首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine whether transitions occur in the types of collagen synthesized during embryonic chick limb development, the α chain composition of the collagens produced by whole limbs and various anatomical regions of limbs was analyzed at different stages (23–24 to 40). The tissues were incubated in the presence of 3H-proline and 3H-lysine and the α chain distribution of the purified, labeled collagens was determined by chromatography on carboxymethyl cellulose columns. We found that the stage 23–24 leg mesenchyme is producing predominantly, if not solely, an (α1)2α2 type collagen (chain type as yet undetermined). At about stage 25–26 the limb core begins synthesizing detectable amounts of (α1)3 collagen, which we presume to be cartilage type collagen, [α1 (II)]3, while the outer portion of the limb largely continues to produce (α1)2α2. The production of (α1)3 collagen in the core progressively increases until, by stage 33 it is the only species detectable in the tibial diaphysis. Shortly thereafter (by stage 35+–36) (α1)2α2 type collagen reappears in the tibial diaphysis signifying the production of bone collagen, [α1 (I)]2α2. During the next several days of incubation, the relative proportion of (α1)2α2 increases in the bony diaphysis while (α1)3 remains the predominant species synthesized in the cartilaginous epiphysis.  相似文献   

2.
Growth of embryonic chick chondrocytes in dialyzed embryo extract results in both a change in morphology of the cells toward that of a fibroblast and a change in the type of collagen synthesized from the cartilage-specific Type II collagen (chain composition [α1(II)]3) to a mixture of Type I collagen (chain composition [α1(I)]2α2) and the Type I trimer (chain composition [α1(I)]3). Analyses after 6 days of growth in embryo extract show that the synthesis of only Type I collagen and the Type I trimer can be detected. However, on subculturing the cells to a low density and allowing a period of growth without embryo extract, colonies of chondrocytes reappear and the synthesis of Type II collagen apparently resumes. It is suggested that the observed changes represent a “modulation” in cell behavior, this being expressed not only by the morphological changes but also by changes in cell-specific protein synthesis as demonstrated by the changes in the type of collagen synthesized.  相似文献   

3.
A bone- and cartilage-forming mouse tumor, induced by transforming salivary epithelial cells with polyoma virus, contained large quantities of collagen. Two types of collagen molecules were isolated which had different solubilities in salt. One was type I collagen with a chain composition [α1(I)]2 α2 and the other was an unusual form of type I collagen with a chain composition [α1(I)]3. This would appear to be the first in vivo demonstration of α1 type I trimer.  相似文献   

4.
Two human type V collagen sub-molecular species, designated [α1(V)]2α2(V) and α1(V)α2(V)α3(V), were purified chromatographically from a commercially available preparation, in which cystine-rich collagenous contaminants were contained, with a column packed with Fractogel EMD SO3. From bovine crude preparations, the [α1(V)]2α2(V) form free from the collagenous contaminants was purified. Type V collagen subunit chains were isolated from each type V collagen molecule by anion-exchange HPLC with a Bakerbond PEI Scout column. The highly purified human type V collagen molecules and their subunit chains were used to examine the inhibitory effect on human umbilical vein endothelial cell proliferation. It was confirmed that the α1(V) chain has inhibitory activity and it was found that the inhibitory effect of the [α1(V)]2α2(V) form is stronger than that of the α1(V)α2(V)α3(V) form and that the α3(V) chain has no inhibitory activity.  相似文献   

