首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stimulation of monoacylglycerophosphate formation by Z protein   总被引:5,自引:0,他引:5  
Z protein has been purified from 110,000 × g rat liver supernatant using Sephadex G-100 and DEAE Sephadex. Z protein obtained in this manner was superior to albumin in stimulating the esterification of sn-glycerol-3-phosphate in the presence of palmityl-CoA and rat liver microsomes. These observations constitute direct evidence for the possible role of Z protein in fatty acid metabolism.  相似文献   

2.
Lactoglobulin is a natural protein present in bovine milk and common component of human diet, known for binding with high affinity wide range of hydrophobic compounds, among them fatty acids 12–20 carbon atoms long. Shorter fatty acids were reported as not binding to β‐lactoglobulin. We used X‐ray crystallography and fluorescence spectroscopy to show that lactoglobulin binds also 8‐ and 10‐carbon caprylic and capric acids, however with lower affinity. The determined apparent association constant for lactoglobulin complex with caprylic acid is 10.8 ± 1.7 × 103 M?1, while for capric acid is 6.0 ± 0.5 × 103 M?1. In crystal structures determined with resolution 1.9 Å the caprylic acid is bound in upper part of central calyx near polar residues located at CD loop, while the capric acid is buried deeper in the calyx bottom and does not interact with polar residues at CD loop. In both structures, water molecule hydrogen‐bonded to carboxyl group of fatty acid is observed. Different location of ligands in the binding site indicates that competition between polar and hydrophobic interactions is an important factor determining position of the ligand in β‐barrel. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The binding of phenol red to the microsomal fraction of rabbit kidney cortex was rapid, reversible and consisted of two independent populations of binding sites: a high affinity and low capacity class which had an association constant of 11.29 · 103 M?1 and a binding capacity of 2.41 μmol phenol red bound per g of protein, and a low affinity binding population with an association constant of 0.80 · 103 M?1 and a maximal binding capacity of 55.06 μmol per g of protein. Probenecid (0.32 mM) competitively inhibited phenol red binding to only the high affinity binding site, whereas 2,4-dinitrophenol (0.77 mM) competitively inhibited phenol red binding to both the high and the low affinity population of binding sites. The binding of phenol red was highly sensitive of the cationic composition of the medium. The affinity of phenol red to the high and the low affinity binding populations was lowered by decreasing the sodium and potassium concentrations to 19 and 6 mequiv./1, respectively; however, the maximal binding capacity was unchanged. Calcium appeared to have no effect on the phenol red binding to the microsomes. All of these considerations suggest that the high affinity phenol red binding to the microsomal fraction may represent the interaction of phenol red with the physiological receptor necessary for organic acid transport at the peritubular membrane. Phenol red binding to the low affinity binding population may indicate an intracellular binding population which contributes to the intracellular accumulation of weak organic acids.  相似文献   

4.
We report for the first time the presence of a sex steroid-binding protein in the plasma of green sea turtles Chelonia mydas, which provides an insight into reproductive status. A high affinity, low capacity sex hormone steroid-binding protein was identified in nesting C. mydas and its thermal profile was established. In nesting C. mydas testosterone and oestradiol bind at 4°C with high affinity (K a = 1.49 ± 0.09 × 109 M−1; 0.17 ± 0.02 × 107 M−1) and low binding capacity (B max = 3.24 ± 0.84 × 10−5 M; 0.33 ± 0.06 × 10−4 M). The binding affinity and capacity of testosterone at 23 and 36°C, respectively were similar to those determined at 4°C. However, oestradiol showed no binding activity at 36°C. With competition studies we showed that oestradiol and oestrone do not compete for binding sites. Furthermore, in nesting C. mydas plasma no high-affinity binding was observed for adrenocortical steroids (cortisol and corticosterone) and progesterone. Our results indicate that in nesting C. mydas plasma temperature has a minimal effect on the high-affinity binding of testosterone to sex steroid-binding protein, however, the high affinity binding of oestradiol to sex steroid-binding protein is abolished at a hypothetically high (36°C) sea/ambient/body temperature. This suggests that at high core body temperatures most of the oestradiol becomes biologically available to the tissues rather than remaining bound to a high-affinity carrier.  相似文献   

