首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
U. Heber  M.R. Kirk  N.K. Boardman 《BBA》1979,546(2):292-306
The high potential cytochrome b-559 of intact spinach chloroplasts was photooxidized by red light with a high quantum efficiency and by far-red light with a very low quantum efficiency, when electron flow from water to Photosystem II was inhibited by a carbonyl cyanide phenylhydrazone (FCCP or CCCP). Dithiothreitol, which reacts with FCCP or CCCP, reversed the photooxidation of cytochrome b-559 and restored the capability of the chloroplasts to photoreduce CO2 showing that the FCCP/CCCP effects were reversible. The quantum efficiency of cytochrome b-559 photooxidation by red or far-red light in the presence of FCCP was increased by 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone which blocks oxidation of reduced plastoquinone by Photosystem I. When the inhibition of water oxidation by FCCP or CCCP was decreased by increased light intensities, previously photooxidized cytochrome b-559 was reduced. Red light was much more effective in photoreducing oxidized high potential cytochrome b-559 than far-red light. The red/far-red antagonism in the redox state of cytochrome b-559 is a consequence of the different sensitivity of the cytochrome to red and far-red light and does not indicate that the cytochrome is in the main path of electrons from water to NADP. Rather, cytochrome b-559 acts as a carrier of electrons in a cyclic path around Photosystem II. The redox state of the cytochrome was shifted to the oxidized side when electron transport from water became rate-limiting, while oxidation of water and reduction of plastoquinone resulted in its shifting to the reduced side.  相似文献   

2.
Light-induced redox changes of cytochrome b-559   总被引:2,自引:0,他引:2  
Dark incubation of spinach or pea chloroplasts with 10 μm carbonylcyanide m-chlorophenylhydrazone (CCCP) had a negligible effect either on the redox state or the redox potential of the high potential form of cytochrome b-559 (cytochrome b-559hp). A similar result was obtained with spinach chloroplasts on incubation with 3.3 μm carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP), but pea chloroplasts showed a decrease of 10–20% in the amount of reduced cytochrome b-559.Light-induced redox changes of cytochrome b-559 were not observed in untreated spinach chloroplasts. In the presence of CCP or FCCP, cytochrome b-559 was photooxidized both in 655 nm actinic light and in far-red light. Addition of the plastoquinone antagonist, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) to CCCP- or FCCP-treated chloroplasts had only a small effect on the photooxidation of cytochrome b-559 in 655 light, but it completely inhibited the oxidation in far-red light.Electron flow from water to 2,3′,6-trichlorophenolindophenol was partly inhibited by CCCP or FCCP, but the degree of inhibition does not appear to be sufficient to account for the photooxidation of cytochrome b-559.The photooxidation of cytochrome b-559 by 655 nm light at liquid nitrogen temperature was not influenced by prior treatment of the chloroplasts at room temperature with CCCP, DBMIB, or CCCP + DBMIB.The results cannot be explained by the presence of two independent pools of cytochrome b-559 in CCCP-treated chloroplasts, one photooxidized by Photosystem II and the other photooxidized by Photosystem I and photoreduced by Photosystem II.  相似文献   

3.
1. Light-induced absorbance changes of cytochrome b-559 and cytochrome f in the -band region were examined in leaves and in isolated chloroplasts.

2. Absorbance changes of cytochrome b-559 were not detected in untreated leaves or in most preparations of isolated chloroplasts. After treatment of leaves or chloroplasts with carbonyl cyanide m-chlorophenylhydrazone, high rates of photooxidation of cytochrome b-559 were obtained, both in far-red (>700 nm) and red actinic light. Cytochrome f was photooxidized in far-red light, but in red light it remained mainly in the reduced state. The initial rates of photooxidation of cytochrome b-559 in leaves or chloroplasts treated with carbonyl cyanide m-chlorophenylhydrazone were considerably decreased by 3-(3′,4′-dichlorophenyl)-1,1-dimethyl urea.

3. A slow photoreduction of cytochrome b-559 was observed in aged mutant pea chloroplasts in red light.

4. The results do not support the view that cytochrome b-559 is a component of the electron transport chain between the light reactions. It is suggested that cytochrome b-559 is located on a side path from Photosystem II, but with a possible additional link to Photosystem I.  相似文献   


4.

