首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 414 毫秒
1.
The Public Goods Game is one of the most popular models for studying the origin and maintenance of cooperation. In its simplest form, this evolutionary game has two regimes: defection goes to fixation if the multiplication factor r is smaller than the interaction group size N, whereas cooperation goes to fixation if the multiplication factor r is larger than the interaction group size N. Hauert et al. [Hauert, C., Holmes, M., Doebeli, M., 2006a. Evolutionary games and population dynamics: Maintenance of cooperation in public goods games. Proc. R. Soc. Lond. B 273, 2565-2570] have introduced the Ecological Public Goods Game by viewing the payoffs from the evolutionary game as birth rates in a population dynamic model. This results in a feedback between ecological and evolutionary dynamics: if defectors are prevalent, birth rates are low and population densities decline, which leads to smaller interaction groups for the Public Goods game, and hence to dominance of cooperators, with a concomitant increase in birth rates and population densities. This feedback can lead to stable co-existence between cooperators and defectors. Here we provide a detailed analysis of the dynamics of the Ecological Public Goods Game, showing that the model exhibits various types of bifurcations, including supercritical Hopf bifurcations, which result in stable limit cycles, and hence in oscillatory co-existence of cooperators and defectors. These results show that including population dynamics in evolutionary games can have important consequences for the evolutionary dynamics of cooperation.  相似文献   

2.
The classical setting of evolutionary game theory, the replicator equation, assumes uniform interaction rates. The rate at which individuals meet and interact is independent of their strategies. Here we extend this framework by allowing the interaction rates to depend on the strategies. This extension leads to non-linear fitness functions. We show that a strict Nash equilibrium remains uninvadable for non-uniform interaction rates, but the conditions for evolutionary stability need to be modified. We analyze all games between two strategies. If the two strategies coexist or exclude each other, then the evolutionary dynamics do not change qualitatively, only the location of the equilibrium point changes. If, however, one strategy dominates the other in the classical setting, then the introduction of non-uniform interaction rates can lead to a pair of interior equilibria. For the Prisoner's Dilemma, non-uniform interaction rates allow the coexistence between cooperators and defectors. For the snowdrift game, non-uniform interaction rates change the equilibrium frequency of cooperators.  相似文献   

3.
Social dilemmas and the evolutionary conundrum of cooperation are traditionally studied through various kinds of game theoretical models such as the prisoner's dilemma, public goods games, snowdrift games or by-product mutualism. All of them exemplify situations which are characterized by different degrees of conflicting interests between the individuals and the community. In groups of interacting individuals, cooperators produce a common good benefitting the entire group at some cost to themselves, whereas defectors attempt to exploit the resource by avoiding the costly contributions. Based on synergistic or discounted accumulation of cooperative benefits a unifying theoretical framework was recently introduced that encompasses all games that have traditionally been studied separately (Hauert, Michor, Nowak, Doebeli, 2005. Synergy and discounting of cooperation in social dilemmas. J. Theor. Biol., in press.). Within this framework we investigate the effects of spatial structure with limited local interactions on the evolutionary fate of cooperators and defectors. The quantitative effects of space turn out to be quite sensitive to the underlying microscopic update mechanisms but, more general, we demonstrate that in prisoner's dilemma type interactions spatial structure benefits cooperation-although the parameter range is quite limited-whereas in snowdrift type interactions spatial structure may be beneficial too, but often turns out to be detrimental to cooperation.  相似文献   

4.
Spatial invasion of cooperation   总被引:2,自引:0,他引:2  
The evolutionary puzzle of cooperation describes situations where cooperators provide a fitness benefit to other individuals at some cost to themselves. Under Darwinian selection, the evolution of cooperation is a conundrum, whereas non-cooperation (or defection) is not. In the absence of supporting mechanisms, cooperators perform poorly and decrease in abundance. Evolutionary game theory provides a powerful mathematical framework to address the problem of cooperation using the prisoner's dilemma. One well-studied possibility to maintain cooperation is to consider structured populations, where each individual interacts only with a limited subset of the population. This enables cooperators to form clusters such that they are more likely to interact with other cooperators instead of being exploited by defectors. Here we present a detailed analysis of how a few cooperators invade and expand in a world of defectors. If the invasion succeeds, the expansion process takes place in two stages: first, cooperators and defectors quickly establish a local equilibrium and then they uniformly expand in space. The second stage provides good estimates for the global equilibrium frequencies of cooperators and defectors. Under hospitable conditions, cooperators typically form a single, ever growing cluster interspersed with specks of defectors, whereas under more hostile conditions, cooperators form isolated, compact clusters that minimize exploitation by defectors. We provide the first quantitative assessment of the way cooperators arrange in space during invasion and find that the macroscopic properties and the emerging spatial patterns reveal information about the characteristics of the underlying microscopic interactions.  相似文献   

