首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How the myocardium is able to permanently coordinate its intracellular fluxes of ATP synthesis, transfer and utilization is difficult to investigate in the whole organ due to the cellular complexity. The adult myocardium represents a paradigm of an energetically compartmented cell since 50% of total CK activity is bound in the vicinity of other enzymes (myofibrillar sarcolemmal and sarcoplasmic reticulum ATPases as well as mitochondrial adenine nucleotide translocator, ANT). Such vicinity of enzymes is well known in vitro as well as in preparations of skinned fibers to influence the kinetic properties of these enzymes and thus the functioning of the subcellular organelles. Intracellular compartmentation has often been neglected in the NMR analysis of CK kinetics in the whole organ. It is indeed a methodological challenge to reveal subcellular kinetics in a working organ by a global approach such as NMR. To get insight in the energy transfer pathway in the perfused rat heart, we developed a combined analysis of several protocols of magnetization transfer associated with biochemical data and quantitatively evaluated which scheme of energetic exchange best describes the NMR data. This allows to show the kinetic compartmentation of subcellular CKs and to quantify their fluxes. Interestingly, we could show that the energy transfer pathway shifts from the phosphocreatine shuttle in the oxygenated perfused heart to a direct ATP diffusion from mitochondria to cytosol under moderate inhibition of ATP synthesis. Furthermore using NMR measured fluxes and the known kinetic properties of the enzymes, it is possible to model the system, estimate local ADP concentrations and propose hypothesis for the versatility of energy transfer pathway. In the normoxic heart, a 3-fold ADP gradient was found between mitochondrial intermembrane space, cytosol and ADP in the vicinity of ATPases. The shift from PCr to ATP transport observed when ATP synthesis decreases might result from a balance in the activity of two populations of ANT, either coupled or uncoupled to CK. We believe this NMR approach could be a valuable tool to reinvestigate the control of respiration by ADP in the whole heart reconciling the biochemical knowledge of mitochondrial obtained in vitro or in skinned fibers with data on the whole heart as well as to identify the implication of bioenergetics in the pathological heart.  相似文献   

2.
The main focus of this research was to apply Metabolic Control Analysis to quantitative investigation of the regulation of respiration by components of the Mitochondrial Interactosome (MI, a supercomplex consisting of ATP Synthasome, mitochondrial creatine kinase (MtCK), voltage dependent anion channel (VDAC), and tubulin) in permeabilized cardiomyocytes. Flux control coefficients (FCC) were measured using two protocols: 1) with direct ADP activation, and 2) with MtCK activation by creatine (Cr) in the presence of ATP and pyruvate kinase-phosphoenolpyruvate system. The results show that the metabolic control is much stronger in the latter case: the sum of the measured FCC is 2.7 versus 0.74 (ADP activation). This is consistent with previous data showing recycling of ADP and ATP inside the MI due to the functional coupling between MtCK and ANT and limited permeability of VDAC for these compounds, PCr being the major energy carrier between the mitochondria and ATPases. In physiological conditions, when the MI is activated, the key sites of regulation of respiration in mitochondria are MtCK (FCC = 0.93), adenine nucleotide translocase ANT (FCC = 0.95) and CoQ cytochrome c oxidoreductase (FCC = 0.4). These results show clearly that under the physiological conditions the energy transfer from mitochondria to the cytoplasm is regulated by the MI supercomplex and is very sensitive to metabolic signals.  相似文献   

3.
The role of ubiquitous mitochondrial creatine kinase (uMtCK) reaction in regulation of mitochondrial respiration was studied in purified preparations of rat brain synaptosomes and mitochondria. In permeabilized synaptosomes, apparent Km for exogenous ADP, Km (ADP), in regulation of respiration in situ was rather high (110 +/- 11 microM) in comparison with isolated brain mitochondria (9 +/- 1 microM). This apparent Km for ADP observed in isolated mitochondria in vitro dramatically increased to 169 +/- 52 microM after their incubation with 1 muM of dimeric tubulin showing that in rat brain, particularly in synaptosomes, mitochondrial outer membrane permeability for ADP, and ATP may be restricted by tubulin binding to voltage dependent anion channel (VDAC). On the other hand, in synaptosomes apparent Km (ADP) decreased to 25 +/- 1 microM in the presence of 20 mM creatine. To fully understand this effect of creatine on kinetics of respiration regulation, complete kinetic analysis of uMtCK reaction in isolated brain mitochondria was carried out. This showed that oxidative phosphorylation specifically altered only the dissociation constants for MgATP, by decreasing that from ternary complex MtCK.Cr.MgATP (K (a)) from 0.13 +/- 0.02 to 0.018 +/- 0.007 mM and that from binary complex MtCK.MgATP (K (ia)) from 1.1 +/- 0.29 mM to 0.17 +/- 0.07 mM. Apparent decrease of dissociation constants for MgATP reflects effective cycling of ATP and ADP between uMtCK and adenine nucleotide translocase (ANT). These results emphasize important role and various pathophysiological implications of the phosphocreatine-creatine kinase system in energy transfer in brain cells, including synaptosomes.  相似文献   