5.
Procollagen and collagen were isolated from the culture medium and cell layer of line TSD4 (obtained from mouse teratocarcinoma OTT6050). SDS-polyacrylamide gel electrophoresis of the highly purified procollagen fraction demonstrated that the fraction is composed of θ chains (150,000 daltons), pro α chains (130,000 daltons), and α chains (100,000 daltons). Limited pepsin digestion of this fraction yielded a single species of collagen molecules having a chain composition (α1)3, as did collagen isolated from the cell layer. Each α1 chain appears to be slightly larger than α1 chains from calf or human type I and type III collagen. Amino acid analysis and cyanogen bromide peptide profiles of pepsin-treated TSD4 collagen demonstrated significant differences from those of other collagens (II, III, IV) of the type α1(X)3, although similar to that of the α1 chain of type I collagen, [α1(I)]2α2. Taken together, acrylamide gel electrophoresis, amino acid composition, electron microscopy, and cyanogen bromide peptide analysis indicate that this material represents a new molecular species of collagen not previously characterized, probably related to [α1(I)]3.  相似文献   

6.
Notochords, isolated from 2 12 day chick embryos, were cultured in the presence of 3H proline and the labeled proteins co-purified with chick skin carrier collagen. The purified material, most of which eluted from CM-cellulose as a single peak in the region of the carrier collagen α1 chain, contained 41% of the incorporated proline as hydroxyproline and from gel filtration measurements had a molecular weight of approximately 100,000 daltons. When the material was chromatographed on DEAE-cellulose with carrier α1 chains from both skin [α1 (I)] and cartilage [α1 (II)], it eluted predominantly with the cartilage chains.  相似文献   

7.
Collagen with a molecular composition [α1(I)]3 has been identified in acetic acid extracts from lathyritic chick embryo tendons and calvaria. These molecules characteristically have greater solubility than Type I collagen at neutral pH and contain increased amounts of hydroxylysine residues. It is suggested that these molecules represent a separate gene product of embryonic cells which may be important in the process of maturation and development.  相似文献   

8.
To determine the relationships between glycosaminoglycan (GAG) synthesis and type-specific collagen synthesis, we have investigated mouse limbs cultured in the presence of antiglutamine DON (6-diazo-5-oxo-l-norleucine). When compared to control limbs, ultrastructural examination of the DON-treated limbs shows that newly formed cartilage lacks matrix granules and the collagen fibrils have an altered morphology. Using [35S]sulfate as a precursor, we have found that DON (5 μg/ml) suppresses chondroitin sulfate synthesis to less than 15% of the control level. We have also examined the collagen synthesized in equivalent limbs labeled with [3H]proline. The α-chain patterns from CM-cellulose chromatography were very similar for control and experimental limbs (α1:α2 ~ 7), suggesting that both (α1)3- and (α1)2α2-type molecules were being produced. The (α1)3 molecules in both cases were identified as type II collagen by fractional salt separation and cyanogen bromide peptide mapping on CM-cellulose columns. We conclude that (1) the synthesis of type II collagen can be dissociated from the production of GAG, and (2) environmental influences can be involved in controlling the fibrillogenesis of collagen.  相似文献   

9.
The temporal and spatial distribution of short chain skeletal (Type X) collagen was immunohistochemically examined in the chick tibiotarsus from 6 days of embryonic development to 1 day posthatching. The monoclonal antibody employed (AC9) was recently produced and characterized as being specific for an epitope located within the helical domain of the type X collagen molecule (T. M. Schmid and T. F. Linsenmayer, J. Cell Biol., in press). The earliest detectable appearance of type X collagen was at 7.5 days, at which time it was restricted to a middiaphyseal location (i.e., in the primary center of ossification). This was in marked contrast to type II collagen, which appears earlier and is distributed throughout the cartilaginous anlagen. With increasing embryonic age, the reactivity with the type X antibody progressively extended toward the epiphyses, lagging somewhat behind the progression of chondrocyte hypertrophy. The anti-type X collagen antibody also reacted with the bony matrix itself, but the immunofluorescent signal produced by this source was considerably less than that produced by cartilage. At 19 days of development, a new small site of type X deposition was initiated in an epiphyseal location, which subsequently enlarged in circumference. These results are consistent with our previous biochemical studies suggesting that, in cartilage, type X collagen is specifically a product of that population of chondrocytes which have undergone hypertrophy.  相似文献   