1. 1. The kinetics of light-induced absorbance changes due to oxidation and reduction of cytochromes were measured in a suspension of intact cells of the unicellular red alga Porphyridium aerugineum. Absorbance changes in the region 540–570 nm upon alternating far-red light and darkness indicated the oxidation of cytochrome ƒ and reduction of cytochrome b563 upon illumination. The relative efficiencies of far-red and orange light indicated that both reactions were driven by Photosystem I.

2. 2. Experiments with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), with anaerobic cells and in alternating far-red and orange light indicated that cytochrome b563 reacts in a cyclic chain around Photosystem I, and that the reduced cytochrome does not react with oxygen or with another oxidized product of Photosystem II. The quantum requirement for the photoreduction was about 6 quanta/equiv at 700 nm. A low concentration of N-methylphenazonium methosulphate (PMS) enhanced the rate of reoxidation of cytochrome b563 in the dark. In the presence of higher concentrations of PMS a photooxidation, driven by Photosystem I, instead of reduction was observed. These observations suggest that PMS enhances the rate of reactions between reduced cytochrome b563 and oxidized products of Photosystem I.

3. 3. In the presence of carbonylcyanide m-chlorophenylhydrazone (CCCP) a light-induced decrease of absorption at 560 nm occurred. Spectral evidence suggested the photooxidation of cytochrome b559 under these conditions. Inhibition by DCMU and a relatively efficient action of orange light suggested that this photooxidation is driven by Photosystem II.

Abbreviations: DBMIB, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone; DCMU, 3-(3,4-dichlorophenyl)-1,1-dimethylurea; CCCP, carbonylcyanide m-chlorophenylhydrazone; FCCP, carbonylcyanide p-trifluoromethoxyphenylhydrazone; P700, chlorophyllous pigment absorbing at 700 nm, primary electron donor of Photosystem I; PMS, N-methylphenazonium methosulphate  相似文献   


5.
Intact spinach chloroplasts, capable of high rates of photochemical oxygen evolution with CO2 as electron acceptor (120-350 mumol O2 mg chlorophyll-1 h-1) were examined for cytochrome redox changes. The response of the cytochromes in intact chloroplasts to oxidants and reductants appears to be governed by the permeability of the chloroplast envelope. The low potential cytochromes (b-559LP and b-563) were more slowly reduced at 25 degrees C by dithionite than is the case with broken chloroplasts. At 0 degrees C, the reduction of the low potential cytochromes in intactchloroplasts was extremely slow. The chloroplast envelope is impermeable to ferricyanide, slowly permeable to ascorbate and rapidly permeable to reduced dichlorophenolindophenol. Light-induced redox changes of cytochrome b-563 in intact chloroplasts were examined both at 0 degrees and 25 degrees C. A red/far-red antagonism on the redox changes of cytochrome b-563 was observed at 0 degrees C under anaerobic conditions. 3-(3,4-dichlorophenyl)-1, 1-dimethlyurea (DCMU) inhibited the photoreduction of cytochrome b-563 in red light following far-red illumination. The photooxidation of cytochrome b-563 under anaerobic conditions was not influenced by DCMU or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). The photoreduction of cytochrome b-563 under aerobic conditions was much less efficient than its photooxidation under anaerobic conditions. Developing pea chloroplasts showed much greater light-induced redox changes of cytochrome b-563 than did intact spinach chloroplasts. Our data are consistent with the view that cytochrome b-563 functions on a cyclic pathway around Photosystem I, but it appears that cyclic flow is sensitive to the relative poising of the redox levels of cytochrome b-563 and the components of the non-cylic pathway.  相似文献   

6.
The kinetics of the photoreduction of cytochrome b-559 and plastoquinone were measured using well-coupled spinach chloroplasts. High potential (i.e, hydroquinone reducible) cytochrome b-559 was oxidized with low intensity far-red light in the presence of N-methyl phenazonium methosulfate or after preillumination with high intensity light. Using long flashes of red light, the half-reduction time of cytochrome b-559 was found to be 100 +/- 10 ms, compared to 6-10 ms for the photoreduction of the plastoquinone pool. Light saturation of the photoreduction of cytochrome b-559 occurred at a light intensity less than one-third of the intensity necessary for the saturation of ferricyanide reduction under identical illumination conditions. The photoreduction of cytochrome b-559 was accelerated in the presence of dibromothymoquinone with a t 1/2 = 25-35 ms. The addition of uncouplers, which caused stimulatory effect on ferricyanide reduction under the same experimental conditions resulted in a decrease in the rate of cytochrome b-559 reduction. The relatively slow photoreduction rate of cytochrome b-559 compared to the plastoquinone pool implies that electrons can be transferred efficiently from Photosystem II to plastoquinone without the involvement of cytochrome b-559 as an intermediate. These results indicate that it is unlikely that high potential cytochrome b-559 functions as an obligatory redox component in the main electron transport chain joining the two photosystems.  相似文献   

