首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of human polymorphonuclear leukocytes in a glucose-free Krebs-Ringer bicarbonate buffer for 2 h resulted in glycogen depletion, decreased phosphorylase activity and increased synthase-R activity. Addition of dialyzed latex particles to starved leukocytes revealed a very rapid ingestion rate (half-maximal ingestion within 30 s). This uptake is followed by glycogenolysis associated with an immediate two-fold increase in phosphorylase a activity and a synthase-R to -D conversion within 30 s. Furthermore, in rapid time-course experiments with phagocytozing cells we found that the concentration of cyclic AMP increased by 93% within 15 s and returned to baseline values at 1 min. In a medium without added calcium and with 1 mM ethyleneglycol-bis-(β-aminoethylether)-N,N′-tetraacetic acid, phagocytosis was blocked, cyclic AMP formation decreased by 50% and phosphorylase activation was abolished, but the conversion of synthase-R to -D was preserved. Addition of calcium ions to cells suspended in a calcium-free buffer without added latex results in phosphorylase activation and glycogenolysis, but not in cyclic AMP increase or synthase-R to -D conversion. Measurements of 45Ca efflux during phagocytosis suggest an initial increase in cytosolic calcium obtained by a release of membrane-bound 45Ca. Activation of phosphorylase during phagocytosis is thus presumably due to an increase in cytosol Ca2+ and subsequent activation of phosphorylase kinase, and is independent of the simultaneous increase in concentration of cyclic AMP. Phosphorylation of synthase R to the D form does not depend on the presence of Ca2+ in the extracellular phase.  相似文献   

2.
Addition of 10 micron of the alpha-adrenergic agonist phenylephrine to polymorphonuclear leukocytes suspended in glucose-free Krebs-Ringer bicarbonate buffer (pH 6.7) activated phosphorylase, inactivated glycogen synthase R maximally within 30 s, and resulted in glycogen breakdown. Phenylephrine increased 45Ca efflux relative to control of 45Ca prelabelled cells, but did not affect cyclic adenosine 3',5'-monophosphate (cAMP) concentration. The effects of phenylephrine were blocked by 20 micron phentolamine and were absent in cells incubated at pH 7.4. The same unexplained dependency of extracellular pH was observed with 2.5 nM--2.5 micron glucagon, which activated phosphorylase and inactivated synthase-R, but in addition caused a 30-s burst in cAMP formation. 25 nM glucagon also increased 45Ca efflux. The activation of phosphorylase by phenylephrine and possibly also by glucagon are thought mediated by an increased concentration of cytosolic Ca2+ activating phosphorylase kinase. The effects of 5 micron isoproterenol or 5 micron epinephrine were independent of extracellular pH 6.7 and 7.4 and resulted in a sustained increase in cAMP, an activation of phosphorylase and inactivation of synthase-R within 15 s, and in glycogenolysis. The effects of both compounds were blocked by 10 micron propranolol, whereas 10 micron phentolamine had no effect on the epinephrine action. The efflux of 45Ca was not affected by either isoproterenol or epinephrine. The beta-adrenergic activation of phosphorylase is consistent with the assumption of a covalent modification of phosphorylase kinase by the cAMP dependent protein kinase. Phosphorylation of synthase-R to synthase-D can thus occur independently of increase in cAMP, but the evidence is inconclusive with respect to the cAMP dependent protein kinase also being active in this phosphorylation.  相似文献   

