Both calpain I and calpain II can be readily purified from crude enzyme preparations by agarose chromatography in the presence of calcium and leupeptin. Agarose-bound enzymes are eluted with calcium-free solutions or can be released in the presence of calcium by 1% Triton X-100, but not by 1 M urea or 20% ethylene glycol. Enzymes eluted from agarose are activated, as evidenced by the appearance of faster migrating forms (76 and 78 kDa) of the 80-kDa catalytic subunit of calpain I upon electrophoresis and by the increased sensitivity of calpain II to activation by micromolar levels of calcium. The electrophoretic migration of the 30-kDa regulatory subunit is, however, unaltered in enzyme fractions eluted from an agarose column. When the enzyme subunits are dissociated in 1 M NaSCN, only the 30-kDa subunit binds to the agarose matrix. Furthermore, neither calpain I nor calpain II binds to agarose when their 30-kDa subunit is autocatalyzed to an 18-kDa fragment, indicating that the NH2-terminal of the 30-kDa subunit is important for the binding of calpains to an agarose matrix.  相似文献   

15.
The effects of the fungal metabolite brefeldin A (BFA) on the endocytic routes of internalised wheat germ agglutinin (WGA) were studied in human HepG2 hepatoma cells, drawing particular attention to the application times in relation to the membrane dynamics occurring at the trans Golgi face during endocytosis. As shown in previous studies, transport of internalised WGA into the Golgi apparatus can be classified in three stages being characterised by predominance of vesicular endosomes (stage I), formation of an extended endocytic trans Golgi network (stage II) and uptake of WGA into the stacked Golgi cisternae (stage III). BFA treatment of the cells led to rapid tubular-reticular transformations of the Golgi stacks. Retrograde transport and further destinations of internalised WGA depended on the time of BFA application. When BFA was administered during stages I or II, WGA was localised within the BFA-induced tubules and networks, but never was found within the endoplasmic reticulum. By contrast, BFA treatment during stage III led to a redistribution of internalised WGA into cisternae of the endoplasmic reticulum. These results show that BFA administered according to a precise time schedule can be used as a regulatory agent that allows to control retrograde traffic of internalised molecules into the endoplasmic reticulum.  相似文献   

16.
Two forms of Ca(++)-activated protease (calpain I and calpain II) associated with an endogenous inhibitor (calpastatin) were detected in a cytosolic fraction of the olfactory tissue of vertebrates (pig, rat). Using ion exchange chromatography on DEAE-cellulose column, calpain I is divided into 2 peaks (eluting by 0.07-0.15 and 0.22-0.25 M NaCl), and calpain II is eluted by 0.35-0.40 M NaCl. The calpain activity was detected in fractions eluted by 0.1-0.17 M NaCl. The Ca(++)-activated protease was demonstrated also in a fraction of cytoskeleton of olfactory tissue insoluble in a 1% solution of Triton X-100. The activity can be detected by Ca(++)-dependent destruction of exogenous substrate (casein), and by Ca(++)-dependent degradation of cytoskeletal endogenous proteins (16, 18 and 20 kDa), of which one may be calmodulin.  相似文献   

17.
Micromolar and millimolar Ca2+-requiring neutral protease (calpain I and calpain II) along with their endogenous inhibitor calpastatin were isolated and partially purified from the same preparation of rat intestinal epithelial cells. Calpain I and II were partially purified by 1300 and 900-fold with 57 and 53 per cent yield, respectively. The optimum assay conditions revealed pH 7.5, 20 min incubation at 25° C and 0.24% casein substrate for both calpains. The optimum calcium concentration obtained for calpain I and II were 25 M and 4 mM, respectively. Distribution of rat intestinal epithelial cells calpain I and II along with calpastatin during cell differentiation stages in weanling to senescence age were studied. Calpain I in weanling rats was in an increasing order from villus to crypt regions. Adult rats indicated well expressed consistent calpain I throughout the differentiation stages. Whereas, significant lowering towards crypt region cells were evident in old rats. Calpain II in weanling and adult rats was found to be consistent throughout the differentiation stages. Old animals revealed an increasing trend from villus to crypt region with insignificant activity present in upper villus cells. Concomitantly, different concentrations of calpastatin were observed throughout the differentiation stages in all the age groups. Moreover, the levels of calpains exceeded that of calpastatin in most of the epithelial cell populations during developmental stages. In addition to casein, intestinal epithelial cell membranes were found to be equally good substrates for calpains. Proteolytic susceptibility of weanling, adult and old rat membrane proteins varied significantly all along the ageing process in rats. Simultaneous age-dependent calpastatin response were also evident. Taken together the results obtained provided strong evidence that calpain plays significant role in rat intestinal cell differentiation and ageing process with calpastatin as its specific regulatory protein.Abbreviations DEAE-cellulose O-(Diethylaminoethyl)-cellulose - EDTA Ethylene Diamine Tetra Acetic Acid - Tris Tris (hydroxymethyl) amino methane - KH2PO4 potassium dihydrogen orthophosphate - Na2HPO4 disodium hydrogen phosphate - CaCl2 Calcium Chloride - TCA Trichloroacetic Acid - PMSF Phenylmethylsulfonyl Fluoride  相似文献   