5.
Social networks affect in such a fundamental way the dynamics of the population they support that the global, population-wide behavior that one observes often bears no relation to the individual processes it stems from. Up to now, linking the global networked dynamics to such individual mechanisms has remained elusive. Here we study the evolution of cooperation in networked populations and let individuals interact via a 2-person Prisoner's Dilemma--a characteristic defection dominant social dilemma of cooperation. We show how homogeneous networks transform a Prisoner's Dilemma into a population-wide evolutionary dynamics that promotes the coexistence between cooperators and defectors, while heterogeneous networks promote their coordination. To this end, we define a dynamic variable that allows us to track the self-organization of cooperators when co-evolving with defectors in networked populations. Using the same variable, we show how the global dynamics--and effective dilemma--co-evolves with the motifs of cooperators in the population, the overall emergence of cooperation depending sensitively on this co-evolution.  相似文献   

6.
The evolution of cooperation is an enduring conundrum in biology and the social sciences. Two social dilemmas, the prisoner's dilemma and the snowdrift game have emerged as the most promising mathematical metaphors to study cooperation. Spatial structure with limited local interactions has long been identified as a potent promoter of cooperation in the prisoner's dilemma but in the spatial snowdrift game, space may actually enhance or inhibit cooperation. Here we investigate and link the microscopic interaction between individuals to the characteristics of the emerging macroscopic patterns generated by the spatial invasion process of cooperators in a world of defectors. In our simulations, individuals are located on a square lattice with Moore neighborhood and update their strategies by probabilistically imitating the strategies of better performing neighbors. Under sufficiently benign conditions, cooperators can survive in both games. After rapid local equilibration, cooperators expand quadratically until global saturation is reached. Under favorable conditions, cooperators expand as a large contiguous cluster in both games with minor differences concerning the shape of embedded defectors. Under less favorable conditions, however, distinct differences arise. In the prisoner's dilemma, cooperators break up into isolated, compact clusters. The compact clustering reduces exploitation and leads to positive assortment, such that cooperators interact more frequently with other cooperators than with defectors. In contrast, in the snowdrift game, cooperators form small, dendritic clusters, which results in negative assortment and cooperators interact more frequently with defectors than with other cooperators. In order to characterize and quantify the emerging spatial patterns, we introduce a measure for the cluster shape and demonstrate that the macroscopic patterns can be used to determine the characteristics of the underlying microscopic interactions.  相似文献   

7.
Public goods games are models of social dilemmas where cooperators pay a cost for the production of a public good while defectors free ride on the contributions of cooperators. In the traditional framework of evolutionary game theory, the payoffs of cooperators and defectors result from interactions in groups formed by binomial sampling from an infinite population. Despite empirical evidence showing that group-size distributions in nature are highly heterogeneous, most models of social evolution assume that the group size is constant. In this article, I remove this assumption and explore the effects of having random group sizes on the evolutionary dynamics of public goods games. By a straightforward application of Jensen's inequality, I show that the outcome of general nonlinear public goods games depends not only on the average group size but also on the variance of the group-size distribution. This general result is illustrated with two nonlinear public goods games (the public goods game with discounting or synergy and the N-person volunteer's dilemma) and three different group-size distributions (Poisson, geometric, and Waring). The results suggest that failing to acknowledge the natural variation of group sizes can lead to an underestimation of the actual level of cooperation exhibited in evolving populations.  相似文献   