4.
Cancer-induced cachexia describes the progressive skeletal muscle wasting associated with many cancers leading to shortened survival time in cancer patients. We previously reported that cardiolipin content and energy-wasting processes were both increased in liver mitochondria in a rat model of peritoneal carcinosis (PC)-induced cachexia. To increase the understanding of the cellular biology of cancer cachexia, we investigated the involvement of adenine nucleotide translocator (ANT) in mitochondrial energy-wasting processes in liver mitochondria of PC and pair-fed control rats and its interactions with cardiolipin in isolated liver mitochondria from healthy rats exposed to cardiolipin-enriched liposomes. We showed in this study that functional ANT content was decreased in liver mitochondria from PC rats but without any effects on the efficiency of ATP synthesis. Moreover, non-phosphorylating energy wasting was not affected by saturating concentrations of carboxyatractylate (CAT), a potent inhibitor of ANT, in liver mitochondria from PC rats. Decreased efficiency of ATP synthesis was found in normal liver mitochondria exposed to cardiolipin-enriched liposomes, with increased non-phosphorylating energy wasting, thus mimicking mitochondria from PC rats. However, the functional ANT content in these cardiolipin-enriched mitochondria was unchanged, although non-phosphorylating energy wasting was reduced by CAT-induced inhibition of ANT. Finally, non-phosphorylating energy wasting was increased in cardiolipin-enriched mitochondria with substrates for complexes 1 and 2, but not for complex 4. In conclusion, increased energy wasting measured in liver mitochondria from rats with cancer cachexia is dependent on cardiolipin but independent of ANT. Interactions between ANT and cardiolipin are modified when cancer cachexia occurs.  相似文献   

5.
A new multidomain mathematical model of cardiac cellular metabolism was developed to simulate metabolic responses to reduced myocardial blood flow. The model is based on mass balances and reaction kinetics that describe transport and metabolic processes of 31 key chemical species in cardiac tissue. The model has three distinct domains (blood, cytosol, and mitochondria) with interdomain transport of chemical species. In addition to distinguishing between cytosol and mitochondria, the model includes a subdomain in the cytosol to account for glycolytic metabolic channeling. Myocardial ischemia was induced by a 60% reduction in coronary blood flow, and model simulations were compared with experimental data from anesthetized pigs. Simulations with a previous model without compartmentation showed a slow activation of glycogen breakdown and delayed lactate production compared with experimental results. The addition of a subdomain for glycolysis resulted in simulations showing faster rates of glycogen breakdown and lactate production that closely matched in vivo experimental data. The dynamics of redox (NADH/NAD+) and phosphorylation (ADP/ATP) states were also simulated. These controllers are coupled to energy transfer reactions and play key regulatory roles in the cytosol and mitochondria. Simulations showed a similar dynamic response of the mitochondrial redox state and the rate of pyruvate oxidation during ischemia. In contrast, the cytosolic redox state displayed a time response similar to that of lactate production. In conclusion, this novel mechanistic model effectively predicted the rapid activation of glycogen breakdown and lactate production at the onset of ischemia and supports the concept of localization of glycolysis to a subdomain of the cytosol.  相似文献   