10.
Collagenase secretion was studied in cultures of rabbit articular chondrocytes. Differentiation of the cells was assessed by characterizing the type of 3H-labelled collagen produced during treatment with (1) conditioned media from rabbit peritoneal macrophages and human blood mononuclear cells, and (2) with retinol, a potent cartilage resorbing agent in tissue culture. Conditioned media stimulated collagenase secretion. Total collagen synthesis was reduced due to a decrease of synthesis of α1 chains; the amount of α2 chains synthesized was unchanged. This is thought to be due to a reduction in type II synthesis. Retinol did not stimulate collagenase secretion. Total collagen synthesis was reduced by retinol. α2 chain synthesis, however, was significantly increased, suggesting a switch of collagen synthesis in favor of type I collagen and, therefore, dedifferentiation. These results demonstrate that dedifferentiation of chondrocytes with respect to collagen synthesis is not necessarily associated with a stimulation of collagenase secretion.  相似文献   

11.
A disulfide-cross-linked collagen has been extracted with neutral salt solutions from organ cultures of embryonic chick sternal cartilage. This collagen, which we term pM collagen, is presumed to be the native extracellular precursor molecule to disulfide-cross-linked collagen fragments recently described. Cleavage of pM collagen under native conditions with pepsin gives rise to the collagen fragments M1 and M2, which had also been isolated from pepsin extracts of chick hyaline cartilage [K. von der Mark, M. van Menxel & H. Wiedemann (1982) Eur. J. Biochem. 124, 57-62]. Native pM collagen was purified by DEAE-cellulose chromatography and agarose gel filtration. On agarose and following polyacrylamide gel electrophoresis, the unreduced molecule migrates with an apparent Mr of 300 000. Reduction of disulfide bridges produces two subunits with Mr 80 000 (pMa) and 60 000 (pMb) when compared with collagen standards. Cyanogen bromide cleavage of pMa and pMb, excised from dodecyl sulfate gels, resulted in different peptide maps, indicating that both components are genetically distinct polypeptide chains. The occasional appearance of the unreduced pM collagen as a doublet band on dodecyl sulfate gels and the observation that pMa and pMb occur in non-stoichiometric ratios suggests that pMa and pMb form separate native molecules, although their incorporation into a single pM molecule cannot be excluded. Native pM collagen was completely digested with bacterial collagenase, and contained hydroxyproline and proline in a ratio of 1.15:1, indicating the absence of significant non-collagenous domains. Thus it represents, despite several pepsinlabile sites, more likely a largely triplehelical, processed form of collagen rather than a procollagen-like molecule containing globular domains. Processing of pM collagen to M1 and M2 fragments or other intermediate forms was not observed in cartilage organ culture or in chondrocyte cell cultures within 18 h.  相似文献   

12.
Collagen fibers expose distinct domains allowing for specific interactions with other extracellular matrix proteins and cells. To investigate putative collagen domains that govern integrin αVβ3-mediated cellular interactions with native collagen fibers we took advantage of the streptococcal protein CNE that bound native fibrillar collagens. CNE specifically inhibited αVβ3-dependent cell-mediated collagen gel contraction, PDGF BB-induced and αVβ3-mediated adhesion of cells, and binding of fibronectin to native collagen. Using a Toolkit composed of overlapping, 27-residue triple helical segments of collagen type II, two CNE-binding sites present in peptides II-1 and II-44 were identified. These peptides lack the major binding site for collagen-binding β1 integrins, defined by the peptide GFOGER. Peptide II-44 corresponds to a region of collagen known to bind collagenases, discoidin domain receptor 2, SPARC (osteonectin), and fibronectin. In addition to binding fibronectin, peptide II-44 but not II-1 inhibited αVβ3-mediated collagen gel contraction and, when immobilized on plastic, supported adhesion of cells. Reduction of fibronectin expression by siRNA reduced PDGF BB-induced αVβ3-mediated contraction. Reconstitution of collagen types I and II gels in the presence of CNE reduced collagen fibril diameters and fibril melting temperatures. Our data indicate that contraction proceeded through an indirect mechanism involving binding of cell-produced fibronectin to the collagen fibers. Furthermore, our data show that cell-mediated collagen gel contraction does not directly depend on the process of fibril formation.  相似文献   