8.
Cooperation is one of the essential factors for all biological organisms in major evolutionary transitions. Recent studies have investigated the effect of migration for the evolution of cooperation. However, little is known about whether and how an individuals’ cooperativeness coevolves with mobility. One possibility is that mobility enhances cooperation by enabling cooperators to escape from defectors and form clusters; the other possibility is that mobility inhibits cooperation by helping the defectors to catch and exploit the groups of cooperators. In this study we investigate the coevolutionary dynamics by using the prisoner’s dilemma game model on a lattice structure. The computer simulations demonstrate that natural selection maintains cooperation in the form of evolutionary chasing between the cooperators and defectors. First, cooperative groups grow and collectively move in the same direction. Then, mutant defectors emerge and invade the cooperative groups, after which the defectors exploit the cooperators. Then other cooperative groups emerge due to mutation and the cycle is repeated. Here, it is worth noting that, as a result of natural selection, the mobility evolves towards directional migration, but not to random or completely fixed migration. Furthermore, with directional migration, the rate of global population extinction is lower when compared with other cases without the evolution of mobility (i.e., when mobility is preset to random or fixed). These findings illustrate the coevolutionary dynamics of cooperation and mobility through the directional chasing between cooperators and defectors.  相似文献   

9.
Understanding the emergence of cooperation is a central issue in evolutionary game theory. The hardest setup for the attainment of cooperation in a population of individuals is the Public Goods game in which cooperative agents generate a common good at their own expenses, while defectors “free-ride” this good. Eventually this causes the exhaustion of the good, a situation which is bad for everybody. Previous results have shown that introducing reputation, allowing for volunteer participation, punishing defectors, rewarding cooperators or structuring agents, can enhance cooperation. Here we present a model which shows how the introduction of rare, malicious agents - that we term jokers - performing just destructive actions on the other agents induce bursts of cooperation. The appearance of jokers promotes a rock-paper-scissors dynamics, where jokers outbeat defectors and cooperators outperform jokers, which are subsequently invaded by defectors. Thus, paradoxically, the existence of destructive agents acting indiscriminately promotes cooperation.  相似文献   

10.
An evolutionary game of individuals cooperating to obtain a collective benefit is here modelled as an n-player Prisoner's Dilemma game. With reference to biological situations, such as group foraging, we introduce a threshold condition in the number of cooperators required to obtain the collective benefit. In the simplest version, a three-player game, complex behaviour appears as the replicator dynamics exhibits a catastrophic event separating a parameter region allowing for coexistence of cooperators and defectors and a region of pure defection. Cooperation emerges through an ESS bifurcation, and cooperators only thrive beyond a critical point in cost-benefit space. Moreover, a repelling fixed point of the dynamics acts as a barrier to the introduction of cooperation in defecting populations. The results illustrate the qualitative difference between two-player games and multiple player games and thus the limitations to the generality of conclusions from two-player games. We present a procedure to find the evolutionarily stable strategies in any n-player game with cost and benefit depending on the number of cooperators. This was previously done by Motro [1991. Co-operation and defection: playing the field and the ESS. J. Theor. Biol. 151, 145-154] in the special cases of convex and concave benefit functions and constant cost.  相似文献   

11.
We investigate the evolution of public goods cooperation in a metapopulation model with small local populations, where altruistic cooperation can evolve due to assortment and kin selection, and the evolutionary emergence of cooperators and defectors via evolutionary branching is possible. Although evolutionary branching of cooperation has recently been demonstrated in the continuous snowdrift game and in another model of public goods cooperation, the required conditions on the cost and benefit functions are rather restrictive, e.g., altruistic cooperation cannot evolve in a defector population. We also observe selection for too low cooperation, such that the whole metapopulation goes extinct and evolutionary suicide occurs. We observed intuitive effects of various parameters on the numerical value of the monomorphic singular strategy. Their effect on the final coexisting cooperator–defector pair is more complex: changes expected to increase cooperation decrease the strategy value of the cooperator. However, at the same time the population size of the cooperator increases enough such that the average strategy does increase. We also extend the theory of structured metapopulation models by presenting a method to calculate the fitness gradient in a general class of metapopulation models, and try to make a connection with the kin selection approach.  相似文献   