6.
A probability approach was used to describe mitochondrial respiration in the presence of substrates, ATP, ADP, Cr and PCr. Respiring mitochondria were considered as a three-component system, including: 1) oxidative phosphorylation reactions which provide stable ATP and ADP concentrations in the mitochondrial matrix; 2) adenine nucleotide translocase provides exchange transfer of matrix adenine nucleotides for those from outside, supplied from medium and by creatine kinase; 3) creatine kinase, starting these reactions when activated by the substrates from medium. The specific feature of this system is close proximity of creatine kinase and translocase molecules. This results in high probability of direct activations of translocase by creatine kinase-derived ADP or ATP without their leak into the medium. In turn, the activated translocase with the same high probability directly provides creatine kinase with matrix-derived ATP or ADP. The catalytic complexes of creatine kinase formed with ATP from matrix together with those formed from medium ATP provide activation of the forward creatine kinase reaction coupled to translocase activation. Simultaneously the catalytic complexes of creatine kinase formed with ADP from matrix together with those formed from medium ADP provide activation of the reverse creatine kinase reaction coupled to translocase activation. The considered probabilities were arranged into a mathermatical model. The model satisfactorily simulates the available experimental data by several groups of investigators. The results allow to consider the observed kinetic and thermodynamic iriegularities in behavior of structurally bound creatine kinase as a direct consequence of its tight coupling to translocase.  相似文献   

7.
The adenine nucleotide translocase (ANT) is a key component in maintaining cellular energy homeostasis, and has also been implicated in formation of the mitochondrial permeability transition pore. Human ANT-3 was cloned from a human heart cDNA library and expressed as a histidine-tagged fusion protein in the mitochondria of the Trichoplusia ni. cell line. Overexpression resulted in a concomitant decrease in the endogenous ANT content, allowing for the characterization of binding of known ANT ligands to the human protein. Binding affinities for bongkrekic acid (BKA), ADP, and atractyloside (ATR) were measured in mitochondria from the human ANT-3 expressing cell line, and compared to similar preparations from bovine heart mitochondria by use of a novel radioiodinated derivative of ATR. Binding to ANT-3 by the high affinity inhibitors BKA and ATR, as well as the lower affinity natural ligand ADP, was similar to that measured in bovine heart mitochondria, and to that previously reported for mammalian heart mitochondria. Characterizations such as these of human ANT isoforms may lead to drug development for enhanced mitochondrial function and cellular viability.  相似文献   

8.
低压缺氧对大鼠脑线粒体腺苷酸转运体特性的影响   总被引:1,自引:0,他引:1  
Chen LF  Liu JZ  Li B 《生理学报》2006,58(1):29-33
本文探讨低压缺氧对大鼠脑线粒体内膜腺苷酸转运体(adenine nucleotide translocator,ANT)转运特性的影响。实验将雄性Wistar大鼠随机分为常氧对照组和缺氧组,后者分别连续暴露于模拟5000m高原1、5、15、30d(23h/d)。分别于平原和模拟4000m高原断头处死动物,分离脑线粒体,用抑制剂终止法测定线粒体对。H-ADP的转运效率,抑制剂滴定法测定ANT密度,HPLC测定线粒体内腺苷酸含量。结果显示:缺氧后ANT转运活性均明显低于常氧组,缺氧不同天数线粒体内膜ANT分布密度无显著改变,线粒体内(ATP+ADP)含量下降与转运活性变化一致。以上观察结果表明,低压缺氧暴露可显著抑制ANT转运活性,降低能量产生和利用的周转率,但不改变ANT密度,提示ANT活性改变是低压缺氧时细胞能量代谢障碍的重要机制。  相似文献   

