首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Irradiated sugar solutions are mutagenic towards Salmonella typhimurium, the effect being dose-dependent up to 2.0 Mrad. At all doses, ribose solution exhibited greater mutagenicity than did sucrose solution. The mutagenic effect was observed only in dividing cells and appears to be directly related to the growth rate. A larger proportion of revertants was observed after incubation with irradiated sugar solution for a period of 4 h than for 24 h. Irradiation of the sugar solutions in the frozen conditions was effective in completely preventing the development of mutagenic potential. Post-irradiation storage of the sugar solutions for a prolonged period (25 weeks) also minimized their mutagenic effect. The irradiated sugar solutions gave rise to both missense and frame-shift (additon as well as deletion) types of mutation; ribose was more effective in inducing the latter type. The irradiated sugar solutions failed to show a mutagenic response in the host-mediated assay with mice as the mammalian host.  相似文献   

2.
Nucleic acid bases such as adenine and uracil, and nitrobenzeneboronic acid substituted silicas were prepared by the reaction of chloromethylbenzene substituted silica with adenine sodium salt and trimethylsilylated uracil, and nitration of benzeneboronic acid substituted silica, respectively. From the results of HPLC of nucleosides and N-ethyl derivatives of nucleic acid bases using modified silicas, hydrophobic base stacking interaction, selective hydrogen bonding interaction between purine and pyrimidine bases, and reversible cyclic boronate ester formation between diols of nucleosides with boronic acid were effective for the separation of nucleic acid related compounds. Moreover, association constants for hydrogen bonding formation of nucleic acid bases were estimated.  相似文献   

3.
Purine nucleotide synthesis and interconversion were examined over a range of purine base and nucleoside concentrations in intact N4 and N4TG (hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficient) neuroblastoma cells. Adenosine was a better nucleotide precursor than adenine, hypoxanthine or guanine at concentrations greater than 100 μM. With hypoxanthine or guanine, N4TG cells had less than 2% the rate of nucleotide synthesis of N4 cells. At substrate concentrations greater than 100 μM the rates for deamination of adenosine and phosphorolysis of guanosine exceeded those for any reaction of nucleotide synthesis. Labelled inosine and guanosine accumulated from hypoxanthine and guanine, respectively, in HGPRT-deficient cells and the nucleosides accumulated to a greater extent in N4 cells indicating dephosphorylation of newly synthesized IMP and GMP to be quantitatively significant. A deficiency of xanthine oxidase, guanine deaminase and guanosine kinase activities was found in neuroblastoma cells. Hypoxanthine was a source for both adenine and guanine nucleotides, whereas adenine or guanine were principally sources for adenine (>85%) or guanine (>90%) nucleotides, respectively. The rate of [14C]formate incorporation into ATP, GTP and nucleic acid purines was essentially equivalent for both N4 and N4TG cells. Purine nucleotide pools were also comparable in both cell lines, but the concentration of UDP-sugars was 1.5 times greater in N4TG than N4 cells.  相似文献   

4.
The photoexcitation (lambda = 313 +/- 10 nm) of adriamycin, daunomycin, and mitoxantrone in the presence of peptides or pyrimidine nucleic acid bases was investigated. In air-saturated and air-free solutions, peptides are decarboxylated by the photoexcited drug molecules. The decarboxylation reactions were shown to occur specifically at the C-terminal amino acid of the peptide. The decarboxylated peptide radicals were spin-trapped using 2-methyl-2-nitrosopropane (MNP) and identified by electron spin resonance (ESR). In air-free solutions, nucleic acid bases are oxidized by the photoexcited drug molecules predominantly generating C(5)-carbon-centered radicals in the pyrimidine rings of uracil, cytosine, and thymine. However, spin adducts of MNP and thymine were also obtained at the N(1) or N(3) positions of the pyrimidine ring. In air-saturated adriamycin and daunomycin solutions, the spin adducts of MNP with uracil or thymine are similar to those obtained following hydroxyl radical reactions with these pyrimidines. This suggests that in the presence of oxygen, the photoexcited adriamycin and daunomycin transfer an electron to oxygen generating the superoxide anion radicals (O2-.), which are precursors of hydroxyl radicals. O2-. was also formed when O2-saturated DNA solutions were photoirradiated (lambda = 313 +/- 10 and 438 +/- 10 nm) in the presence of adriamycin and daunomycin, indicating that the photodegradation of DNA in the presence of these drugs caused by hydroxyl radicals is mediated by dissolved oxygen.  相似文献   

