首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ENU mutagenesis screen to identify novel epigenetic modifiers was established in mice carrying a multi-copy GFP transgene, which is expressed in a variegated manner in erythrocytes and is highly sensitive to epigenetic silencing. The screen has produced mouse mutants of both known modifiers of epigenetic state, such as Dnmt1 and Smarca5, and novel modifiers, such as Smchd1 and Rlf. Here we report two mouse lines generated from the screen, MommeD6 and MommeD20, with point mutations in D14Abb1e. These are the first mouse mutants of D14Abb1e (also known as Fam208a), a gene about which little is known. Heterozygous intercrosses show that homozygous mutants from both the MommeD6 and MommeD20 lines are not viable beyond gastrulation, demonstrating an important role for D14Abb1e in development. We demonstrate that haploinsufficiency for D14Abb1e effects transgene expression at the RNA level. Analysis of the predicted D14Abb1e protein sequence reveals that it contains putative nuclear localisation signals and a domain of unknown function, DUF3715. Our studies reveal that D14Abb1e is localised to the nucleus and is expressed in skin and testes.  相似文献   

2.

Key message

We show for the first time that intraspecific crossing may impact mobility of the prominent endogenous retrotransposon Tos17 under tissue culture conditions in rice.

Abstract

Tos17, an endogenous copia retrotransposon of rice, is transpositionally active in tissue culture. To study whether there exists fundamental genotypic difference in the tissue culture-induced mobility of Tos17, and if so, whether the difference is under genetic and/or epigenetic control, we conducted this investigation. We show that dramatic difference in tissue culture-induced Tos17 mobility exists among different rice pure-line cultivars sharing the same maternal parent: of the three lines studied that harbor Tos17, two showed mobilization of Tos17, which accrued in proportion to subculture duration, while the third line showed total quiescence (immobility) of the element and the fourth line did not contain the element. In reciprocal F1 hybrids between Tos17-mobile and -immobile (or absence) parental lines, immobility was dominant over mobility. In reciprocal F1 hybrids between both Tos17-mobile parental lines, an additive or synergistic effect on mobility of the element was noticed. In both types of reciprocal F1 hybrids, clear difference in the extent of Tos17 mobility was noted between crossing directions. Given that all lines share the same maternal parent, this observation indicates the existence of epigenetic parent-of-origin effect. We conclude that the tissue culture-induced mobility of Tos17 in rice is under complex genetic and epigenetic control, which can be either enhanced or repressed by intraspecific genetic crossing.  相似文献   

3.
4.
5.

Background

We previously developed the DBRF-MEGN (difference-based regulation finding-minimum equivalent gene network) method, which deduces the most parsimonious signed directed graphs (SDGs) consistent with expression profiles of single-gene deletion mutants. However, until the present study, we have not presented the details of the method's algorithm or a proof of the algorithm.

Results

We describe in detail the algorithm of the DBRF-MEGN method and prove that the algorithm deduces all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants.

Conclusions

The DBRF-MEGN method provides all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants.  相似文献   

6.

Key message

Genetic improvements for many fiber traits are obtained by mutagenesis of elite cottons, mitigating genetic uniformity in this inbred polyploid by contributing novel alleles important to ongoing crop improvement.

Abstract

The elite gene pool of cotton (Gossypium spp.) has less diversity than those of most other major crops, making identification of novel alleles important to ongoing crop improvement. A total of 3,164 M5 lines resulting from ethyl methanesulfonate (EMS) mutagenesis of two G. hirsutum breeding lines, TAM 94L-25 and Acala 1517-99, were characterized for basic components of fiber quality and selected yield components. Across all measured traits, the ranges of phenotypic values among the mutant lines were consistently larger than could be explained by chance (5.27–10.1 for TAM 94 L-25 and 5.29–7.94 standard deviations for Acala 1517-99-derived lines). Multi-year replicated studies confirmed a genetic basis for these differences, showing significant correlations between lines across years and environments. A subset of 157 lines selected for superior fiber qualities, including fiber elongation (22 lines), length (22), lint percent (17), fineness (23), Rd value (21), strength (19), uniformity (21) and multiple attributes in a selection index (26) were compared to 55 control lines in replicated trials in both Texas and Georgia. For all traits, mutant lines showing substantial and statistically significant improvements over control lines were found, in most cases from each of the two genetic backgrounds. This indicates that genetic improvements for a wide range of fiber traits may be obtained from mutagenesis of elite cottons. Indeed, lines selected for one fiber trait sometimes conferred additional attributes, suggesting pleiotropic effects of some mutations and offering multiple benefits for the incorporation of some alleles into mainstream breeding programs.  相似文献   