7.
(1) The proportion of higher plant chloroplast cytochrome b-559 oxidizable during illumination by low intensity 732 nm light increases as the pH is decreased below 6.5. At pH 5.0-5.3 total oxidation is seen and subsequent red light can cause reduction of up to 2/3 of the oxidized cytochrome. The oxidation by far red light at pH 5 is inhibited by 2 muM 2,5-dibromo-3-methyl-6-isopropyl-rho-benzoquinone whereas the red light-induced reduction is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. In this pH range ferricyanide-oxidized cytochrome b-559 exists in a form not reducible by ferrocyanide. (2) An increase in the amplitude of far-red induced oxidation also occurs at higher pH (up to pH 7.8) after pre-treatment of chloroplasts with substantially higher levels of light (approx. 10(6) ergs-cm-2-s-1). The degree of light activation is pH dependent, being more pronounced at lower pH. After light activation, cytochrome b-559 can be completely oxidized by far-red light in a manner reversible by red light up to pH values of 6, and the curve describing the amplitude of far-red oxidation as a function of pH is shifted by 0.5-1.0 pH unit toward higher pH. Far-red oxidation and red light reduction are again inhibited by 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone and 3-(3,4-dichlorophenyl)-1,1-dimethylurea, respectively. (3) Light activation at pH 5.2-6.0 is also manifested in a small decrease in the amplitude of subsequent dark ferrocyanide reduction, and this decrease is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (10 muM). (4) The effect of intramembranal acidity on the effective redox potential of cytochrome b-559 and its function is discussed.  相似文献   

8.
S. Izawa  R. Kraayenhof  E.K. Ruuge  D. Devault 《BBA》1973,314(3):328-339
Treatment of chloroplasts with high concentrations of KCN inhibits reactions which involve Photosystem I (e.g. electron transport from water or diaminodurene to methylviologen), but not those assumed to by-pass Photosystem I (e.g. electron transport from water to quinonediimides). The spectrophotometric experiments described in this paper showed that KCN inhibits the oxidation of cytochrome f by far-red light without blocking its reduction by red light. Both optical and EPR experiments indicated that KCN does not inhibit the photooxidation of P700 but markedly slows down the subsequent dark decay (reduction). Reduction of P700 by Photosystem II is prevented by KCN. It is concluded that KCN blocks electron transfer between cytochrome f and P700, i.e. the reaction step which is believed to be mediated by plastocyanin. In KCN-poisoned chloroplasts the slow dark reduction of P700 following photooxidation is greatly accelerated by reduced 2,6-dichlorophenolindophenol or by reduced N-methylphenazonium methosulfate (PMS), but not by diaminodurene. It appears that the reduced indophenol dye and reduced PMS are capable of donating electrons directly to P700, at least partially by-passing the KCN block.  相似文献   

9.
Light-induced oxidation-reduction reactions of cytochrome b-559were investigated with membrane fragments of Anabaena variabilisand supplementarily with Plectonema boryanum. The oxidation-reduction reactions of cytochrome b-559 observedwith membrane fragments were similar in their kinetics to thoseof the cytochrome in aged chloroplasts. The reactions were annihilatedby the addition of Ferro, indicating that the cytochrome ofhigh redox potential (E'o=+373 mV, pH 6.5) was photoreducedand oxidized. Titration with reducing agents indicated that cytochrome b-559is contained in Anabaena membrane fragments in an amount 1.5times as much as the content of P700 on a molar basis; the contentof the species of high redox potential was estimated to be around70%. Kinetic treatment of the photoreduction indicated that the cytochromewas reduced at some site of the electron transport system betweenthe two photosystems. The photo-oxidation depended on the actionof either photosystem II or I even in the presence of DCMU,indicating that the photooxidation was induced by both photosystems.The oxidation by photosystem I action was inhibited by HgCl2-treatment,indicating that this reaction is mediated by plastocyanin. EDTA (5?10-3 M) suppressed the cytochrome photoreduction andenhanced the rapid phase of the photooxidation. The latter effectappeared only when an appropriate dark time (3 min) was insertedafter the cytochrome photoreduction. The phenomenon was interpretedas showing that EDTA modifies the reactivity of the electroncarrier which directly donates electrons to cytochrome b-559.The oxidation, and probably also the reduction of cytochromeb-559, was assumed to be regulated by the oxidation-reductionstate of this carrier. (Received April 26, 1974; )  相似文献   