5.
The values of the concentration increments of the ultrasound velocity and their temperature slopes, apparent molar volumes, apparent molar expansibilities, apparent molar adiabatic compressibilities and their temperature gradients for 12 nucleosides and their analogs, as well as for ribose and deoxyribose, have been obtained using precision measurements of ultrasound velocity and density. The following hydration parameters for the atomic groups of the nucleosides, reflecting the state of water in the hydration shells of these groups, have been analyzed: (1) the contribution of ribose to the values of the concentration increment of ultrasound velocity A, the apparent molar volumes phi v and apparent molar adiabatic compressibilities phi ks of nucleosides; (2) contributions of the CH3, NH2 and O = ... -H groups of nucleic bases to the A, phi v and phi ks values of nucleosides and free nucleic bases; (3) contributions of the 2'-OH group of ribose to the values of A, phi v and phi ks nucleosides; (4) changes in the A values of nucleosides and free nucleic bases upon their protonation and deprotonation. Data have been obtained on the mutual influence of the atomic groups of nucleosides on their hydration. It is shown that the GC pairs of free deoxynucleosides undergo hydration more vigorously than the AT pairs, which contrasts with the relation of the degree of hydration of the GC and AT pairs of the double helix.  相似文献   

6.
Mutagenicities of N-nitrosamines on Salmonella.   总被引:13,自引:0,他引:13  
The mutagenic activities of 11 N-nitrosamines were tested using Salmonella typhimurium TA100 and TA98. All the carcinogenic N-nitrosamines were mutagenic on TA100 with a drug-activating system from the rat liver, whereas N,N-diphenylnitrosamine, a non-carcinogen, was not mutagenic. None of the N-nitrosamines was mutagenic on TA98, except N,N-diethylnitrosamine which was weakly mutagenic. To detect the mutagenicity of N,N-dimethylnitrosamine, the pre-incubation of bacteria and N,N-dimethylnitrosamine with S-9 Mix before if was poured onto plates was obligatorily required. Dimethyl sulfoxide inhibited the mutagenic effect of N,N-dimethylnitrosamine.  相似文献   

7.
The phosphorylation of the 2 major phenobarbital-inducible cytochrome P450 isoenzymes IIB1 and IIB2 was increased in intact hepatocytes by the action of the membrane-permeating cAMP derivative N6,O2'-dibutyryl-cAMP. Under these conditions cyclophosphamide and ifosfamide (which are known to be activated by cytochrome P450 IIB1) were investigated for mutagenicity in Salmonella typhimurium TA1535 and TA100 and for cytotoxicity in TA1535. Cyclophosphamide and ifosfamide were transformed to mutagenic and cytotoxic metabolites by the hepatocytes. The activation of both drugs to mutagens was markedly reduced after pretreatment of the hepatocytes with the membrane-permeating cAMP derivative N6,O2'-dibutyryl-cAMP. Cyclophosphamide and ifosfamide activation were reduced to 51% and 38% of unstimulated controls respectively, when hepatocytes were incubated for 1 h with N6,O2'-dibutyryl-cAMP in the presence of the phosphodiesterase inhibitor theophylline, and Salmonella typhimurium TA1535 was used. A marked reduction in mutagenicity of cyclophosphamide (35% compared with unstimulated controls) was also observed under different experimental conditions, namely after pretreatment of the hepatocytes with N6,O2'-dibutyryl-cAMP for 1.5 h without theophylline and using Salmonella typhimurium TA100 as target strain. Continued presence of the cytochrome P450 IIB1 and P450 IIB2 inducer phenobarbital in the stimulation medium increased the mutagenicity of cyclophosphamide and led to an even more marked reduction of mutagenicity by pretreatment of the hepatocytes with N6,O2'-dibutyryl-cAMP and theophylline. In order to investigate whether the observed changes were metabolism-related, the ifosfamide metabolite ifosfamide mustard which does not require metabolic activation by cytochrome P450 was studied under the same conditions. Its mutagenicity was indistinguishable after incubation with N6,O2'-dibutyryl-cAMP-treated or with unstimulated hepatocytes. Also the metabolic formation of cytotoxic metabolites from cyclophosphamide and ifosfamide but not that of ifosfamide mustard was markedly decreased by pretreatment of the hepatocytes with N6,O2'-dibutyryl-cAMP and theophylline. Thus the stimulation of protein kinase A in intact cells has important consequences for the control of genotoxic and cytotoxic metabolites and represents a fast and short-term regulation of it.  相似文献   