3.
Addition of 10 μM of the α-adrenergic agonist phenylephrine to polymorphonuclear leukocytes suspended in glucose-free Krebs-Ringer bicarbonate buffer (pH 6.7) activated phosphorylase, inactivated glycogen synthase R maximally within 30 s, and resulted in glycogen breakdown. Phenylephrine increased 45Ca efflux relative to control of 45Ca prelabelled cells, but did not affect cyclic adenosine 3′,5′-monophosphate (cAMP) concentration. The effects of phenylephrine were blocked by 20 μM phentolamine and were absent in cells incubated at pH 7.4.The same unexplained dependency of extracellular pH was observed with 2.5 nM–2.5 μM glucagon, which activated phosphorylase and inactivated synthase-R, but in addition caused a 30-s burst in cAMP formation. 25 nM glucagon also increased 45Ca efflux. The activation of phosphorylase by phenylephrine and possibly also by glucagon are thought mediated by an increased concentration of cytosolic Ca2+ activating phosphorylase kinase.The effects of 5 μM isoproterenol or 5 μM epinephrine were independent of extracellular pH 6.7 and 7.4 and resulted in a sustained increase in cAMP, an activation of phosphorylase and inactivation of synthase-R within 15 s, and in glycogenolysis. The effects of both compounds were blocked by 10 μM propranolol, whereas 10 μM phentolamine had no effect on the epinephrine action. The efflux of 45Ca was not affected by either isoproterenol or epinephrine. The β-adrenergic activation of phosphorylase is consistent with the assumption of a covalent modification of phosphorylase kinase by the cAMP dependent protein kinase.Phosphorylation of synthase-R to synthase-D can thus occur independently of increase in cAMP, but the evidence is inconclusive with respect to the cAMP-dependent protein kinase also being active in this phosphorylation.  相似文献   

4.
1. Various mitogens such as concanavalin A, phytohaemagglutinin, the pokeweed mitogen and trypsin were found to produce a rapid and transient activation of glycogen phosphorylase activity of lymphocytes incubated in a Krebs-Ringer-bicarbonate-glucose buffer. 2. Activation of the enzyme by these mitogens was always accompanied by an increase in the intracellular cyclic AMP concentration. 3. The presence of calcium ions in the incubation buffer was essential for obtaining the mitogen effects. Addition of ionophore A-23187 also produced an activation of glycogen phosphorylase, similar to that found in mitogen activation but without increase in intracellular cyclic AMP concentration. Dibutyril cyclic AMP also produced lymphocyte phosphorylase activation, even in the absence of extracellular calcium ions. 4. It is proposed that phosphorylase activation by mitogens occurs through a mechanism that involves the participation of both calcium ions and cyclic AMP.  相似文献   

5.
Abstract: Using mouse brain cortical slices, we investigated the relative roles of cyclic AMP and of calcium ions as the intracellular messengers for the activation of glycogen phosphorylase (EC 2.4.1.1; α-1,4-glucan:orthophosphate glucosyltransferase) induced by noradrenaline and by depolarization. Activation of phosphorylase by 100 μM noradrenaline is mediated by β-adrenergic receptors and does not require the copresence of adenosine. The role of the concomitant small increase in cyclic AMP is questioned. Short-term treatment with EGTA or LaCl3 abolishes the noradrenaline activation of phosphorylase, pointing to a critical role of extracellular calcium. Depolarization by 25 m M K+ or 100 μ M veratridine produces a rapid and large (fourfold) activation of phosphorylase. Only veratridine increases the cyclic AMP levels; exogenous adenosine deaminase essentially blocks this cyclic AMP accumulation but not the phosphorylase activation. A halfmaximal activation of phosphorylase occurs at about 12 m M K+. Addition of EGTA or LaCl3, reduces the effect of both depolarizations to a slight and transient activation of phosphorylase. These results indicate that activation of glycogen phosphorylase by K+ or veratridine occurs by a cyclic AMP-independent and calcium-dependent mechanism. The calcium dependency of brain phosphorylase kinase renders this kinase the prime target enzyme for regulation of glycogenolysis by calcium ions.  相似文献   

