首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of recombinant proteins with poly-histidine tags enables their convenient capture and purification using immobilized metal affinity chromatography (IMAC). The 6×His-tagged protein binds to a chelating resin charged with metal ions such as Ni2+, Cu2+ or Zn2+, and can therefore be separated from proteins which have lower, or no, affinity for the resin. Two recombinant proteins, a malaria transmission-blocking vaccine candidate secreted extracellularly by S. cerevisiae and a modified diphtheria toxin produced intracellularly by E. coli, were expressed with 6×His tags and could therefore be purified using IMAC. In an effort to further simplify the initial capture of these proteins, an expanded bed adsorption technique using a chelating resin (Streamline Chelating) was introduced. It was possible to capture the intracellular diphtheria protein from E. coli directly after cell lysis, without prior centrifugation or filtration. The extracellular malaria vaccine candidate was also directly captured from a high cell density yeast culture. Detailed information on the experimental work performed, and the capture processes developed, is provided.  相似文献   

2.
Polysaccharides extracted from Ulva pertusa Kjellm (Chlorophyta) are a group of sulfated heteropolysaccharides, the ulvans. In this study, different molecular weight ulvans were prepared by H2O2 degradation and their antioxidant activities investigated including superoxide and hydroxyl radical scavenging activity, reducing power and metal chelating ability. The molecular weights of natural and degraded ulvans were 151.7, 64.5, 58.0, and 28.2 kDa, respectively, as determined by high performance gel permeation chromatography. Among the four samples, U3 (the lowest molecular weight sample) showed significant inhibitory effects on superoxide and hydroxyl radicals with IC50 values of 22.1 μ g mL−1 and 2.8 mg mL−1; its reducing power and metal chelating ability were also the strongest among the four samples. All the other samples also demonstrated strong activity against superoxide radicals. The results indicated that molecular weight had a significant effect on the antioxidant activity of ulvan with low molecular weight ulvan having stronger antioxidant activity.  相似文献   

3.
Plutonium can enter the body through different routes and remains there for decades; however its specific biochemical interactions are poorly defined. We, for the first time, have studied plutonium-binding proteins using a metalloproteomic approach with rat PC12 cells. A combination of immobilized metal ion chromatography, 2D gel electrophoresis, and mass spectrometry was employed to analyze potential plutonium-binding proteins. Our results show that several proteins from PC12 cells show affinity towards Pu4+-NTA (plutonium bound to nitrilotriacetic acid). Proteins from seven different spots in the 2D gel were identified. In contrast to the previously known plutonium-binding proteins transferrin and ferritin, which bind ferric ions, most identified proteins in our experiment are known to bind calcium, magnesium, or divalent transition metal ions. The identified plutonium interacting proteins also have functional roles in downregulation of apoptosis and other pro-proliferative processes. MetaCore™ analysis based on this group of proteins produced a pathway with a statistically significant association with development of neoplastic diseases.  相似文献   

4.
The effects of endotoxin or testosterone on the amount of transferrin 59Fe (or like protein) in the murine macrophages was investigated. The mouse peritoneal macrophages were laden with 59Fe tagged red cells following the injection of mice with either agent. After harvesting the cells, they were lysed and the transferrin iron was released with 40% trichloroacetic acid. The supernatant (extract transferrin iron) and the pellet (other iron proteins iron) were separated by centrifugation and their radioactivities counted. The results were expressed in percentage. The endotoxin group had a geometric mean of transferrin 59Fe of 0.14% compared to 0.28% for the control, p < 0.001. The geometric mean for transferrin 59Fe of the testosterone treated group was 0.51% compared to 0.35% for the control, p < 0.05. Therefore, the endotoxin seems to contract the transferrin pool whereas testosterone seems to expand it.  相似文献   

5.
The molecular mechanisms of iron trafficking in neurons have not been elucidated. In this study, we characterized the expression and localization of ferrous iron transporters Zip8, Zip14 and divalent metal transporter 1 (DMT1), and ferrireductases Steap2 and stromal cell‐derived receptor 2 in primary rat hippocampal neurons. Steap2 and Zip8 partially co‐localize, indicating these two proteins may function in Fe3+ reduction prior to Fe2+ permeation. Zip8, DMT1, and Steap2 co‐localize with the transferrin receptor/transferrin complex, suggesting they may be involved in transferrin receptor/transferrin‐mediated iron assimilation. In brain interstitial fluid, transferring‐bound iron (TBI) and non‐transferrin‐bound iron (NTBI) exist as potential iron sources. Primary hippocampal neurons exhibit significant iron uptake from TBI (Transferrin‐59Fe3+) and NTBI, whether presented as 59Fe2+‐citrate or 59Fe3+‐citrate; reductase‐independent 59Fe2+ uptake was the most efficient uptake pathway of the three. Kinetic analysis of Zn2+ inhibition of Fe2+ uptake indicated that DMT1 plays only a minor role in the uptake of NTBI. In contrast, localization and knockdown data indicate that Zip8 makes a major contribution. Data suggest also that cell accumulation of 59Fe from TBI relies at least in part on an endocytosis‐independent pathway. These data suggest that Zip8 and Steap2 play a major role in iron accumulation from NTBI and TBI by hippocampal neurons.