8.
We propose that the ratio of [14C]formate-labelled purine nucleosides and bases (both intra and extracellular) to nucleic acid purines provides, in exponentially growing cultures, a sensitive index for comparative studies of purine metabolism. This ratio was 4-fold greater for an HGPRT- mutant than for the parental HGPRT+ human lymphoblast line. The major components of the labelled nucleoside and base fraction were hypoxanthine and inosine. By blocking adenosine deaminase activity with coformycin we found that approx. 90% of inosine was formed directly from IMP rather than the route IMP leads to AMP leads to adenosine leads to inosine. The ratio of labelled base + nucleosides to nucleic acids was essentially unchagned for an AK- lymphoblast line and 2-fold greater than control for an HGPRT(-)-KAK- line, demonstrating that a deficiency of adenosine kinase alone has little effect on the accumulation of purine nucleosides and bases. Although adenosine was a minor component of the nucleoside and base fraction, the adenosine fraction increased from 3 to 13% with the addition of coformycin to the HGPRT(-)-AK- line. In the parental and HGPRT- lines, adenosine was shown to be primarily phosphorylated rather than deaminated at concentrations less than 5 microM. Inhibition of IMP dehydrogenase activity by mycophenolic acid caused a 12- and 3-fold increase in the rate of production of labelled base and nucleoside in the parent and HGPRT- cells respectively. These results suggest that a mutationally induced partial deficiency in the activities converting IMP to guanine nucleotides may result in an increased catabolism of IMP.  相似文献   

9.
Reactions of the SO4- radical, generated by U.V. photolysis of Na2S2O8, were studied in aqueous solutions of amino acids, dipeptides, nucleic acid bases, nucleosides and nucleotides. The transient free radicals so formed were spin-trapped by t-nitrosobutane and identified by e.s.r. spectroscopy. The amino acids primarily undergo oxidative decarboxylation. The pKs of the ammonium groups of the spin-trapped decarboxylated radicals of glycine and alanine in D2O were determined to be 8.3 +/- 0.2. An oxidation product, which is the precursor of the decarboxylated radical, is tentatively identified for alanine, valine and isoleucine. Radicals formed by hydrogen abstraction by SO-4 are identified for leucine, serine, phenylalanine and 4-hydroxyproline. In dipeptides, SO-4 produces decarboxylation of the amino acid located at the carboxylate terminal residue. For gly-ala and ala-ala, radicals generated by hydrogen abstraction from the carboxylate terminal residue alanine were also characterized. Radicals centered on the C(5) carbon were observed for uracil, cytosine and thymine. For nucleosides and nucleotides, radicals situated on the base and/or the sugar moiety were assigned.  相似文献   

10.
Nutrition of Myxococcus xanthus FBa and Some of Its Auxotrophic Mutants   总被引:7,自引:6,他引:1  
A defined medium containing 15 amino acids plus salts was used to study the nutrition of Myxococcus xanthus FBa. The amino acids phenylalanine, leucine, isoleucine, valine, and methionine were essential for growth, whereas glycine, proline, asparagine, alanine, lysine, and threonine stimulated growth. An unusual pattern of requirement was found in the aromatic amino acids. Phenylalanine was essential and served as the precursor of tyrosine. Growth in the absence of tryptophan was adaptive, with cells reaching a growth rate equal to that of controls after a lag of about a week. (14)C-labeled ribose and glucose were not appreciably metabolized. Auxotrophs requiring purines and pyrimidines were isolated and were used to study the fate of externally supplied nucleic acid derivatives. Appropriate mutants could satisfy their requirements with free bases, nucleosides, and nucleotides, and could hydrolyze nucleic acids and use the products. However, studies using (14)C-ribose-labeled uridine (isolated from a Salmonella typhimurium pyrimidine auxotroph) showed that externally supplied nucleic acid derivatives were incorporated almost solely into the nucleic acids of the myxobacters, with little used either for energy-yielding oxidations or other cell anabolism.  相似文献   