10.
Five substituted 2-anilinothiophenes and two substituted carbonylcyanide-phenylhydrazones were comparatively studied with respect to their capacities for inducing photooxidation of the cytochrome b-559 in chloroplast fragments and in whole cells of Chlamydomonas reinhardtii (wild type and P-700-lacking mutant Fl 5). In addition, some other compounds: antimycin A, picric acid, tetraphenylboron and NH4Cl were also tested. Cytochrome b-559 photooxidations were clearly observed in the presence of 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene (ANT 2p), 2-(3,4,5-trichloro)anilino-3,5-dinitrothiophene (ANT 2s), 2-(4-chloro)anilino-3,5-dinitrothiophene and, with greater amplitudes, in the presence of carbonylcyanide-p-trifluoromethoxyphenylhydrazone and carbonylcyanide-m-chlorophenylhydrazone, both in whole cells and in chloroplast fragments. Picric acid, antimycin A and tetraphenylboron were also able to induce cytochrome b-559 photooxidation in chloroplast fragments, but not in whole cells. In the wild type, the highest photoinduced redox changes were 1.1 (carbonylcyanide-p-trifluoromethoxyphenylhydrazone, carbonylcyanide-m-chlorophenyl-hydrazone) and 0.6 (ANT 2p, ANT 2s) mumol of oxidized cytochrome b-559/1 mmol of chlorophyll, corresponding to 40% and 23% of the redox changes which could be induced chemically. All these cytochrome b-559 photooxidations, the greater part of which was inhibited by 3-(3,4-dichloropheny)-1,1-dimethylurea and occurred in the mutant Fl 5, appeared to be mainly Photosystem II-dependent reactions. But 3-(3,4-dichlorophenyl)-1,1-dimethylurea-insensitive Photosystem I-dependent photooxidations of cytochrome b-559 occurred also in the wild type. On the other hand, 2-(4-dimethylamine)-anilino-3,5-dinitrothiophene, 2-N-methyl-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene and NH4Cl did not induce any cytochrome b-559 photooxidation. These results were discussed taking in consideration the nature of the molecular substitutions of the various tested substances and their respective acceleration of the deactivation reactions of the water-splitting enzyme system Y of photosynthesis capacities which had been defined elsewhere by Renger (Renger, G. (1972) Biochim. Biophys. Acta 256, 428-439) for spinach chloroplasts. Like the acceleration of the deactivation reactions of the water-splitting enzyme system Y effect, the capacity for inducing the cytochrome b-559 photooxidation appeared dependent on the acidity of the NH group and on the number of halogenous substituents in the aromatic ring of the molecule. The greatest action towards cytochrome b-559 photooxidation was obtained with the most active acceleration of the deactivation reactions of the water-splitting enzyme system Y agents: carbonylcyanide-p-trifluoromethoxyphenylhydrazone, ANT 2p and ANT 2s.  相似文献   

11.
K. Erixon  W. L. Butler 《BBA》1971,234(3):381-389
Absorbance changes and fluorescence yield changes induced by irradiating spinach chloroplasts with red light at −196° were measured as a function of the redox potential of the chloroplast suspension. Absorbance changes at 546 nm indicate the photoreduction of C-550 and changes at 556 nm indicate the photooxidation of cytochrome b 559. The changes of fluorescence yield indicate the photoreduction of Q, the fluorescence quencher of chlorophylla a in Photosystem II. The titration curves for all three changes were essentially the same and showed the same midpoint potential. In other experiments as well, it was found that when C-550 is in the reduced state the fluorescence yield of the chloroplasts is high and the low-temperature photooxidation of cytochrome b 559 is blocked. These data indicate that C-550 may be equivalent to Q and that cytochrome b 559 serves as the electron donor for the photoreduction of C-550 at low temperature.  相似文献   