  相似文献   


6.
Summary Transferrin-receptor interactions and iron uptake were studied in eleven different species of vertebrate animals (3 eutherian mammals, 3 marsupials, 2 reptiles and 1 bird, amphibian and bony fish). In the initial experiments it was shown that the uptake of transferrin-bound iron by immature erythroid cells from marsupial and reptilian species occurs by receptor-mediated endocytosis as in other vertebrate animals.Reticulocytes were incubated with125I-59Fe-labelled transferrins from heterologous species and the results for iron and transferrin uptake compared with those obtained with the homologous protein. Cells from eutherian mammals were able to take up transferrin and iron from other eutherians and from the bob-tailed lizard but not from marsupials and other submammalian species. With marsupials and reptiles a similar specificity was observed, and the marsupial cells could also utilize chicken transferrin but not vice versa.The results were extended by performing competition experiments in which the cells were incubated with radiolabelled homologous transferrin in the presence of increasing concentrations of non-radioactive heterologous transferrins. From the ability of the heterologous proteins to inhibit uptake of the homologous protein relative association constants (K a 1) for the transferrin-receptor interactions could be calculated. TheseK a 1 values reflected the patterns observed in the first series of experiments.These studies demonstrate that, although specificity exists in transferrin-receptor interactions throughout the range of vertebrate animals, in several instances reactivity between widely divergent species is also observed. Hence, structural similarities have been maintained throughout evolution. Nevertheless, no evidence of interaction between transferrin and its receptor from the two divisions of the Mammalia, the eutherians and the marsupials, was observed.Abbreviations BSS Hanks balanced salt solution - PBS phosphate-buffered saline - RRS Rana Ringer solution  相似文献   

7.
Phosvitin, a phosphoprotein known as an iron-carrier in egg yolk, binds almost all the yolk iron. In this study, we investigated the effect of phosvitin on Fe(II)-catalyzed hydroxyl radical (?OH) formation from H2O2 in the Fenton reaction system. Using electron spin resonance (ESR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and deoxyribose degradation assays, we observed by both assays that phosvitin more effectively inhibited ?OH formation than iron-binding proteins such as ferritin and transferrin. The effectiveness of phosvitin was related to the iron concentration, indicating that phosvitin acts as an antioxidant by chelating iron ions. Phosvitin accelerates Fe(II) autoxidation and thus decreases the availability of Fe(II) for participation in the ?OH-generating Fenton reaction. Furthermore, using the plasmid DNA strand breakage assay, phosvitin protected DNA against oxidative damage induced by Fe(II) and H2O2. These results provide insight into the mechanism of protection of the developing embryo against iron-dependent oxidative damage in ovo.  相似文献   

8.
The Fe3+ chelating ability of some curcumin glucosyl derivatives (Glc-H; Glc-OH; Glc-OCH3) is tested by means of UV and NMR study. The pK a values of the ligands and the overall stability constants of Fe3+ and Ga3+ complexes are evaluated from UV spectra. The only metal binding site of the ligand is the β-diketo moiety in the keto-enolic form; the glucosyl moiety does not interact with metal ion but it contributes to the stability of metal/ligand 1:2 complexes by means of hydrophilic interactions. These glucosyl derivatives are able to bind Fe3+ in a wide pH rage, forming complex species thermodynamically more stable than those of other ligands commonly used in the treatment of iron deficiency. In addition they demonstrate to have a poor affinity for competitive biological metal ions such as Ca2+. All ligands and their iron complexes have a good lypophilicity (log P > −0.7) suggesting an efficient gastrointestinal absorption in view of their possible use as iron supplements in oral therapy. The ligand molecules are also tested for their antioxidant properties in “ex vivo” biological system.  相似文献   