11.
The partial molar heat capacities and volumes of some of the constituents of nucleic acids have been determined in water and 1 molal aqueous glucose and sucrose solutions in order to elucidate the nature of interactions occurring between various nucleic acid bases, nucleosides and the sugar (glucose and sucrose) molecules. The results have been explained in terms of the contributions from hydrophobic interactions, hydrophilic interactions and the hydrogen bonding between the solute and solvent molecules. The results have also been compared with those of amino acids and peptides in aqueous glucose and sucrose solutions.  相似文献   

12.
Results from kinetic studies on the incorporation of 3H-5-uridine and 3H-8-adenosine into the acid-soluble nucleotide poor and nucleic acids by Novikoff hepatoma cells (subline N1S1-67) in suspension culture indicate that the uridine transport reaction is saturated at about 100 μM and that for adenosine at about 10 μM nucleoside in the medium, and that above 100 μM simple diffusion becomes the predominant mode of entry of both nucleosides into the cell. The Km of the transport reactions is approximately 1.3 × 10?5 M for uridine and 6 × 10?6 M for adenosine. The incorporation of these nucleosides into both the nucleotide pool and into nucleic acids seems to be limited by the rate of entry of the nucleic acid synthesis from the rate of incorporation of nucleosides. Other complicating factors are a change with time of labeling in the relative proporation of nucleoside incorporated into DNA and into the individual nucleotides of RNA, the splitting of uridine to uracil by th ecells, the deamination of adenosine kto inosine and the subsequent cleavage of inosine to hypoxanthine. Various lines of evidence are presented which indicate that the overall nucleotide pools of the cells are very small under normal growth conditions. During growth in the presence of 200 μM uridine or adenosine, however, the cells continue to convert the nucleosides into intracellular nucleotides much more rapidly than required for nucleic acid synthesis. This results in an accumulation of free uridine and adenosine nucleotides in the cells, the maximum amounts of which are at least equivalent to the amount of these nucleotides in total cellular RNA.  相似文献   

13.
Abstract

The nucleoside constituents of nucleic acids prefer the anti conformation (1). When the sugar pucker is taken into account the nucleosides prefer the C2′endo-anti conformation. Of the nearly 300 nucleosides known, about 250 are in the anti conformation and 50 are in the syn-conformation, i.e., anti to syn conformation is 5:1. The nucleotide building blocks of nucleic acids show the same trend as nucleosides. Both the deoxy-guanosine and ribo- guanosine residues in nucleosides and nucleotides prefer the syn-C2′endo conformation with an intra-molecular hydrogen bond (for nucleosides) between the O5′- H and the N3 of the base and, a few syn-C3′endo conformations are also observed. Evidence is presented for the occurrence of the C3′endo-syn conformation for guanines in mis-paired double helical right-handed structures with the distorted sugar phosphate C4′-C5′ and P-O5′ bonds respectively, from g+ (gg) and g- to trans. Evidence is also provided for guanosine nucleotides in left-handed double-helical (Z-DNA) oligo and polynucleotides which has the same syn-C3′endo conformation and the distorted backbone sugar-phosphate bonds (C4′-C5′ and P- O5′) as in the earlier right-handed case.  相似文献   

14.
Whole cells and isolated membranes of the marine bacterium MB22 converted nucleotides present in the external medium rapidly into nucleosides and then into bases. Nucleosides and purine bases formed were taken up by distinct transport systems. We found a high-affinity common transport system for adenine, guanine, and hypoxanthine, with a Km of 40 nM. This system was inhibited noncompetitively by purine nucleosides. In addition, two transport systems for nucleosides were present: one for guanosine with a Km of 0.8 microM and another one for inosine and adenosine with a Km of 1.4 microM. The nucleoside transport systems exhibited both mixed and noncompetitive inhibition by different nucleosides other than those translocated; purine and pyrimidine bases had no effect. The transport of nucleosides and purine bases was inhibited by dinitrophenol or azide, thus suggesting that transport is energy dependent. Inside the cell all of the substrates were converted mainly into guanosine, xanthine, and uric acid, but also anabolic products, such as nucleotides and nucleic acids, could be found.  相似文献   

15.
A simple and sensitive method has been developed to separate nucleic acid bases, nucleosides, nucleotides and their precursors by automated chromatography using the amino acid analyzer with lithium citrate buffers. The method is sensitive to a concentration of 5 nmol, linear in the range of 5--100 nmol, and resolves almost all the bases, nucleosides, nucleotides and their precursors of physiologic importance.  相似文献   