5.
《Insect Biochemistry》1989,19(8):809-814
The interaction of locust high density lipophorin (HDLp) with pieces of fat body tissue was studied at 33°C using a radiolabelled ligand binding assay. Under the assay conditions, binding of tritium-labelled HDLp ([3H]HDLp) was demonstrated to correlate linearly with tissue concentration up to ∼ 7 mg of fat body protein per ml of incubation medium. The [3H]HDLp binding that was displaceable by a 20-fold excess of unlabelled HDLp (which is an approximation of the specific binding) reached equilibrium after ∼ 2 h, whereas low levels of non-displaceable binding increased linearly during this time interval. Analysis of the concentration dependent total binding of [3H]HDLp revealed the presence of a specific binding site with an equilibrium dissociation constant of Kd = 3.1 (±0.5) × 10−7 M and a maximal binding capacity of 9.8 (±0.5) ng μg−1 tissue protein. Competition experiments demonstrated that the affinity of unlabelled HDLp for the binding site is similar to the affinity of [3H]HDLp. Unlabelled low density lipophorin (LDLp), however, was shown to have an approx. 20-fold lower affinity for the binding site.  相似文献   

6.
We have investigated interactions of palmityl-CoA and l-palmitylcarnitine as substrates for mitochondrial fatty acid elongation. l-Palmitylcarnitine is a more effective substrate primer for fatty acid elongation by intact mitochondria than is palmityl-CoA. Exogenous l-carnitine inhibited l-palmitylcarnitine-supported mitochondrial fatty acid elongation by both sonically disrupted and intact heart mitochondria, probably by shifting the equilibrium between palmitylcarnitine and palmityl-CoA toward palmitylcarnitine, thus removing palmityl-CoA from the reaction. d-Carnitine was without effect. d-Palmitylcarnitine inhibition of palmitylcarnitine transferase activity decreased palmitylcarnitine-stimulated mitochondrial fatty acid elongation but increased palmityl-CoA supported fatty acid elongation, presumably by increasing the effective concentration of palmityl-CoA in the assay medium. The data indicate that, although l-palmitylcarnitine is an effective substrate primer for mitochondrial fatty acid elongation, palmityl-CoA rather than palmitylcarnitine is the immediate precursor for fatty acid chain elongation.  相似文献   

7.
Abstract

Cardiac glycoside binding to rat heart membrane preparations was measured by rapid filtration technique. The binding data were analyzed using quantitative computer analysis. The experimental results using [3H]-ouabain as the labeled ligand were consistent with a model in which cardiac glycoside specific binding occurs at two independent classes of sites. The high affinity sites were characterized by a dissociation constants of 40 nM, 50 nM, and 61 nM for ouabain, digoxin and digitoxin, respectively, with a binding capacity of 1.3 pmoles/mg protein. The lower affinity sites for ouabain were characterized by dissociation constants of 2.3 µM, 67 nM and 71 nM for ouabain, digoxin and digitoxin, respectively, with a binding capacity of 3 pmoles/mg protein. Potassium ions inhibit [3H]-ouabain binding in a dose dependent manner with an IC50 of 500 µM. Quantitative computer modelling indicated that potassium inhibits ouabain binding at both binding sites.  相似文献   