12.
The possibility of a Photosystem II (PS II) cyclic electron flow via Cyt b-559 catalyzed by carbonylcyanide m-chlorophenylhydrazone (CCCP) was further examined by studying the effects of the PS II electron acceptor 2,6-dichloro-p-benzoquinone (DCBQ) on the light-induced changes of the redox states of Cyt b-559. Addition to barley thylakoids of micromolar concentrations of DCBQ completely inhibited the changes of the absorbance difference corresponding to the photoreduction of Cyt b-559 observed either in the presence of 10 M ferricyanide or after Cyt b-559 photooxidation in the presence of 2 M CCCP. In CCCP-treated thylakoids, the concentration of photooxidized Cyt b-559 decreased as the irradiance of actinic light increased from 2 to 80 W m-2 but remained close to the maximal concentration (0.53 photooxidized Cyt b-559 per photoactive Photosystem II) in the presence of 50 M DCBQ. The stimulation of Cyt b-559 photooxidation in parallel with the inhibition of its photoreduction caused by DCBQ demonstrate that the extent of the light-induced changes of the redox state of Cyt b-559 in the presence of CCCP is determined by the difference between the rates of photooxidation and photoreduction of Cyt b-559 occuring simultaneously in a cyclic electron flow around PS II.We also observed that the Photosystem I electron acceptor methyl viologen (MV) at a concentration of 1 mM barely affected the rate and extent of the light-induced redox changes of Cyt b-559 in the presence of either FeCN or CCCP. Under similar experimental conditions, MV strongly quenched Chl-a fluorescence, suggesting that Cyt b-559 is reduced directly on the reducing side of Photosystem II.Abbreviations ADRY acceleration of the deactivation reactions of the water-splitting system Y - ANT-2p 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene - CCCP carbonylcyanide-m-chlorophenylhydrazone - DCBQ 2,6-dichloro-p-benzoquinone - FeCN ferricyanide - MV methyl viologen - P680 Photosystem II reaction center Chl-a dimer CIW-DPB publication No. 1118.  相似文献   

13.
Peter Horton  Edward Croze 《BBA》1977,462(1):86-101
The role of cytochrome b-559 in Photosystem II reactions has been investigated using hydroxylamine treatment of chloroplast membranes. Incubation of chloroplasts with hydroxylamine in darkness resulted in inhibition of water oxidation and a decrease in the amplitude of cytochrome b-559 reducible by hydroquinone. The loss of water oxidizing activity perfectly correlated with the decrease in amplitude of cytochrome b-559 reduction. Potentiometric titration of cytochrome b-559 after hydroxylamine treatment revealed a component with Em7.8 at +240 mV in addition to a lower potential species at +90 mV. This compared to control chloroplasts in which cytochrome b-559 exists in the typical high potential state, Em7.8 = +383 mV, in addition to some of the low potential (Em7.8 = +77 mV) form. Photosystem II activity could be further inhibited by incubation with hydroxylamine in the light. In these chloroplasts only low rates of photooxidation of artificial electron donors were observed compared to ‘dark’ chloroplasts. In addition, the hydroxylamine light treatment caused a further change in cytochrome b-559 redox properties; a single component, Em7.8 = 90 mV is seen in titration curves. The role of cytochrome b-559 in Photosystem II functioning is discussed on the basis of these observations which suggest a dependence of photooxidizing ability of Photosystem II on the redox properties of this cytochrome.  相似文献   

14.
Chloroplast material active in photosynthetic electron transport has been isolated from Scenedesmus acutus (strain 270/3a). During homogenization, part of cytochrome 553 was solubilized, and part of it remained firmly bound to the membrane. A direct correlation between membrane cytochrome 553 and electron transport rates could not be found. Sonification removes plastocyanin, but leaves bound cytochrome 553 in the membrane. Photooxidation of the latter is dependent on added plastocyanin. In contrast to higher plant chloroplasts, added soluble cytochrome 553 was photooxidized by 707 nm light without plastocyanin present. Reduced plastocyanin or cytochrome 553 stimulated electron transport by Photosystem I when supplied together or separately. These reactions and cytochrome 553 photooxidation were not sensitive to preincubation of chloroplasts with KCN, indicating that both redox proteins can donate their electrons directly to the Photosystem I reaction center. Scenedesmus cytochrome 553 was about as active as plastocyanin from the same alga, whereas the corresponding protein from the alga Bumilleriopsis was without effect on electron transport rates.