7.

Background

Valuable insights into the complex process of retinal vascular development can be gained using models with abnormal retinal vasculature. Two such models are the recently described mouse lines with mutations in Lama1, an important component of the retinal internal limiting membrane (ILM). These mutants have a persistence of the fetal vasculature of vitreous (FVV) but lack a primary retinal vascular plexus. The present study provides a detailed analysis of astrocyte and vascular development in these Lama1 mutants.

Results

Although astrocytes and blood vessels initially migrate into Lama1 mutant retinas, both traverse the peripapillary ILM into the vitreous by P3. Once in the vitreous, blood vessels anastomose with vessels of the vasa hyaloidea propria, part of the FVV, and eventually re-enter the retina where they dive to form the inner and outer retinal capillary networks. Astrocytes continue proliferating within the vitreous to form a dense mesh that resembles epiretinal membranes associated with persistent fetal vasculature and proliferative vitreoretinopathy.

Conclusions

Lama1 and a fully intact ILM are required for normal retinal vascular development. Mutations in Lama1 allow developing retinal vessels to enter the vitreous where they anastomose with vessels of the hyaloid system which persist and expand. Together, these vessels branch into the retina to form fairly normal inner retinal vascular capillary plexi. The Lama1 mutants described in this report are potential models for studying the human conditions persistent fetal vasculature and proliferative vitreoretinopathy.  相似文献   

8.
9.

Key message

Ion beam mutations can be efficiently isolated and deployed for functional comparison of homoeologous loci in polyploid plants, and Glu - 1 loci differ substantially in their contribution to wheat gluten functionality.

Abstract

To efficiently conduct genetic analysis, it is beneficial to have multiple types of mutants for the genes under investigation. Here, we demonstrate that ion beam-induced deletion mutants can be efficiently isolated for comparing the function of homoeologous loci of common wheat (Triticum aestivum). Through fragment analysis of PCR products from M2 plants, ion beam mutants lacking homoeologous Glu-A1, Glu-B1 or Glu-D1 loci, which encode high molecular weight glutenin subunits (HMW-GSs) and affect gluten functionality and end-use quality of common wheat, could be isolated simultaneously. Three deletion lines missing Glu-A1, Glu-B1 or Glu-D1 were developed from the original mutants, with the Glu-1 genomic regions deleted in these lines estimated using newly developed DNA markers. Apart from lacking the target HMW-GSs, the three lines all showed decreased accumulation of low molecular weight glutenin subunits (LMW-GSs) and increased amounts of gliadins. Based on the test data of five gluten and glutenin macropolymer (GMP) parameters obtained with grain samples harvested from two environments, we conclude that the genetic effects of Glu-1 loci on gluten functionality can be ranked as Glu-D1 > Glu-B1 > Glu-A1. Furthermore, it is suggested that Glu-1 loci contribute to gluten functionality both directly (by promoting the formation of GMP) and indirectly (through keeping the balance among HMW-GSs, LMW-GSs and gliadins). Finally, the efficient isolation of ion beam mutations for functional comparison of homoeologous loci in polyploid plants and the usefulness of Glu-1 deletion lines for further studying the contribution of Glu-1 loci to gluten functionality are discussed.  相似文献   

10.