8.
The interactions of fatty acids with porcine and bovine β-lactoglobulins were measured using tryptophan fluorescence enhancement. In the case of bovine β-lactoglobulin, the apparent binding constants for most of the saturated and unsaturated fatty acids were in the range of 10?7 M at neutralpH. Bovine β-lactoglobulin displays only one high affinity binding site for palmitate with an apparent dissociation constant of 1·10?7 M. The strength of the binding was decreasing in the following way: palmitate > stearate > myristate > arachidate > laurate. Caprylic and capric acids are not bound at all. The affinity of β-lactoglobulin for palmitate decreased as thepH of the incubation medium was lowered and BLG/palmitate complex was not observed atpH's lower than 4.5. Surprisingly, chemically modified bovine β-lactoglobulin and porcine β-lactoglobulin did not bind fatty acids in the applied conditions.  相似文献   

9.
Docosahexaenoic acid is found to be bound to three equivalent sites on albumin with the same affinities as palmitic acid at 0–38°C, which demonstrates that ethene-1,2-diyl- and methylene-groups contribute equally to the affinity. The equilibrium dissociation constants (K dm s) for red cell membrane binding sites of linoleic- and docosahexaenoic acid at pH 7.3 are determined at temperatures between 0 and 37°C. The temperature-independent capacities for binding are 12 ± 1 and 25.4 ± 3.0 nmoles g−1 ghosts respectively. Double isotope binding experiments reveal that the unsaturated fatty acids: arachidonic-, linoleic-, docosahexaenoic-, and oleic acid have partially shared capacities in ratios approximately 1:2:4:5, in contrast to the noncompetitive binding of palmitic acid. The observations suggest a two-tier binding limitation. One is the number of protein sites binding fatty acid anions electrostatically and the other is the number of suitable annular lipids adaptively selected among membrane lipids by the hydrocarbon chain. These competition conditions are confirmed by measurements of the tracer exchange efflux at near 0°C from albumin-free and albumin-filled ghosts of linoleic- and docosahexaenoic acid, either alone or in the presence of arachidonic- and palmitic acid. Under equilibrium conditions, the calculated ratios of inside to outside membrane binding is below 0.5 for four unsaturated fatty acids. The unidirectional rate constants of translocation between the inside and the outside correlate with the number of double bonds in these fatty acids, which are also correlated with the dissociation rate constants of the complexes with albumin. The membrane permeation occurs presumably by binding of the anionic unsaturated fatty acids to an integral protein followed by channeling of the neutral form between opposite binding sites of the protein through annular lipids encircling the protein. Received: 30 June 1997/Revised: 23 February 1998  相似文献   

10.
Two different members of the fatty acid‐binding protein (FABP) family are found in enterocyte cells of the gastrointestinal system, namely liver‐type and intestinal fatty acid‐binding proteins (LFABP and IFABP, also called FABP1 and FABP2, respectively). Striking phenotypic differences have been observed in knockout mice for either protein, for example, high fat‐fed IFABP‐null mice remained lean, whereas LFABP‐null mice were obese, correlating with differences in food intake. This finding prompted us to investigate the role each protein plays in directing the specificity of binding to ligands involved in appetite regulation, such as fatty acid ethanolamides and related endocannabinoids. We determined the binding affinities for nine structurally related ligands using a fluorescence competition assay, revealing tighter binding to IFABP than LFABP for all ligands tested. We found that the head group of the ligand had more impact on binding affinity than the alkyl chain, with the strongest binding observed for the carboxyl group, followed by the amide, and then the glycerol ester. These trends were confirmed using two‐dimensional 1H–15N nuclear magnetic resonance (NMR) to monitor chemical shift perturbation of the protein backbone resonances upon titration with ligand. Interestingly, the NMR data revealed that different residues of IFABP were involved in the coordination of endocannabinoids than those implicated for fatty acids, whereas the same residues of LFABP were involved for both classes of ligand. In addition, we identified residues that are uniquely affected by binding of all types of ligand to IFABP, suggesting a rationale for its tighter binding affinity compared with LFABP.  相似文献   