It is suggested that besides the reaction sequence cytochrome 553 → plastocyanin → Photosystem I reaction center, a second pathway cytochrome 553 → Photosystem I reaction center may operate additionally.  相似文献   


15.
The effect of NADP+ on light-induced steady-state redox changes of membrane-bound cytochromes was investigated in membrane fragements prepared from the blue-green algae Nostoc muscorum (Strain 7119) that had high rates of electron transport from water to NADP+ and from an artificial electron donor, reduced dichlorophenolindophenol (DCIPH2) to NDAP+. The membrane fragments contained very little phycocyanin and had excellent optical properties for spectrophotometric assays. With DCIPH2 as the electron donor, NADP+ had no effect on the light-induced redox changes of cytochromes: with or without NADP+, 715- or 664-nm illumination resulted mainly in the oxidation of cytochrome f and of other component(s) which may include a c-type cytochrome with an alpha peak at 549nm. With 664 nm illumination and water as the electron donor, NADP+ had a pronounced effect on the redox state of cytochromes, causing a shift toward oxidation of a component with a peak at 549 nm (possibly a c-type cytochrome), cytochrome f, and particularly cytochrome b559. Cytochrome b559 appeared to be a component of the main noncyclic electron transport chain and was photooxidized at physiological temperatures by Photosystem II. This photooxidation was apparent only in the presence of a terminal acceptor (NADP+) for the electron flow from water.  相似文献   

16.
Light-induced redox-reactions of cytochrome b559 in spinachchloroplasts were investigated. Illumination of chloroplastsinduced photoreduction of cytochrorne b559 Red light (650 nm)was more effective than far-red light (725 nm), indicating thatthe photoreduction is a photosystem II-mediated reaction. Onaddition of DCMU, the photoreduction was eliminated and a photooxidationof cytochrome b559 was observed. The rate of this photooxidationwas faster with photosystem II light than with photo-systemI light. On addition of Mn++ the photooxidation was partly suppressed;far-red light became as effective as red light in inducing photooxidationof cytochrome b599, in the presence of DCMU and Mn++. Ascorbate completely suppressed photooxidation of cytochromeb559 In the presence of ascorbate, however, photooxidation wasobserved in the presence of inhibitors or after inhibitory treatmentsof chloroplasts which affected the oxidizing side of systemII. These inhibitors and inhibitory treatments, but not DCMU,decreased the redoxpotential of cytochrome b559. Reactivationof Hill reaction in Tris-washed chloroplasts by indophenol-ascorbatetreatment was not accompanied by an abolishment of photooxidationof cytochrome b559. A possible mechanism is proposed to account for these reactionsof cytochrome b559 in the photosynthetic electron transportin chloroplasts. (Received April 4, 1972; )  相似文献   

17.
J. Whitmarsh  W.A. Cramer 《BBA》1978,501(1):83-93
Cytochrome b-559, which is normally reduced in the dark, was oxidized by preillumination in the presence of N-methyl-phenazonium methosulfate with low intensity far-red light. The average half-time for the photoreduction of oxidized cytochrome b-559 by a long actinic flash ranged from 90 to 110 ms. In the presence of 0.25 μM 3-(3,4-dichlorophenyl)-1,1-dimethylurea the half-time for the photoreduction increased to 230 ms although the extent of the absorbance increase was unchanged. Under similar conditions inhibition of electron transport by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and the increase in the chlorophyll fluorescence show that a large fraction of the Photosystem II reaction centers are blocked. These results are consistent with the concept that electrons are shared between different photosynthetic units by a common pool of plastoquinone and imply that the principle pathway for the reduction of cytochrome b-559 by Photosystem II occurs through plastoquinone. In the presence of the uncoupler gramicidin which stimulates non-cyclic electron transport, the rate of photoreduction of cytochrome b-559 is slower (t12 = 180 ms), from which it is inferred that cytochrome b-559 competes with cytochrome f for electrons out of this pool. Comparison of cytochrome b-559 photoreduction and electron transport rates using untreated and KCN-treated chloroplasts indicate that, under conditions of basal electron transport from water to ferricyanide, approximately one-fifth of the electrons from Photosystem II go through cytochrome b-559 to ferricyanide. Further support for this pathway is provided by a comparison of the effect of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (dibromothymoquinone) on the rates of reduction of cytochrome b-559 and ferricyanide.  相似文献   

18.
Andr Vermeglio  Paul Mathis 《BBA》1973,292(3):763-771
The effect of light on the reaction center of Photosystem II was studied by differential absorption spectroscopy in spinach chloroplasts.