13.
The collagen of osteogenic cartilage in the embryonic chick   总被引:4,自引:0,他引:4  
The diaphyseal region of tibiae, and vertebral bodies from 8-day chick embryos were cultured in the presence of tritiated proline and the radioactive proteins were extracted and co-purified with carrier collagen. Chromatography on carboxymethylcellulose indicated that the radioactively labelled proteins eluted as a single peak which coincided with the carrier α1 chains. On DEAE-cellulose, the radioactively labelled α1 chains eluted with authentic cartilage α1 (II) carrier. The transitory chondrogenic regions of the embryo thus produce a collagen molecule similar, if not identical, to the principal collagen molecule found in cartilaginous structures in the adult.  相似文献   

14.
Type IX collagen from chick embryonic cartilage is a proteoglycan bearing a single chondroitin sulfate chain covalently linked to the alpha 2(IX) polypeptide chain. We have isolated type IX collagen metabolically labeled with [3H]proline using an antibody to type IX collagen and have found that the molecule is synthesized in two forms, a collagen form (COLIX) and a proteoglycan form (PGIX). In cultured chondrocytes, the two forms of type IX collagen showed a different ability to be deposited in the matrix. We have suggested the possibility that both forms may arise from an alternative substitution of a chondroitin sulfate chain to the NC3 domain of the alpha 2(IX) chain. Based on the reported amino acid sequence at the NC3 domain of alpha 2(IX), we have synthesized undecapeptides containing the sequence around the glycosaminoglycan attachment site of the alpha 2(IX) chain. Antibody against the peptide, which was raised in rabbit, only recognized COLIX and made it possible to distinguish COLIX from PGIX. Evidence shows that this could be due to a difference in antigenicity of the NC3 domain of the alpha 2(IX) chain between COLIX and PGIX caused by the substitution of a chondroitin sulfate chain to the serine residue in this domain. Therefore, this antibody may be useful as a probe for studies on the functions of glycosaminoglycan substitution in type IX collagen.  相似文献   