12.
The emergence and maintenance of cooperation by natural selection is an enduring conundrum in evolutionary biology, which has been studied using a variety of game theoretical models inspired by different biological situations. The most widely studied games are the Prisoner's Dilemma, the Snowdrift game and by-product mutualism for pairwise interactions, as well as Public Goods games in larger groups of interacting individuals. Here, we present a general framework for cooperation in social dilemmas in which all the traditional scenarios can be recovered as special cases. In social dilemmas, cooperators provide a benefit to the group at some cost, while defectors exploit the group by reaping the benefits without bearing the costs of cooperation. Using the concepts of discounting and synergy for describing how benefits accumulate when more than one cooperator is present in a group of interacting individuals, we recover the four basic scenarios of evolutionary dynamics given by (i) dominating defection, (ii) coexistence of defectors and cooperators, (iii) dominating cooperation and (iv) bi-stability, in which cooperators and defectors cannot invade each other. Generically, for groups of three or more interacting individuals further, more complex, dynamics can occur. Our framework provides the first unifying approach to model cooperation in different kinds of social dilemmas.  相似文献   

13.
Evolutionary dynamics shape the living world around us. At the centre of every evolutionary process is a population of reproducing individuals. The structure of that population affects evolutionary dynamics. The individuals can be molecules, cells, viruses, multicellular organisms or humans. Whenever the fitness of individuals depends on the relative abundance of phenotypes in the population, we are in the realm of evolutionary game theory. Evolutionary game theory is a general approach that can describe the competition of species in an ecosystem, the interaction between hosts and parasites, between viruses and cells, and also the spread of ideas and behaviours in the human population. In this perspective, we review the recent advances in evolutionary game dynamics with a particular emphasis on stochastic approaches in finite sized and structured populations. We give simple, fundamental laws that determine how natural selection chooses between competing strategies. We study the well-mixed population, evolutionary graph theory, games in phenotype space and evolutionary set theory. We apply these results to the evolution of cooperation. The mechanism that leads to the evolution of cooperation in these settings could be called ‘spatial selection’: cooperators prevail against defectors by clustering in physical or other spaces.  相似文献   

14.
Active linking in evolutionary games   总被引:1,自引:0,他引:1  
In the traditional approach to evolutionary game theory, the individuals of a population meet each other at random, and they have no control over the frequency or duration of interactions. Here we remove these simplifying assumptions. We introduce a new model, where individuals differ in the rate at which they seek new interactions. Once a link between two individuals has formed, the productivity of this link is evaluated. Links can be broken off at different rates. In a limiting case, the linking dynamics introduces a simple transformation of the payoff matrix. We outline conditions for evolutionary stability. As a specific example, we study the interaction between cooperators and defectors. We find a simple relationship that characterizes those linking dynamics which allow natural selection to favour cooperation over defection.  相似文献   

15.
We study the problem of the emergence of cooperation in the spatial Prisoner's Dilemma. The pioneering work by Nowak and May [1992. Evolutionary games and spatial chaos. Nature 415, 424-426] showed that large initial populations of cooperators can survive and sustain cooperation in a square lattice with imitate-the-best evolutionary dynamics. We revisit this problem in a cost-benefit formulation suitable for a number of biological applications. We show that if a fixed-amount reward is established for cooperators to share, a single cooperator can invade a population of defectors and form structures that are resilient to re-invasion even if the reward mechanism is turned off. We discuss analytically the case of the invasion by a single cooperator and present agent-based simulations for small initial fractions of cooperators. Large cooperation levels, in the sustainability range, are found. In the conclusions we discuss possible applications of this model as well as its connections with other mechanisms proposed to promote the emergence of cooperation.  相似文献   

16.
The emergence and abundance of cooperation in nature poses a tenacious and challenging puzzle to evolutionary biology. Cooperative behaviour seems to contradict Darwinian evolution because altruistic individuals increase the fitness of other members of the population at a cost to themselves. Thus, in the absence of supporting mechanisms, cooperation should decrease and vanish, as predicted by classical models for cooperation in evolutionary game theory, such as the Prisoner's Dilemma and public goods games. Traditional approaches to studying the problem of cooperation assume constant population sizes and thus neglect the ecology of the interacting individuals. Here, we incorporate ecological dynamics into evolutionary games and reveal a new mechanism for maintaining cooperation. In public goods games, cooperation can gain a foothold if the population density depends on the average population payoff. Decreasing population densities, due to defection leading to small payoffs, results in smaller interaction group sizes in which cooperation can be favoured. This feedback between ecological dynamics and game dynamics can generate stable coexistence of cooperators and defectors in public goods games. However, this mechanism fails for pairwise Prisoner's Dilemma interactions and the population is driven to extinction. Our model represents natural extension of replicator dynamics to populations of varying densities.  相似文献   