At − 196 °C, continuous illumination results in a parallel reduction of C-550 and oxidation of cytochrome b559 high potential. With flash excitation, C-550 is reduced, but only a small fraction of cytochrome b559 is oxidized. The specific effect of flash illumination is suppressed if the chloroplasts are preilluminated by one flash at 0 °C.

At − 50 °C, continuous illumination results in the reduction of C-550 but little oxidation of cytochrome b559. However, complete oxidation is obtained if the chloroplasts have been preilluminated by one flash at 0 °C. The effect of preillumination is not observed in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea.

A model is discussed for the reaction center, with two electron donors, cytochrome b559 and Z, acting in competition. Their respective efficiency is dependent on temperature and on their states of oxidation. The specific effect of flash excitation is attributed to a two-photon reaction, possibly based on energy-trapping properties of the oxidized trap chlorophyll.  相似文献   


19.
Cytochrome b-559 photooxidation in the presence of carbonyl cyanide p-trifluorometh-oxyphenylhydrazone and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone or p-benzoquinone in three non-photosynthetic mutants of Chlamydomonas reinhardtiStudies of absorbance changes related to the cytochrome b-559 photooxidation induced by FCCP, with and without addition of 3-p-chlorophenyl-1, 1-dimethylurea (CMU), DBMIB or p-benzoquinone, in whole cells and in chloroplast fragments of Chlamydomonas reinhardti, were carried out. In addition to the wild type, three strains of non-photosynthetic mutants were used: Fl 5, which lacks P 700; Fl 9 and Fl 15, which are deficient in bound cytochrome c-553 and in cytochrome b-563.In the presence of FCCP, whole cells and chloroplast fragments of the four strains showed a System II-dependent photooxidation of cytochrome b-559. This photooxidation was inhibited by CMU but it occurred again in presence of FCCP, CMU and DBMIB. In chloroplast fragments, cytochrome b-559 photooxidation was also inhibited by an excess of FCCP; it was recovered, likewise, by addition of DBMIB. In whole cells, the highest measured redox changes were: 1 μmol oxidized cytochrome b-559 per 1 mmol chlorophyll, corresponding approximately to about one seventh (wild type, Fl 5) or one fifth (Fl 9, Fl 15) of the total amount of this cytochrome.Another kind of cytochrome b-559 photooxidation, CMU-insensitive, also occurred in the mutants Fl 9 and Fl 15 and in the wild type, but not in the mutant Fl 5. This latter kind of photooxidation was observed with chloroplast fragments in the presence of FCCP and CMU and also with whole cells in the presence of FCCP, CMU and p-benzoquinone. These reactions can be attributed to the Photosystem I; they do not require the intervention of the cytochrome c-553.A high-potential form of cytochrome b-559, hydroquinone-reducible, was involved in these two kinds of photooxidation. In addition, a lower potential form, reducible only by ascorbate, appeared to be able to interfere also.An interpretation is attempted, taking into consideration the various effects of FCCP and DBMIB, at different concentrations, on photosynthetic electron transport.  相似文献   

20.
Most of the chloroplastb-559 is high potential at neutral pH as defined by hydroquinone reducibility. FCCP* (20 M) and antimycin A (50 M) convert high potentialb-559 to a low potential state which can be reduced by ascorbate but not hydroquinone. The low and high potential states of cytochromeb-559 are different forms of the same cytochrome.Three lines of evidence indicate that the cytb-559 oxidized by photosystem I is low potential: (1) theb-559 photooxidized by far-red light in the presence of FCCP (3 M) is low potentialb-559; (2) the amplitude of theb-559 oxidation by far-red light and the amount of low potentialb-559 present in the dark have the same general dependence on pH; (3) inhibitor studies show that plastoquinone mediates the oxidation of cytb-559 by PS I.The well-known stimulation ofb-559 oxidation by far-red light in the presence of FCCP is attributed to FCCP-facilitated photoconversion of high potentialb-559 to a low potential form.It is concluded that if cytb-559 is oxidized by system I light, then it is a low potential form (E m7+80 mV) which is oxidized. It is not proven, however, that a significant amount of cytb-559 is oxidized by PS I under coupled or physiological conditions.Possible thermodynamic regulation of non-cyclic electron flow involving the distribution between high and low potential forms of cytb-559 is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号