9.
A mathematical model of the compartmentalized energy transfer in cardiac cells is described and used for interpretation of novel experimental data obtained by using phosphorus NMR for determination of the energy fluxes in the isolated hearts of transgenic mice with knocked out creatine kinase isoenzymes. These experiments were designed to study the meaning and importance of compartmentation of creatine kinase isoenzymes in the cells in vivo. The model was constructed to describe quantitatively the processes of energy production, transfer, utilization, and feedback between these processes. It describes the production of ATP in mitochondrial matrix space by ATP synthase, use of this ATP for phosphocreatine production in the mitochondrial creatine kinase reaction coupled to the adenine nucleotide translocation, diffusional exchange of metabolites in the cytoplasmic space, and use of phosphocreatine for resynthesis of ATP in the myoplasmic creatine kinase reaction. It accounts also for the recently discovered phenomenon of restricted diffusion of adenine nucleotides through mitochondrial outer membrane porin pores (VDAC). Practically all parameters of the model were determined experimentally. The analysis of energy fluxes between different cellular compartments shows that in all cellular compartments of working heart cells the creatine kinase reaction is far from equilibrium in the systolic phase of the contraction cycle and approaches equilibrium only in cytoplasm and only in the end-diastolic phase of the contraction cycle.Experimental determination of the relationship between energy fluxes by a 31P-NMR saturation transfer method and workload in isolated and perfused heart of transgenic mice deficient in MM isoenzyme of the creatine kinase, MM -/- showed that in the hearts from wild mice, containing all creatine kinase isoenzymes, the energy fluxes determined increased 3-4 times with elevation of the workload. By contrast, in the hearts in which only the mitochondrial creatine kinase was active, the energy fluxes became practically independent of the workload in spite of the preservation of 26% of normal creatine kinase activity. These results cannot be explained on the basis of the conventional near-equilibrium theory of creatine kinase in the cells, which excludes any difference between creatine kinase isoenzymes. However, these apparently paradoxical experimental results are quantitatively described by a mathematical model of the compartmentalized energy transfer based on the steady state kinetics of coupled creatine kinase reactions, compartmentation of creatine kinase isoenzymes in the cells, and the kinetics of ATP production and utilization reactions. The use of this model shows that: (1) in the wild type heart cells a major part of energy is transported out of mitochondria via phosphocreatine, which is used for complete regeneration of ATP locally in the myofibrils - this is the quantitative estimate for PCr pathway; (2) however, in the absence of MM-creatine kinase in the myofibrils in transgenic mice the contraction results in a very rapid rise of ADP in cytoplasmic space, that reverses the mitochondrial creatine kinase reaction in the direction of ATP production. In this way, because of increasing concentrations of cytoplasmic ADP, mitochondrial creatine kinase is switched off functionally due to the absence of its counterpart in PCr pathway, MM-creatine kinase. This may explain why the creatine kinase flux becomes practically independent from the workload in the hearts of transgenic mouse without MM-CK. Thus, the analysis of the results of studies of hearts of creatine kinase-deficient transgenic mice, based on the use of a mathematical model of compartmentalized energy transfer, show that in the PCr pathway of intracellular energy transport two isoenzymes of creatine kinase always function in a coordinated manner out of equilibrium, in the steady state, and disturbances in functioning of one of them inevitably result in the disturbances of the other component of the PCr pathway. In the latter case, energy is transferred from mitochondria to myofibrils by alternative metabolic pathways, probably involving adenylate kinase or other systems.  相似文献   

10.
Mitochondrial membrane permeabilization by HIV-1 Vpr   总被引:1,自引:0,他引:1  
The mitochondrion is a privileged target for apoptosis-modulatory proteins of viral origin. Thus, viral protein R (Vpr) can target mitochondria and induce apoptosis via a specific interaction with the permeability transition pore complex (PTPC). Vpr cooperates with the adenine nucleotide translocator (ANT) to form large conductance channels and to trigger all the hallmarks of mitochondrial membrane permeabilization (MMP). The Vpr/ANT interaction is direct, since it is abolished by the addition of a peptide corresponding to the Vpr binding site of ANT, ADP, ATP, or by Bcl-2. Accordingly, Vpr modulates MMP through direct structural and functional interactions with PTPC proteins.  相似文献   

11.
Abstract— A method has been developed where by three distinct populations of metabolically active, well coupled and relatively pure mitochondria from rat brain may be prepared. Two mitochondrial populations are derived from synaptozomes and the third consists of 'free' (i.e. non-synaptic) mitochondria. These mitochondrial populations have been characterized with respect to both enzyme content and ability to oxidize substrates. The results indicate that these mitochondrial populations are heterogeneous with respect to maximal activities of certain enzymes concerned with the citric acid cycle and glutamate and 4-aminobutyrate metabolism as well as their ability to utilize various substrates. The data reported here also confirm that brain mitochondria are very heterogeneous and suggest that synaptic mitochondria may contain at least two sub-populations. The relations between the heterogeneity of brain mitochondria and the metabolic compartmentation of the citric acid cycle and related metabolites such as glutamate, aspartate and 4-aminobutyrate are briefly discussed in the light of two proposed models of metabolic compartmentation in the mammalian brain.  相似文献   