15.
Collagen type V/XI is a minor but essential component of collagen fibrils in vertebrates. We here report on age- and tissue-related variations in isoform usage in cartilages. With maturation of articular cartilage, the α1(V) chain progressively replaced the α2(XI) chain. A mix of the molecular isoforms, α1(XI)α1(V)α3(XI) and α1(XI)α2(XI)α3(XI), best explained this finding. A prominence of α1(V) chains is therefore characteristic and a potential biomarker of mature mammalian articular cartilage. Analysis of cross-linked peptides showed that the α1(V) chains were primarily cross-linked to α1(XI) chains in the tissue and hence an integral component of the V/XI polymer. From nucleus pulposus of the intervertebral disc (in which the bulk collagen monomer is type II as in articular cartilage), type V/XI collagen consisted of a mix of five genetically distinct chains, α1(XI), α2(XI), α3(XI), α1(V), and α2(V). These presumably were derived from several different molecular isoforms, including α1(XI)α2(XI)α3(XI), (α1(XI))2α2(V), and others. Meniscal fibrocartilage shows yet another V/XI phenotype. The findings support and extend the concept that the clade B subfamily of COL5 and COL11 gene products should be considered members of the same collagen subfamily, from which, in combination with clade A gene products (COL2A1 or COL5A2), a range of molecular isoforms has evolved into tissue-dependent usage. We propose an evolving role for collagen V/XI isoforms as an adaptable polymeric template of fibril macro-architecture.The collagen framework of hyaline cartilages is based on a covalently cross-linked heteropolymeric network of types II, IX, and XI collagens. During development, collagen type IX molecules are covalently linked to the surface of thin, new fibrils of type II collagen polymerized on a template of type XI collagen (15). In fetal cartilage, type XI collagen is a heterotrimer of three genetically distinct chains, α1(XI), α2(XI), and α3(XI) in a 1:1:1 ratio (69). The α3(XI) chain has the same primary sequence as α1(II), but the chains differ in their post-translational processing and cross-linking properties (79). All three collagen subunits, II, IX, and XI, are heavily cross-linked in the same fibril through a lysyl oxidase-mediated mechanism (2, 5, 9). The location of the cross-links determined by sequence analysis of peptides prepared from proteolytically degraded fibrils reveals a high degree of chain specificity (9). Collagen XI molecules are linked to each other in a head-to-tail fashion by N-telopeptide2 to helix cross-links and laterally to type II collagen molecules through α1(II) C-telopeptides (9). Isolated from mature articular cartilage, type XI collagen includes a significant pool of α1(V) chains (6), implying the presence of V/XI hybrid molecules. The ratio of type XI collagen to type II collagen is about 1 to 10 in fetal bovine and human epiphyseal cartilage when compared with 1 to 30 in adult articular cartilage. Similarly, the ratio of collagen IX to collagen II falls from about 1 to 10 to 1 to 100 between fetal and adult. In adult articular cartilage, most of the collagen IX is located in the immediate pericellular matrix (1012).The intervertebral disc has a unique collagen architecture that combines features of ligament and cartilage in its morphology, function, and matrix biochemistry. The lamellar fabric of the outer annulus fibrosus combines collagens I and II fibrils in a complex weave with a radial gradient from mostly type I in the outermost layers and mostly type II in the interior. Nucleus pulposus, the gel-like center of the young intervertebral disc, has a similar collagen molecular phenotype to hyaline cartilage in which types II, IX, and XI collagens are the principal cross-linked fibrillar components (1316). Collagen IX in the disc has a different protein isoform to that of hyaline cartilages. The α1(IX) chain is expressed as a short form that lacks the amino-terminal NC4 domain (16). One of the aims of the present study was to determine whether a unique pattern of type V/XI hybrid molecules is present in disc tissue when compared with articular cartilage and a more typical fibrocartilage, the knee meniscus.The results show an accumulation of collagen α1(V) chains as articular cartilage matures. A related but distinct complexity in chain usage in the type V/XI collagen of nucleus pulposus is also revealed. Such tissue diversity suggests that the different molecular isoforms produce functional differences in the type V/XI polymeric template on which the bulk fibril architecture of a tissue is built.  相似文献   

16.
Solutions of native Type III collagen (chain composition, [α1(III)]3) exhibit a rapid and dramatic decrease in relative viscosity when incubated with trypsin. Cleavage products of the reaction were precipitated with ammonium sulfate and isolated in denatured form by molecular sieve chromatography. They were found to be comprised of: α1(III)-T1 (molecular weight, 71,000) derived from the NH2-terminal portion of the Type III molecule; and α1(III)-T2 (molecular weight, 24,000) from the COOH-terminal portion of the molecule. Determination of the amino acid sequence at the NH2-terminal portion of α1(III)-T2 as well as at the COOH-terminus of α(III)-T1 demonstrated that the products arose from specific cleavage of the type III molecule at an arginine-glycine bond corresponding to residues 780–781 in the repetitive triplet sequence of the α1(III) chain. The results suggest that the trypsin-susceptible bond in the native Type III collagen molecule resides in a region characterized by a relative lack of the normal collagen helicity.  相似文献   