9.
The capabilities of a new class of immobilized (im) metal ion chelate complexes (IMCCs), derived from 1,4,7‐triazacyclononane (tacn), bis(1,4,7‐triazacyclononyl) ethane (dtne) and bis(1,4,7‐triazacyclononyl)propane (dtnp) complexed with the borderline metal ions Cu2+, Ni2+, Zn2+, Mn2+, Co2+, and Cr3+, for the purification of proteins have been investigated. In particular, the binding behavior of a model protein, the C‐terminal hexahistidine tagged recombinant fusion protein Schistosoma japonicum glutathione S‐transferase‐Saccharomyces cerevisiae mitochondrial ATP synthase δ‐subunit (GST‐δATPase‐His6), with these new immobilized metal ion affinity chromatographic (IMAC) sorbents was compared to the properties of a conventional sorbent, derived from immobilized Ni(II)‐nitrilotriacetic acid (im‐Ni2+‐NTA). Investigations using the recombinant GST‐δATPase‐His6 and recombinant S. japonicum glutathione S‐transferase (GST) lacking a hexahistidine tag have confirmed that the C‐terminal tag hexahistidine residues were required for the binding process to occur with these IMAC systems. The results also confirm that recombinant fusion proteins such as GST‐δATPase‐His6 can be isolated in high purity with these IMAC systems. Moreover, these new macrocyclic systems manifest different selectivity features as a function of pH or ionic strength when compared to the conventional, unconstrained iminodiacetic acid (IDA) or NTA chelating ligands, complexed with borderline metal ions such as Cu2+ or Ni2+, as IMAC systems. Biotechnol. Bioeng. 2009;103: 747–756. © 2009 Wiley Periodicals, Inc.  相似文献   

10.
Two new tris-hydroxypyridinone based compounds (KEMPPr(3,4-HP)3 and KEMPBu(3,4-HP)3) have been developed and studied as strong sequestering agents for iron and the group III of metal ions, aimed as potential pharmacological applications on metal-chelation therapy. Their structure is based on the KEMP acid scaffold to which three 3-hydroxy-4-pyridinone chelating moieties are attached via two different size spacers. After the preparation and characterization of the compounds their physico-chemical properties were studied, in relation with their metal binding affinity and lipophilicity. The KEMPPr(3,4-HP)3 ligand was also bioassayed to evaluate its in vivo metal sequestering capacity from most organs using an animal model overload with 67Ga. These studies showed that, for both in solution and in vivo conditions, the compounds have higher metal chelating efficacy than Deferriprone, the commercially available iron chelator in medical application, thus some perspectives are envisaged as potential pharmaceutical drug candidates for chelating therapy.  相似文献   

11.
Human serum transferrin, bovine lactoferrin, and hen conalbumin were investigated with respect to the ability of the bound metal to catalyze thiol oxidation. All three proteins were able to stimulate the oxidation of thiols in both reduced lysozyme and reduced glutathione. The efficiency of the metal in catalyzing thiol oxidation was not decreased by binding to transferrin, suggesting that transferrin-bound metals are completely available to both low and high molecular weight thiols. A 5 × 10?7m concentration of transferrin isolated from serum was able to catalyze the formation of 70% of the theoretical lysozyme activity from reduced inactive lysozyme by 60 min. Increased rates of lysozyme activity formation were observed with copper-saturated transferrin. Decreased lysozyme regeneration rates were observed with the iron-saturated molecule compared to native transferrin. The results presented suggest that metalloproteins may aid in the maintenance of the steady-state cellular concentrations of low molecular weight disulfide by catalyzing the autooxidation of thiols.  相似文献   

12.
Fluorescence spectroscopy is an indispensible tool for studying the structure and conformational dynamics of protein molecules both in isolation and in their cellular context. The ideal probes for monitoring intramolecular protein motions are small, cysteine-reactive fluorophores. However, it can be difficult to obtain specific labeling of a desired cysteine in proteins with multiple cysteines, in a mixture of proteins, or in a protein's native environment, in which many cysteine-containing proteins are present. To obtain specific labeling, we developed a method we call cysteine metal protection and labeling (CyMPL). With this method, a desired cysteine can be reversibly protected by binding group 12 metal ions (e.g., Cd2+ and Zn2+) while background cysteines are blocked with nonfluorescent covalent modifiers. We increased the metal affinity for specific cysteines by incorporating them into minimal binding sites in existing secondary structural motifs (i.e., α-helix or β-strand). After the metal ions were removed, the deprotected cysteines were then available to specifically react with a fluorophore.  相似文献   