11.
Abstract Radioactive dihydrofusicoccin (3H-FC), known to have the same biological activity as fusicoccin on plant tissues, has a specific affinity in vitro for sites localized on subcellular, postmitochondrial particles from maize coleoptiles. The analysis of the kinetics of dihydrofusicoccin binding suggests the presence of two classes of sites, one class with a high affinity and a second class with a lower affinity. The high affinity class of sites has a dissociation constant (Kd) of 1.2 × 10?9 mol dm?3, and an apparent pH optimum at 5.5. Binding is antagonized by non-physiological pH, high temperatures and protein-reactive substances like HgCl2, p-chloromercuribenzensulphonate and glutaraldehyde. Treatment of dihydrofusicoccin-bound membrane preparations with Triton X-100 leads to the solubilization of a protein fraction associated with dihydrofusicoccin. These data suggest a protein nature for the receptor sites.  相似文献   

12.
The Z‐molecule is a small, engineered IgG‐binding affinity protein derived from the immunoglobulin‐binding domain B of Staphylococcus aureus protein A. The Z‐domain consists of 58 amino acids forming a well‐defined antiparallel three‐helix structure. Two of the three helices are involved in ligand binding, whereas the third helix provides structural support to the three‐helix bundle. The small size and the stable three‐helix structure are two attractive properties comprised in the Z‐domain, but a further reduction in size of the protein is valuable for several reasons. Reduction in size facilitates synthetic production of any protein‐based molecule, which is beneficial from an economical viewpoint. In addition, a smaller protein is easier to manipulate through chemical modifications. By omitting the third stabilizing helix from the Z‐domain and joining the N‐ and C‐termini by a native peptide bond, the affinity protein obtains the advantageous properties of a smaller scaffold and in addition becomes resistant to exoproteases. We here demonstrate the synthesis and evaluation of a novel cyclic two‐helix Z‐domain. The molecule has retained affinity for its target protein, is resistant to heat treatment, and lacks both N‐ and C‐termini. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
14.
Abstract

The binding characteristics of thyroxine (T4), triiodothyronine (T3), and reverse T3 (rT3) to rat liver plasma membranes (RLPM) were examined to explore the interactions of thyroid hormones with cell surface receptors. Scatchard analysis suggested that all three ligands bound to two classes of binding sites. The high affinity rT3 binding sites appeared to be distinct from the high affinity T4 sites, on the basis of differing optimum physicochemical conditions for binding, and analog displacement studies. The higher affinity constant for T4 was 1.7 ± 0.2 × 109 M-1 (mean ± SEM) and binding capacity was 3.1 ± 0.3 pmol mg -1 protein whereas for rT3 binding the Ka was 2.5 ± 0.4 × 108 M-1 and capacity was 6.2 ± 0.9 pmol mg -1. (125 I) T3 bound with lower affinity and T3 tracer was readily displaced by T4. Moreover, comparatively higher concentrations of T3 were needed to displace either radiolabeled T4 or rT3, suggesting that T3 was binding to both the T4 and rT3 sites with lower affinity. Marker enzyme studies on RLPM, of varying purity prepared by different methods, showed a positive correlation between the activity of the plasma membrane enzyme magnesium-stimulated ATPase and high affinity rT3 and T4 binding. Column chromatography of the radioligands, after dissociation from membrane binding sites, confirmed that the integrity of the hormones was not altered during association or dissociation. Our results raise the possibility that the high affinity T4 and rT3 binding sites on RLPM may be hormone receptors mediating biological actions at the membrane level.  相似文献   