16.
The role of nucleotide excision repair in the mutagenicity of the monofunctional alkylating agents N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), methyl methanesulfonate (MMS), N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG), and N-ethyl-N-nitrosourea (ENU) in Salmonella typhimurium was examined. The mutagenic potential of the mutagenic agents used increased in the following order: MMS less than ENU less than ENNG less than MNNG. The results obtained confirm the involvement of nucleotide excision repair in the removal of mutagenic lesions from the DNA of S. typhimurium cells exposed to high doses of methylating as well as ethylating agents. At the low doses of all the alkylating agents used, the nucleotide excision repair-proficient strain was mutagenized more efficiently than the uvrB mutant. This phenomenon, a consequence of competition between nucleotide excision-repair enzymes and constitutive O6-methylguanine-DNA methyltransferase, is discussed.  相似文献   

17.
The nucleoside constituents of nucleic acids prefer the anti conformation (1). When the sugar pucker is taken into account the nucleosides prefer the C2'endo-anti conformation. Of the nearly 300 nucleosides known, about 250 are in the anti conformation and 50 are in the syn-conformation, i.e., anti to syn conformation is 5:1. The nucleotide building blocks of nucleic acids show the same trend as nucleosides. Both the deoxy-guanosine and riboguanosine residues in nucleosides and nucleotides prefer the syn-C2'endo conformation with an intra-molecular hydrogen bond (for nucleosides) between the O5'-H and the N3 of the base and, a few syn-C3'endo conformations are also observed. Evidence is presented for the occurrence of the C3'endo-syn conformation for guanines in mis-paired double helical right-handed structures with the distorted sugar phosphate C4'-C5' and P-O5' bonds respectively, from g+ (gg) and g- to trans. Evidence is also provided for guanosine nucleotides in left-handed double-helical (Z-DNA) oligo and polynucleotides which has the same syn-C3'endo conformation and the distorted backbone sugar-phosphate bonds (C4'-C5' and P-O5') as in the earlier right-handed case.  相似文献   

18.
An enzymatic transglycosylation of purine bases   总被引:1,自引:0,他引:1  
An enzymatic transglycosylation of purine heterocyclic bases employing readily available natural nucleosides or sugar-modified nucleosides as donors of the pentofuranose fragment and recombinant nucleoside phosphorylases as biocatalysts has been investigated. An efficient enzymatic method is suggested for the synthesis of purine nucleosides containing diverse substituents at the C6 and C2 carbon atoms. The glycosylation of N(6)-benzoyladenine and N(2)-acetylguanine and its O(6)-derivatives is not accompanied by deacylation of bases.  相似文献   

19.
Mycobacterium leprae incorporated exogenously supplied pyrimidines as bases or nucleosides, but not as a nucleotide, into its nucleic acids. Notably, thymine was incorporated approximately 5 times more rapidly than thymidine by both suspensions of, or intracellular M. leprae. Thymine incorporation was significantly inhibited by clofazamine and dapsone at near-pharmacological levels. Therefore, incorporation of thymine is preferable as an activity for assessing viability of M. leprae. Nucleosides were converted to nucleotides through kinases, bases through phosphoribosyltransferases. Alternatively, thymine and uracil could first be converted to nucleosides. Cytosine and uracil bases were interconvertible, and uracil alone could supply all the pyrimidine requirements of M. leprae, though conversion to the thymine base was extremely slow. Overall, pyrimidine scavenging occurs at a slower rate than, and appears not to be so important as purine scavenging in M. leprae.  相似文献   

20.
The interaction of calf-thymus DNA with Cu(II) and Pb(II) ions has been investigated in H2O and D2O solutions at physiological pH, using laser Raman spectroscopy. The results confirm the destabilizing effect of Cu2+ ions, which are shown to bind strongly to the guanine and cytidine bases, perturbing the A-T base pairs and disrupting the double-helical structure of DNA, whose conformation is markedly altered by these interactions. Earlier claims that Pb2+ ions destabilize DNA are not supported by the present study. These ions are found to interact only weakly with the nucleic bases, binding to the N7 position of the guanine bases and also interacting with the A-T pairs. Both types of ions are found to interact with the charged phosphate groups of DNA, although these sites are preferred over the nucleic bases by Pb2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号