12.
We have previously provided evidence that diffusion of metabolites across the porin pores of mitochondrial outer membrane is hindered. A functional consequence of this diffusion limitation is the dynamic compartmentation of ADP in the intermembrane space. These earlier studies were done on isolated mitochondria suspended in isotonic media without macromolecules, in which intermembrane space of mitochondria is enlarged. The present study was undertaken to assess the diffusion limitation of outer membrane in the presence of 10% (w/v) dextran M20, in order to mimic the action of cytosolic macromolecules on mitochondria. Under these conditions, mitochondria have a more native, condensed configuration.Flux-dependent concentration gradients of ADP were estimated by measuring the ADP diffusion fluxes across the porin pores of isolated rat heart mitochondria incubated together with pyruvate kinase (PK), both of which compete for ADP regenerated by mitochondrial creatine kinase (mtCK) within the intermembrane space or by yeast hexokinase (HK) extramitochondrially. From diffusion fluxes and bulk phase concentrations of ADP, its concentrations in the intermembrane space were calculated using Fick's law of diffusion. Flux-dependent gradients up to 23 microM ADP (for a diffusion rate of J(Dif)=1.9 micromol ADP/min/mg mitochondrial protein) were observed. These gradients are about twice those estimated in the absence of dextran and in the same order of magnitude as the cytosolic ADP concentration (30 microM), but they are negligibly low for cytosolic ATP (5 mM). Therefore, it is concluded that the dynamic ADP compartmentation is of biological importance for intact heart cells.If mtCK generates ADP within the intermembrane space, the local ADP concentration can be clearly higher than in the cytosol resulting in higher extramitochondrial phosphorylation potentials. In this way, mtCK contributes to ensure optimal kinetic conditions for ATP-splitting reactions in the extramitochondrial compartment.  相似文献   

13.
14.
The parameters of oxidative phosphorylation and its interaction with creatine kinase (CK)- and adenylate kinase (AK)-phosphotransfer networks in situ were studied in skinned atrial fibers from 59 patients undergoing coronary artery bypass surgery, valve replacement/correction and atrial septal defect correction. In atria, the mitochondrial CK and AK are effectively coupled to oxidative phosphorylation, the MM-CK is coupled to ATPases and there exists a direct transfer of adenine nucleotides between mitochondria and ATPases. Elimination of cytoplasmic ADP with exogenous pyruvate kinase was not associated with a blockade of the stimulatory effects of creatine and AMP on respiration, neither could it abolish the coupling of MM-CK to ATPases and direct transfer of adenine nucleotides. Thus, atrial energy metabolism is compartmentalized so that mitochondria form functional complexes with adjacent ATPases. These complexes isolate a part of cellular adenine nucleotides from their cytoplasmic pool for participating in energy transfer via CK- and AK-networks, and/or direct exchange. Compared to atria in sinus rhythm, the fibrillating atria were larger and exhibited increased succinate-dependent respiration relative to glutamate-dependent respiration and augmented proton leak. Thus, alterations in mitochondrial oxidative phosphorylation may contribute to pathogenesis of atrial fibrillation. (Mol Cell Biochem 270: 49–61, 2005)  相似文献   

15.
To evaluate the energy-shuttle hypothesis of the phosphocreatine/creatine kinase system, diffusion rates for ATP, phosphocreatine and flux through the creatine kinase reaction were determined by 31P-NMR in resting bullfrog biceps muscle. The diffusion coefficient of phosphocreatine measured by 31P-pulsed gradient NMR was 1.4-times larger than ATP in the muscle, indicating the advantage of phosphocreatine molecules for the intracellular energy transport. The flux of the creatine kinase reaction measured by 31P-saturation transfer NMR was 3.6 mmol/kg wet wt. per s in the resting muscle. The flux is equal to the turnover rate of ATP, ADP, phosphocreatine and creatine molecules, therefore, the life-times of these substrates and the average distance traversed after the life-times by the diffusing molecules were calculated using the diffusion coefficients obtained by 31P-NMR. The mean square length of one-dimensional diffusion was 22 microns in ATP molecules and the minimum diffusion length was 1.8 microns in ADP molecules. The latter was calculated using free ADP concentration, 30 mumol/kg wet wt., obtained from the equilibrium constant of the creatine kinase reaction and the diffusion coefficient assumed to be the same of ATP in muscle. Similar diffusion lengths of ADP were calculated using the reported values for the flux of the creatine kinase reaction in heart and smooth-muscle. The diffusion lengths of all substrates involved in the creatine kinase reaction were larger than the radii of myofibrils. Therefore, in the muscles with an alternating arrangement of mitochondria and myofibrils, such as heart and certain skeletal muscles, ATP and ADP molecules can move freely between myofibrils and mitochondria without the aid of the creatine kinase reaction; thus, we conclude that the energy-shuttle hypothesis is not obligatory for energy transport between the mitochondria and the myofibrils.  相似文献   