Key message

The long-term proliferation of embryogenic cell suspensions of oil palm is associated with changes in both genomic methylation rates and embryogenic capacities.

Abstract

In the aim of exploring the relationship between epigenetic stability and the long-term in vitro proliferation of plant tissues, we have studied changes in genomic DNA methylation levels in embryogenic suspensions of oil palm (Elaeis guineensis Jacq.). Five embryogenic callus lines were obtained from selected hybrid seeds and then proliferated as suspension cultures. Each clonal line obtained from a single genotype was subdivided into three independent subclonal lines. Once established, cultures proliferated for 12 months and genomic DNA was sampled at 4 months intervals for the estimation of global DNA methylation rates through high performance liquid chromatography (HPLC) quantitation of deoxynucleosides. Our results show that in vitro proliferation induces DNA hypermethylation in a time-dependent fashion. Moreover, this trend is statistically significant in several clonal lines and shared between subclonal lines originating from the same genotype. Interestingly, the only clonal line undergoing loss of genomic methylation in the course of proliferation has been found unable to generate somatic embryos. We discuss the possible implications of genome-wide DNA methylation changes in proliferating cells with a view to the maintenance of genomic and epigenomic stability.  相似文献   

11.

Background

The study of epistasis is of great importance in statistical genetics in fields such as linkage and association analysis and QTL mapping. In an effort to classify the types of epistasis in the case of two biallelic loci Li and Reich listed and described all models in the simplest case of 0/1 penetrance values. However, they left open the problem of finding a classification of two-locus models with continuous penetrance values.

Results

We provide a complete classification of biallelic two-locus models. In addition to solving the classification problem for dichotomous trait disease models, our results apply to any instance where real numbers are assigned to genotypes, and provide a complete framework for studying epistasis in QTL data. Our approach is geometric and we show that there are 387 distinct types of two-locus models, which can be reduced to 69 when symmetry between loci and alleles is accounted for. The model types are defined by 86 circuits, which are linear combinations of genotype values, each of which measures a fundamental unit of interaction.

Conclusion

The circuits provide information on epistasis beyond that contained in the additive × additive, additive × dominance, and dominance × dominance interaction terms. We discuss the connection between our classification and standard epistatic models and demonstrate its utility by analyzing a previously published dataset.  相似文献   

12.

Background

Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity.

Results

In this study we present a systems biology approach in which sample-matched multi-omic measurements of fourteen virulence-essential regulator mutants were coupled with computational network analysis to efficiently identify Salmonella virulence factors. Immunoblot experiments verified network-predicted virulence factors and a subset was determined to be secreted into the host cytoplasm, suggesting that they are virulence factors directly interacting with host cellular components. Two of these, SrfN and PagK2, were required for full mouse virulence and were shown to be translocated independent of either of the type III secretion systems in Salmonella or the type III injectisome-related flagellar mechanism.

Conclusions

Integrating multi-omic datasets from Salmonella mutants lacking virulence regulators not only identified novel virulence factors but also defined a new class of translocated effectors involved in pathogenesis. The success of this strategy at discovery of known and novel virulence factors suggests that the approach may have applicability for other bacterial pathogens.  相似文献   

13.
14.
15.
Conditions under which it is possible to induce auxotrophic mutants and DL-selenomethionine-resistant mutants inB. flavum by N-methyl-N’-nitro-N-nitrosoguanidine were determined. The yield of auxotrophic mutants was increased to 3% during mutagenesis in the first stage and to 1.5% in the second stage when using the enrichment-selective method with vancomycin. The optimal vancomycin concentration for inactivation of prototrophic cells growing in a minimal medium was 200 mg/L and the optimal time of treatment was 8 h. When testing the effect of three amino acid analogues (dl-ethionine,dl-selenomethionine and L-methionine sulfoximine) it was found thatB. flavum is sensitive todl-selenomethionine present in the minimal cultivation medium. Mutants resistant to 1 mg/mL of selenomethionine were isolated. Both isotope studies and measurement of growth indicate thatdl-ethionine also entersB. flavum cells, although its competition with endogenously synthesized methionine is not significant.  相似文献   

16.