15.
The binding of [3H]ploridzin by isolated luminal membranes of the rabbit proximal tubule and by slices of rabbit kidney cortex was studied.Kinetic analyses of the relationship between the concentration of phloridizin in the incubation medium and the binding of phloridzin to the membrane indicated two distinct classes of receptors sites. One class, comprising high affinity sites, reached saturation at 20–25 μM phloridzin, had a K(phloridzin) of 8 μM, and 8·10+2 nmoles interacted with 1 mg of brush border protein. The other class, comprising low affinity sites, had a K(phloridzin) of 2.5 mM, and the number of binding sites was 1.25 nmoles/mg Na+ was required for the binding of phloridzin at the high affinity sites. Na+ decreased the apparent Ki for phloridzin; the apparent V of binding was not altered. Binding at the low affinity sites was independent of Na+. Ca2+ was necessary for maximal binding at the high affinity sites. Binding of phloridzin at high affinity sites was more sensitive to N-ethylmalcimide and mersalyl than was binding at low affinity sites. Binding at high affinity sites, but not at low affinity sites, was temperature dependent.d-Glucose was a competitive inhibitor of the high affinity binding of phloridzin. The apparent K1 was 1 mM. D-Glucoe inhibited non-competitively at the low affinity sites. l-Glucose had no influence on phloridzin binding. Phloretin was a competitive inhibitor of high affinity phloridzin binding with an apparent Ki of 16 μM. Phloretin inhibited low affinity bindings of phloridizin non-competitively. Binding of phloridzin at high affinity sites was completely reversible. Binding at low affinity sites was only partially reversed. Phloridzin bound at high affinity sites on the brush border was displaced by phloridzin and phloretin but not by d-glucose.The mechanism of the high affinity binding of phloridzin was distinguished from that of the initial interaction of d-glucose with the membrane. Binding of phloridzin required Na+, whereas the interaction of d-glucose with the membranes had a prominent Na+-independent component.Intact renal cells in cortical slices accumulated phloridzin. The uptake did not saturate, was Na+ independent, and was not competitively inhibited by sugars. These characteristics resemble those for the low affinity binding of phloridzin by isolated membranes. It is suggested that low affinity binding may represent an initial binding followed by uptake of the glycoside into membrane vesicles.  相似文献   

16.
The rational designing of binding abilities in proteins requires an understanding of the relationship between structure and thermodynamics. However, our knowledge of the molecular origin of high‐affinity binding of ligands to proteins is still limited; such is the case for l ‐lysine–l ‐arginine–l ‐ornithine periplasmic binding protein (LAOBP), a periplasmic binding protein from Salmonella typhimurium that binds to l ‐arginine, l ‐lysine, and l ‐ornithine with nanomolar affinity and to l ‐histidine with micromolar affinity. Structural studies indicate that ligand binding induces a large conformational change in LAOBP. In this work, we studied the thermodynamics of l ‐histidine and l ‐arginine binding to LAOBP by isothermal titration calorimetry. For both ligands, the affinity is enthalpically driven, with a binding ΔCp of ~?300 cal mol?1 K?1, most of which arises from the burial of protein nonpolar surfaces that accompanies the conformational change. Osmotic stress measurements revealed that several water molecules become sequestered upon complex formation. In addition, LAOBP prefers positively charged ligands in their side chain. An energetic analysis shows that the protein acquires a thermodynamically equivalent state with both ligands. The 1000‐fold higher affinity of LAOBP for l ‐arginine as compared with l ‐histidine is mainly of enthalpic origin and can be ascribed to the formation of an extra pair of hydrogen bonds. Periplasmic binding proteins have evolved diverse energetic strategies for ligand recognition. STM4351, another arginine binding protein from Salmonella, shows an entropy‐driven micromolar affinity toward l ‐arginine. In contrast, our data show that LAOBP achieves nanomolar affinity for the same ligand through enthalpy optimization. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Adiponectin is secreted from adipose tissue and functions as a protein hormone in regulating glucose metabolism and fatty acid catabolism. Adiponectin plays an important role as a novel risk factor and potential diagnostic and prognostic biomarker in cancer. Crystal structures of globular adiponectin have been resolved with three calcium‐binding sites on the top of its central tunnel. However, the calcium‐binding property of adiponectin remains elusive. Mouse globular adiponectin was cloned into pET11a and expressed in Escherichia coli. The folding of adiponectin was indicated by the spread of resonances in HSQC spectrum. Luminescence resonance energy transfer was used to obtain the binding constant (Kd) of Tb3+ and the inhibitor constant (Ki) of Ca2+ for globular adiponectin. The obtained calcium‐binding affinity to adiponectin is relatively low (~2 mM), which indicates that the high concentration of adiponectin in circulating system may function as calcium storage bank and buffer the free calcium concentration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
In normal subjects beta-adrenergic responsiveness in the cardiovascular system has been shown to be impaired with increasing age. In order to correlate reduced hormonal responsiveness to an age-related defect at the receptor level, high affinity beta-adrenergic receptors in homogenates of human mononuclear leucocytes have been studied with a (?)-3H-dihydroalprenolol (3H-DHA) binding assay. The binding sites have been characterized by rapid kinetics, saturability, structural and sterospecificity. Binding equilibrium was obtained within 16 minutes at 37° and was reversed by 50% within 10.6 minutes. In 22 healthy subjects a binding capacity of 60 ± 8 fmol/mg protein and an equilibrium dissociation constant (KD) of 0.6 ± 0.05 nM was found. Beta-adrenergic agonists displaced 3H-DHA binding with a potency order of isoproterenol > adrenaline > noradrenaline. The (?) isomers of beta-adrenergic agonists and antagonists were one to two orders of magnitude more potent as inhibitors of 3H-DHA binding than their corresponding (+) isomers. The binding capacity and affinity of the beta-adrenergic receptors did not differ in old, as compared to young normal subjects. Leucocytes from 14 individuals 18–40 years old had an average density of 53 ± 4 fmol/mg protein, while the average density in leucocytes from 8 individuals aged 53–65 years was 67 ± 8 fmol/mg protein. The KD was 0.6 ± 0.05 nM in both groups. In conclusion, an age-related decrease of beta-adrenergic receptor-mediated cardiovascular functions does not seem to be reflected in the properties of beta-adrenergic receptors of mononuclear leucocytes.  相似文献   