13.
A variety of metal ions can bind to the iron-transport protein, transferrin, at two specific sites. For each metal ion, a carboxylate anion is concomitantly bound. Six metal ions which were examined fall into two classes based on proton release and ultraviolet spectral changes which accompany binding to the protein. Class II ions, which include Cu2+ and Zn2+, release approximately 2 H+/metal bond. Class III ions, which include Fe3+, Ga3+, Al3+, and VO2+, release approximately 3 H+/metal bound. The increase in absorbance near 242 nm, characteristic of tyrosine ionization, has the ratio 0.55–0.75 for class II:class III ions. Both Fe3+ and Cu2+ form metal-transferrin-oxalate complexes in the presence of excess C2O42?. Fe3+ releases close to 3 H+/metal whether forming oxalate or bicarbonate complexes with transferrin. Binding of Cu2+ to transferrin releases 2 H+/metal in the presence of C2O2?4 or HCO3?. Since equal numbers of H+/metal are released for both anions, it is likely that the bicarbonate ion does not lose its proton, and remains as HCO3? in transferrin. These results are interpreted in terms of possible combinations of ligands at the metal binding sites.  相似文献   

14.
Recently these laboratories have demonstrated that it is possible to use proteins as efficient, selective agents for heavy metal removal and recovery. In this study, transferrin was chemically bound to an insoluble support. The ability of immobilized transferrin to produce clean water was demonstrated. Copper loading was independent of feed concentration. The loaded copper could be readily eluted and concentrated into the gram per liter range. The mechanism of copper release was studied. It was shown that release was dependent on pH and the chelating ability of the stripping agent. Metal release occurred slowly at pH < 7. However, at low pH in the presence of a chelator, metal removal occurred much more efficiently. The binding constant of copper to immobilized transferrin was determined as a function of pH. This information was used to model metal binding and release to the protein/support matrix. (c) 1997 John Wiley & Sons, Inc.  相似文献   

15.
The uptake of various host plasma proteins by the bloodstream form of Trypanosoma brucei was studied both biochemically, using radiolabeled proteins, and with the electron microscope, using colloidal gold particles as molecular tracers onto which plasma proteins had been adsorbed. Total plasma proteins and serum albumin were taken up by a mechanism of fluid endocytosis with low clearance (0.1 μ1 [mg cell protein]-1 h-1), while low-density lipoprotein (LDL) and transferrin were taken up by a receptor-mediated process with a clearance of two to three orders of magnitude higher than that of serum albumin. Binding prior to uptake of LDL and transferrin was saturable, depended on the presence of Ca2+, and the labeled ligand could be displaced by the homologous but not by heterologous protein. Binding of gold-labeled proteins was seen only to the membrane of the flagellar pocket and not elsewhere on the plasma membrane. After 1 h of incubation at 30°C with gold-labeled LDL and transferrin, labeled cellular structures represented respectively half and one-third of the total volume of all single-membrane bounded endocytotic and electron-dense vacuoles within the cell.  相似文献   

16.
A group of glycolipid toxins, corynetoxin (CT), isolated from parasitized annual ryegrass, was shown to suppress the synthesis of both albumin and transferrin by cultured fetal rat hepatocytes. Based on [3H]leucine incorporation, inhibition of transferrin synthesis was greater than that of both albumin and total protein synthesis. As a result, the secretion of albumin and transferrin was decreased. The incorporation of [3H]N-AcGlc into cellular glycoproteins was only marginally affected by CT, although a dramatic reduction was observed with respect to the secreted proteins. Transferrin secreted into the culture medium was substantially non-glycosylated, judging by the absence of [3H]N-AcGlc. These studies suggested that the toxin preferentially affects the synthesis, and hence the secretion of glycoproteins, although it did not block the secretion of the proteins albumin and transferrin, as these did not accumulate intercellularly. Since transferrin labelled with [3H]leucine but not [3H]N-AcGlc is detected in the culture medium of hepatocytes exposed to CT, it was concluded that glycosylation of the protein is not required for secretion. This study shows that the effects of CT on protein synthesis and secretion in cultured hepatocytes are similar to those reported for tunicamycin (TM).  相似文献   

17.
The presence of toxic heavy metals in natural environments entails a potential health hazard for humans. Metal contaminants in these environments are usually tightly bound to colloidal particles and organic matter. On the other hand, the potential of these metals towards chelation by different chelating agents presents a good characteristic for their removal from the environment. On this basis, two chitosan/anionic surfactant complexes were prepared and evaluated for their ability to remove heavy metals from aqueous solutions. The experimental results of the uptake of metal ions including Cu2+, Sn2+, Co2+ and Ni2+ are reported in this study. The results show that modified chitosan with short‐spacer group cross‐linkers has a higher potential for heavy metal uptake than long‐chain cross‐linker‐modified chitosan. Also, increasing the electronegativity of the heavy metals increases their uptake from the medium. Increasing the time of exposure of the heavy metals to the modified polymer increases the efficiency of the metal uptake process.  相似文献   