18.
Polyclonal and monoclonal antibodies were used to examine the effects of the synthetic microtubule disruptive drug nocodazole on the subcellular expression of fibronectin, laminin, and ribosomes in primary cultures of neonatal cardiac ventricular cells. Non-invasive serial optical sectioning was carried out by immunolaser scanning confocal microscopy. In addition, fibronectin and laminin were immunolabelled with peroxidase or gold conjugates for electron-microscopic examination. Immunolabelling for the large 60S ribosome subunit in fibroblast-like non-myocytes showed that punctate ribosome structures with a multi-subunit composition were present in perinuclear region. Double immunostaining with antibodies directed against ribosomes and cellular fibronectin indicated that the punctate structures were cisternae of the rough endoplasmic reticulum. No clear effects of nocodazole treatment were detected on the distribution of cytoskeleton-bound ribosomes. Following immunolabelling for both glycoproteins and double immunolabelling for cellular fibronectin and the 60 S ribosome subunit, fibronectin and laminin were found in the perinuclear cisternae of the rough endoplasmic reticulum and in pleomorphic secretory vesicles. The cisternal stacks of the Golgi complex appeared either unstained or were only weakly labelled. When these cells were exposed to nocodazole, fibronectin and laminin accumulated in peripheral parts of the cytoplasm, including cellular processes. These peripheral accumulations of immunostaining for fibronectin and laminin did not reflect Golgi staining, as shown by double labelling experiments versus wheat-germ-agglutinin staining, and, by exposing cultures to a high dose of brefeldin A.  相似文献   

19.
A canine pancreas homogenate was subfractionated by several differential centrifugation steps. The distribution of cAMP-dependent protein kinase in the various fractions was monitored by assaying [3H]cAMP binding and photo-cross-linking of the regulatory subunits of the enzyme (RI and RII) with radiolabeled 8-azido-cAMP. The distribution of the kinase was also compared to that of markers for the plasma membrane, the endoplasmic reticulum and the cytosol. While our results confirm previous studies suggesting the presence of cyclic AMP-dependent protein kinase in the cytosol and Golgi, a significant amount of the total [3H] cAMP binding and photolabeled R subunits (both RI and RII) were found in rough microsomes (RM). The association is relatively resistant to extraction with EDTA, low and high ionic strength solutions. These extractions unmasked several new phosphorylation substrates in the "stripped" RM that were inaccessible in the RM, possibly because they were covered by ribosomes or peripheral membrane proteins. RII with a molecular mass of 52 kDa (RII-52 kDa) was the predominant RII found in the cytosolic fraction, whereas RII-52 kDa and RII with a molecular mass of 54 kDa (RII-54 kDa) were approximately equally enriched in the RM fraction. The mobility of the RII-52 kDa-photolabeled band could be shifted to the mobility of the RII-54 kDa band by phosphorylation with purified catalytic subunit and ATP, indicating that they represent "dephospho" and "phospho" forms of RII, respectively. A more precise localization to the rough endoplasmic reticulum was accomplished by isopycnic floatation in sucrose gradients. The enzyme cobanded at the density of rough microsomes and shifted to the lower density of "stripped" microsomes after treatment with puromycin/high salt, which specifically removes ribosomes.  相似文献   

20.
Toxin trafficking studies provide valuable information about endogenous pathways of intracellular transport. Subtilase cytotoxin (SubAB) is transported in a retrograde manner through the endosome to the Golgi and then to the endoplasmic reticulum (ER), where it specifically cleaves the ER chaperone BiP/GRP78 (Binding immunoglobin protein/Glucose-Regulated Protein of 78 kDa). To identify the SubAB Golgi trafficking route, we have used siRNA-mediated silencing and immunofluorescence microscopy in HeLa and Vero cells. Knockdown (KD) of subunits of the conserved oligomeric Golgi (COG) complex significantly delays SubAB cytotoxicity and blocks SubAB trafficking to the cis Golgi. Depletion of Rab6 and β-COP proteins causes a similar delay in SubAB-mediated GRP78 cleavage and did not augment the trafficking block observed in COG KD cells, indicating that all three Golgi factors operate on the same 'fast' retrograde trafficking pathway. SubAB trafficking is completely blocked in cells deficient in the Golgi SNARE Syntaxin 5 and does not require the activity of endosomal sorting nexins SNX1 and SNX2. Surprisingly, depletion of Golgi tethers p115 and golgin-84 that regulates two previously described coat protein I (COPI) vesicle-mediated pathways did not interfere with SubAB trafficking, indicating that SubAB is exploiting a novel COG/Rab6/COPI-dependent retrograde trafficking pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号