16.
Adenine nucleotide translocase (ANT), a mitochondrial protein that facilitates the exchange of ADP and ATP across the mitochondrial inner membrane, plays an essential role in cellular energy metabolism. Human ANT presents four isoforms (ANT1-4), each with a specific expression depending on the nature of the tissue, cell type, developmental stage and status of cell proliferation. Thus, ANT1 is specific to muscle and brain tissues; ANT2 occurs mainly in proliferative, undifferentiated cells; ANT3 is ubiquitous; and ANT4 is found in germ cells. ANT1 and ANT3 export the ATP produced by oxidative phosphorylation (OxPhos) from the mitochondria into the cytosol while importing ADP. In contrast, the expression of ANT2, which is linked to the rate of glycolytic metabolism, is an important indicator of carcinogenesis. In fact, cancers are characterized by major metabolic changes that switch cells from the normally dual oxidative and glycolytic metabolisms to an almost exclusively glycolytic metabolism. When OxPhos activity is impaired, ANT2 imports glycolytically produced ATP into the mitochondria. In the mitochondrial matrix, the F1F0-ATPase complex hydrolyzes the ATP, pumping out a proton into the intermembrane space. The reverse operations of ANT2 and F1F0-ATPase under glycolytic conditions contribute to maintaining the mitochondrial membrane potential, ensuring cell survival and proliferation. Unlike the ANT1 and ANT3 isoforms, ANT2 is not pro-apoptotic and may therefore contribute to carcinogenesis. Since the expression of ANT2 is closely linked to the mitochondrial bioenergetics of tumors, it should be taken into account for individualizing cancer treatments and for the development of anticancer strategies.  相似文献   

17.
The relative potencies of ATP and ADP in debinding rat brain mitochondrial hexokinase were measured. At fixed total concentrations of adenine nucleotides, added exogenously, solubilization of the enzyme increased as the proportions of ATP to ADP were raised. The generation of physiological concentrations of ATP by the mitochondria during coupled respiration resulted in a 2-fold increase in solubilization. These findings support the hypothesis that the cytosol-mitochondrial compartmentation of hexokinase may be a factor in the regulation of hexokinase activity and glycolysis.  相似文献   

18.
The relation between the activation (phosphorylation) state of pyruvate dehydrogenase complex (PDHC; EC 1.2.4.1, EC 2.3.1.12, and EC 1.6.4.3) and the rate of pyruvate oxidation has been examined in isolated, metabolically active, and tightly coupled mitochondria from rat cerebral cortex. With pyruvate and malate as the substrates, the activation state of PDHC decreased on addition of ADP, while the rates of oxygen uptake and 14CO2 formation from [1-14C]pyruvate increased. The lack of correlation between the activation state of PDHC and rate of pyruvate oxidation was seen in media containing 5, 30, or 100 mM KCl. Both the activation state of PDHC and pyruvate oxidation increased, however, when KCl was increased from 5 to 100 mM. Although the PDHC is inactivated by an ATP-dependent kinase (EC 2.7.1.99), direct measurement of ATP and ADP failed to show a consistent relationship between the activation state of PDHC and either ATP levels or ATP/ADP ratios. Comparison of the activation state of PDHC in uncoupled or oligomycin-treated mitochondria also failed to correlate PDHC activation state to adenine nucleotides. In brain mitochondria, unlike those from other tissues, the activation state of PDHC does not seem to be related clearly to the rate of pyruvate oxidation, or to the mitochondrial adenylate energy charge.  相似文献   

19.
F N Gellerich 《FEBS letters》1992,297(1-2):55-58
To investigate the existence of dynamic adenine nucleotide (AdN) compartment in the mitochondrial intermembrane space, we used reconstituted systems consisting of (i) functional intact liver and heart mitochondria and (ii) pyruvate kinase plus phosphoenolpyruvate, both competing for ADP either formed in the intermembrane space by adenylate kinase or added directly into, or regenerated by ATPase within, the extramitochondrial space. It is shown that ADP formation in the mitochondrial intermembrane space is a prerequisite for a dominating oxidative phosphorylation in reconstituted systems, suggesting dynamic ADP compartmentation in that space.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号