Key message

Agrobacterium -mediated transformation system for okra using embryos was devised and the transgenic Bt plants showed resistance to the target pest, okra shoot, and fruit borer ( Earias vittella ).

Abstract

Okra is an important vegetable crop and progress in genetic improvement via genetic transformation has been impeded by its recalcitrant nature. In this paper, we describe a procedure using embryo explants for Agrobacterium-mediated transformation and tissue culture-based plant regeneration for efficient genetic transformation of okra. Twenty-one transgenic okra lines expressing the Bacillus thuringiensis gene cry1Ac were generated from five transformation experiments. Molecular analysis (PCR and Southern) confirmed the presence of the transgene and double-antibody sandwich ELISA analysis revealed Cry1Ac protein expression in the transgenic plants. All 21 transgenic plants were phenotypically normal and fertile. T1 generation plants from these lines were used in segregation analysis of the transgene. Ten transgenic lines were selected randomly for Southern hybridization and the results confirmed the presence of transgene integration into the genome. Normal Mendelian inheritance (3:1) of cry1Ac gene was observed in 12 lines out of the 21 T0 lines. We selected 11 transgenic lines segregating in a 3:1 ratio for the presence of one transgene for insect bioassays using larvae of fruit and shoot borer (Earias vittella). Fruit from seven transgenic lines caused 100 % larval mortality. We demonstrate an efficient transformation system for okra which will accelerate the development of transgenic okra with novel agronomically useful traits.  相似文献   

17.

Background

Cre/loxP-mediated genetic modification is the most widely used conditional genetic approach used in the mouse. Engineered Cre and the mutated ligand-binding domain of estrogen receptor fusion recombinase (CreERT) allow temporal control of Cre activity.

Results

In this study, we have generated two distinct transgenic mouse lines expressing CreERT, which show 4-hydroxytamoxifen (4-OHT)-inducible and spontaneous (4-OHT-independent) Cre activities, referred to Tg(BK5-CreER T )I and Tg(BK5-CreER T )S, respectively. The transgenic construct is driven by the bovine Keratin 5 promoter, which is active in the basal epithelial lineage of stratified and pseudo-stratified epithelium across multiple organs. Despite the difference in 4-OHT dependency, the Tg(BK5-CreER T )I and Tg(BK5-CreER T )S mouse lines shared similar Cre-mediated recombination among various organs, except for unique mammary epithelial Cre activity in Tg(BK5-CreER T )S females.

Conclusion

These two new transgenic mouse lines for the analysis of basal epithelial function and for the genetic modification have been created allowing the identification of these cell lineages and analysis of their differentiation during embryogenesis, during perinatal development and in adult mice.  相似文献   

18.

Background

Mutagenesis induced in the yeast Saccharomyces cerevisiae by starvation for nutrilites is a well-documented phenomenon of an unknown mechanism. We have previously shown that the polymerase delta proofreading activity controls spontaneous mutagenesis in cells starved for histidine. To obtain further information, we compared the effect of adenine starvation on mutagenesis in wild-type cells and, in cells lacking the proofreading activity of polymerase delta (phenotype Exo-, mutation pol3-01).

Results

Ade+ revertants accumulated at a very high rate on adenine-free plates so that their frequency on day 16 after plating was 1.5 × 10-4 for wild-type and 1.0 × 10-2 for the Exo- strain. In the Exo- strain, all revertants arising under adenine starvation are suppressors of the original mutation, most possessed additional nutritional requirements, and 50% of them were temperature sensitive.

Conclusions

Adenine starvation is highly mutagenic in yeast. The deficiency in the polymerase delta proofreading activity in strains with the pol3-01 mutation leads to a further 66-fold increase of the rate of mutations. Our data suggest that adenine starvation induces genome-wide hyper-mutagenesis in the Exo- strain.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号