17.
18.
Calf skin acid-soluble collagen, containing about 34 residues of lysine plus hydroxylysine per 100,000 dalton polypeptide chain, was treated with [14C]glucose in the presence or absence of NaCNBH3. In 144 h, under the conditions employed, the presence of NaCNBH3 increased the extent of glycosylation from 8 to 15% of the total residues of lysine plus hydroxylysine. The extent of glycosylation was estimated, using acid hydrolysates of the protein, by isolation and determination of reduced adducts (1-lysinohexitols) employing a system of paper chromatography followed by chromatography on an amino acid analyzer. By those means the difficulties of using specific color reactions such as that with thiobarbituric acid were obviated. Identification of the reduced adducts as forms of 1-lysinohexitol was made by comparison of that substance prepared by treatment of polylysine with [14C]glucose in the presence of NaCNBH3. Of interest is the fact that treatment of the polymer with glucose for 144 h under conditions similar to those used for the collagen, resulted in an increase of extent of glycosylation from 3 to about 50% of the total lysine residues when NaCNBH3 was present in the incubation medium. The greater degree of glycosylation of lysine residues in polylysine as compared with collagen (15 versus about 50%) may be ascribed to the different orders of macromolecular structure in the protein that could sequester certain of the residues from reaction with glucose. 1-Lysinohexitol was also identified in hydrolysates of neutral salt-soluble guinea pig skin collagen that had been reacted with glucose and then treated with NaB3H4. The glycosylated collagens were fragmented by treatment with CNBr, and modified lysine residues were found to occur along the entire length of the collagen chains. The use of NaCNBH3 in the manner described above permits measurement of both aldimine and ketoamine forms of the adducts made with glucose. The possible physiological significance of the reversibility of the ketoamine form of adduct is discussed briefly.  相似文献   

19.
The α-subunit of an abundant chick gizzard integrin was isolated ([12.], J. Biol. Chem. 262, 17,189–17,199) and fragmented by proteolytic digestion. The N-terminal sequences of the intact polypeptide and of several internal peptides were determined and were found to be highly homologous to the mammalian integrin α1-subunit. Monoclonal antibodies to the chick integrin β1-chain react on immunoblots with the gizzard integrin β-subunit ([28.], J. Biol. Chem. 265, 14,561–14,565). The chain composition of the abundant chick gizzard integrin is therefore α1β1. Polyclonal antibodies to the avian integrin α1-subunit block attachment of embryonic gizzard cells to human and chick collagen IV completely and inhibit attachment to mouse Engelbreth-Holm-Swarm (EHS) tumor laminin partially. In ELISA-style receptor assays, the isolated α1β1 integrin bound to human and chick collagen IV and to mouse EHS tumor and chick heart laminin. While the binding to collagen IV was abolished by removal of divalent cations, the binding to laminin was not sensitive to EDTA under the conditions used. Collagen I bound the isolated avian α1β1 integrin only weakly. As collagen IV was the only extracellular matrix protein for which a consistent, divalent cation-dependent, binding to the avian α1β1 integrin could be demonstrated in both cellular and molecular assays we suggest that it is a preferred ligand for this integrin.  相似文献   

20.
Douglas  SP; Kadler  KE 《Glycobiology》1998,8(10):1013-1019
Type IX collagen is a key component of the extracellular matrix of cartilage where it occurs at the surfaces of type II collagen fibrils as a glycanated molecule. The function of the glycosaminoglycan (GAG) side chain of the molecule is, however, unknown. We have shown that type IX collagen in chicken sternal cartilage is synthesized with a unimodal distribution of GAG chain size, but at post 17 days of development three predominant glycanforms of type IX collagen accumulate. Such accumulation did not occur in sterna from day 15 embryos. In day 17 embryos predominant glycanforms were found in the caudal region of the sternum. By day 19 of development the three predominant glycanforms are widespread throughout the caudal and cephalic regions. The results indicate that developmental and anatomical changes occur to type IX collagen that depend on the size of the GAG chain attached to the alpha2(IX) chain of the molecule.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号