19.
Oral cancer mortality and morbidity rates remain high. The main inducer of oral cancer is cigarette smoke (CS). Translocator protein 18 kDa (TSPO) was shown to play a role in carcinogenesis. We characterized TSPO binding sites in human oral cancer cell line SCC-15 and examined effect of CS on TSPO binding. We exposed SCC-15 human squamous cells to cigarette smoke. [3H]PK 11195 binding results were assessed in cells confluent for one day. To characterize the number of population sites, a custom written Matlab program compared Pearson linear correlation coefficients between all points in the Scatchard plot. Using [3H]PK 11195 as a radio ligand, we found that TSPO binding sites are not uniform, but separated into two sub-populations, one with high affinity (respective Kd and Bmax values of 1.40±0.08 nM and 1586±48 fmol/mg protein), another with lower affinity (respective Kd and Bmax values of 61±5 nM and 26260±1050 fmol/mg protein). We demonstrate rapid decrease in TSPO binding to the high affinity site induced by exposure to CS; specifically, significant 36% decrease in binding after 30 min CS exposure (p<0.05), and 69% decrease after 2 h CS exposure (p<0.05). Association between TSPO and CS exposure may contribute to understanding the underlying mechanism of oral carcinogenesis.  相似文献   

20.
Fatty acid-binding protein from bovine liver but not from bovine heart binds hematin in a saturable manner with high affinity. This property is not confined to a particular isoform as both, pI 6.0- and pI 7.0 L-FABP, bind hematin similarly. In competition experiments hematin and oleic acid could replace each other demonstrating that they share at least parts of the same binding site. Common structural features, i.e. the presence of carboxylic groups and of hydrophobic carbon chains led to the hypothesis that both ligands interact similarly with L-FABP. This was supported by the decrease of binding affinity for either ligand upon modification with phenylglyoxal. Modification in the presence of fatty acid revealed the protection of one of the two arginines of L-FABP. By peptide mapping and Edman degradation Arg122 was identified as the counterpart of the fatty acids carboxylic group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号