17.
One of the most direct human mechanisms of promoting cooperation is rewarding it. We study the effect of sharing a reward among cooperators in the most stringent form of social dilemma, namely the prisoner's dilemma (PD). Specifically, for a group of players that collect payoffs by playing a pairwise PD game with their partners, we consider an external entity that distributes a fixed reward equally among all cooperators. Thus, individuals confront a new dilemma: on the one hand, they may be inclined to choose the shared reward despite the possibility of being exploited by defectors; on the other hand, if too many players do that, cooperators will obtain a poor reward and defectors will outperform them. By appropriately tuning the amount to be shared a vast variety of scenarios arises, including the traditional ones in the study of cooperation as well as more complex situations where unexpected behavior can occur. We provide a complete classification of the equilibria of the n-player game as well as of its evolutionary dynamics.  相似文献   

18.
Evolutionary dynamics of collective action in N-person stag hunt dilemmas   总被引:1,自引:0,他引:1  
In the animal world, collective action to shelter, protect and nourish requires the cooperation of group members. Among humans, many situations require the cooperation of more than two individuals simultaneously. Most of the relevant literature has focused on an extreme case, the N-person Prisoner's Dilemma. Here we introduce a model in which a threshold less than the total group is required to produce benefits, with increasing participation leading to increasing productivity. This model constitutes a generalization of the two-person stag hunt game to an N-person game. Both finite and infinite population models are studied. In infinite populations this leads to a rich dynamics that admits multiple equilibria. Scenarios of defector dominance, pure coordination or coexistence may arise simultaneously. On the other hand, whenever one takes into account that populations are finite and when their size is of the same order of magnitude as the group size, the evolutionary dynamics is profoundly affected: it may ultimately invert the direction of natural selection, compared with the infinite population limit.  相似文献   

19.
Transforming the dilemma   总被引:1,自引:0,他引:1  
How does natural selection lead to cooperation between competing individuals? The Prisoner's Dilemma captures the essence of this problem. Two players can either cooperate or defect. The payoff for mutual cooperation, R, is greater than the payoff for mutual defection, P. But a defector versus a cooperator receives the highest payoff, T, where as the cooperator obtains the lowest payoff, S. Hence, the Prisoner's Dilemma is defined by the payoff ranking T > R > P > S . In a well‐mixed population, defectors always have a higher expected payoff than cooperators, and therefore natural selection favors defectors. The evolution of cooperation requires specific mechanisms. Here we discuss five mechanisms for the evolution of cooperation: direct reciprocity, indirect reciprocity, kin selection, group selection, and network reciprocity (or graph selection). Each mechanism leads to a transformation of the Prisoner's Dilemma payoff matrix. From the transformed matrices, we derive the fundamental conditions for the evolution of cooperation. The transformed matrices can be used in standard frameworks of evolutionary dynamics such as the replicator equation or stochastic processes of game dynamics in finite populations.  相似文献   

20.
Cooperation is a mysterious evolutionary phenomenon and its mechanisms require elucidation. When cooperators can stop interactions with defectors, the evolution of cooperation becomes possible; this is one mechanism that facilitates the evolution of cooperation. Here, stopping interactions with defectors is beneficial not only for cooperators but also for defectors. The question then arises, for whom is stopping interactions with defectors more beneficial: cooperators or defectors? By utilizing evolutionary game theory, I addressed this question using a two-player game involving four strategies: (1) cooperators who stop the interaction if the current partner is a defector, (2) cooperators who attempt to maintain a relationship with anyone, (3) defectors who stop the interaction if the current partner is a defector, and (4) defectors who attempt to maintain a relationship with anyone. Our results show that, at equilibrium, the ratio of cooperators who stop the interaction if the current partner is a defector to cooperators who attempt to maintain a relationship with anyone is larger than the ratio of defectors who stop the interaction if the current partner is a defector to defectors who attempt to maintain a relationship with anyone. Thus, cooperators rather than defectors are more likely to stop interactions with defectors at equilibrium. This result is consistent with a previous experimental study in which a positive correlation was detected between the degree of individuals’ cooperativeness and how accurately the individuals recognize whether other individuals are cooperators or defectors. Thus, the theoretical work presented in this study provides relevant insights into the natural phenomena of cooperation and recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号