18.
Summary A new synthetic medium (referred to as GC3) that supports the growth of the Chinese hamster ovary cell line has been developed. It is composed of a 1∶1 mixture of Ham's F12 and modified Eagle's minimum essential (MEM.S) mediums supplemented with transferrin (10 μg/ml), insulin (80 mU/ml), and selenium (1×10−7 M). Other more simple supplementations of our basal medium MEM.S/F12 (transferrin+insulin, transferrin+selenium, ferrous iron+selenium) also give good cell growth responses. Fibronectin or serum pretreatment is not needed for cellular attachment and spreading. Our culture system is characterized by a continuous serum-free cultivation (more than 200 doublings), a clonal growth, a high density proliferation, and a rapid growth rate near that of cells in serum-supplemented medium.  相似文献   

19.
The interaction of different species variants of cytochrome c and myoglobin, as well as hen egg white lysozyme, with the hard Lewis metal ions Al3+, Ca2+, Fe3+, and Yb3+ and the borderline metal ion Cu2+, immobilized to iminodiacetic acid (IDA)-Sepharose CL-4B, has been investigated over the rangepH 5.5–8.0. With appropriately chosen buffer and metal ion conditions, these proteins can be bound to the immobilized M n +-IDA adsorbents via negatively charged amino acid residues accessible on the protein surface. For example, tuna heart cytochrome c, which lacks surface-accessible histidine residues, readily bound to the Fe3+-IDA adsorbent, while the other proteins also showed affinity toward immobilized Fe3+-IDA adsorbents when buffers containing 30 mM of imidazole were used. These studies document that protein selectivity can be achieved with hard-metalion immobilized metal ion affinity chromatography (IMAC) systems through the interaction of surfaceexposed aspartic and glutamic acid residues on the protein with the immobilized M n +-IDA complex. These investigations have also documented that the so-called soft or borderline immobilized metal ions such as the Cu2+-IDA adsorbent can also interact with surface-accessible aspartic and glutamic acid residues in a protein-dependent manner. A relationship is evident between the number and extent of clustering of the surfaceaccessible aspartic and glutamic acid residues and protein selectivity with these IMAC systems. The use of elution buffers which contain organic compound modifiers which replicate the carboxyl group moieties of these amino acids on the surface of proteins is also described.Abbreviations IDA iminodiacetic acid - IDA-Mn+ iminodiacetic acid chelated to metal ion - IMAC immobilized metal affinity chromatography - DHCC dog heart cytochrome c - HHCC horse heart cytochrome c, THCC, tuna heart cytochrome c - HMYO horse skeletal muscle myoglobin - SMYO sheep skeletal muscle myoglobin - HEWL hen egg white lysozyme  相似文献   

20.
3-Hydroxy-4-pyridinones (3,4-HP) are well known iron-chelators with applications in medicinal chemistry, mainly associated with their high affinity towards trivalent hard metal ions (e.g. M3+, M = Fe, Al, Ga) and use as decorporating agents in situations of metal accumulation. The polydenticity and the extra-functionality of 3,4-HP derivatives have been explored, aimed at improving the chelating efficacy and the selectivity of the interaction with specific biological receptors. However, the ideal conjugation of both features in one molecular unity usually leads to high molecular weight compounds which can have crossing-membrane limitations.Herein, a different approach is used combining a arylpiperazine-containing bis-hydroxypyridone (H2L1) with a biomimetic mono-hydroxypyridinone, ornithine-derivative (HL2), to assess the potential coadjuvating effect that could result from the administration of both compounds for the decorporation of hard metal ions. This work reports the results of solution and in vivo studies on their chelating efficacy either as a simple binary or a ternary system (H2L1:HL2:M3+), using potentiometric and spectrophotometric methods. The solution complexation studies with Fe(III) indicate that the solubility of the complexes is considerably increased in the ternary system, an important feature for the metal complex excretion, upon the metal sequestration. The results of the in vivo studies with 67Ga-injected mice show differences on the biodistribution profiles of the radiotracer, upon the administration of each chelating agent, that are mainly ascribed to the differences of their extra-functional groups and lipo/hydrophilic character. However, administration of both chelating agents leads to a more steady metal mobilization, which may be attributed to an improved access to different cellular compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号