6.
Regulation of Glycogenolysis in Transformed Astrocytes In Vitro   总被引:5,自引:4,他引:1  
Cultured astrocytes, transformed by Herpesvirus, were used as a model system to study several aspects of the control of glycogenolysis. Adrenergic agonists such as norepinephrine and isoproterenol caused an immediate and dose-dependent increase in the intracellular levels of cyclic AMP. Concomitant with the initial phase of cyclic AMP increase, conversion of phosphorylase b to a and glycogenolysis were observed. The elevation of cyclic AMP, phosphorylase conversion, and glycogenolysis were simultaneously blocked by beta-adrenergic blockers, but not by alpha-adrenergic blocking agents. Repeated administration of norepinephrine caused an attenuated response in both cyclic AMP accumulation and glycogenolysis. Glycogen degradation is also partially regulated by glucose availability. In the presence of glucose, norepinephrine-induced glycogenolysis is blocked, despite elevations in cyclic AMP. The direct role of glucose is postulated, since glucose analogs mimic the effects of glucose.  相似文献   

7.
Cardiac sarcoplasmic reticulum-glycogenolytic complex, isolated as a single peak on sucrose density gradient, may function as a "compartmented" effector site for cyclic AMP resulting in modulation of both glycogenolysis and calcium transport. The conversion of phosphorylase b to a is stimulated by ATP and inhibited by protein kinase inhibitor. Cyclic AMP alone stimulated neither phosphorylase b to a conversion nor calcium uptake. An inhibitor of adenylate cyclase depressed both calcium uptake and phosphorylase activation and both functions were subsequently stimulated by micromolar concentrations of cyclic AMP. Endogenous phosphorylation of sarcoplasmic reticulum was also inhibited by adenylate cyclase inhibitor and the inhibition was reversed by cyclic AMP. These results suggest that the sarcoplasmic reticulum of cardiac muscle is an internal effector site for cyclic AMP which may regulate both calcium and metabolism. It appears that cyclic AMP formation in vitro is not the rate-controlling step in the activation sequence.  相似文献   

8.
Cardiac sarcoplasmic reticulum-glycogenolytic complex, isolated as a single peak on sucrose density gradient, may function as a “compartmented” effector site for cyclic AMP resulting in modulation of both glycogenolysis and calcium transport. The conversion of phosphorylase b to a is stimulated by ATP and inhibited by protein kinase inhibitor. Cyclic AMP alone stimulated neither phosphorylase b to a conversion nor calcium uptake. An inhibitor of adenylate cyclase depressed both calcium uptake and phosphorylase activation and both functions were subsequently stimulated by micromolar concentrations of cyclic AMP. Endogenous phosphorylation of sarcoplasmic reticulum was also inhibited by adenylate cyclase inhibitor and the inhibition was reversed by cyclic AMP. These results suggest that the sarcoplasmic reticulum of cardiac muscle is an internal effector site for cyclic AMP which may regulate both calcium and metabolism. It appears that cyclic AMP formation in vitro is not the rate-controlling step in the activation sequence.  相似文献   

9.
We have studied the mode of action of three hormones (angiotensin, vasopressin and phenylephrine, an alpha-adrenergic agent) which promote liver glycogenolysis in a cyclic AMP-independent way, in comparison with that of glucagon, which is known to act essentially via cyclic AMP. The following observations were made using isolated rat hepatocytes: (a) In the normal Krebs-Henseleit bicarbonate medium, the hormones activated glycogen phosphorylase (EC 2.4.1.1) to about the same degree. In contrast to glucagon, the cyclic AMP-independent hormones did not activate either protein kinase (EC 2.7.1.37) or phosphorylase b kinase (EC 2.7.1.38). (b) The absence of Ca2+ from the incubation medium prevented the activation of glycogen phosphorylase by the cyclic AMP-independent agents and slowed down that induced by glucagon. (c) The ionophore A 23187 produced the same degree of activation of glycogen phosphorylase, provided that Ca2+ was present in the incubation medium. (d) Glucagon, cyclic AMP and three cyclic AMP-dependent hormones caused an enhanced uptake of 45Ca; it was verified that concentrations of angiotensin and of vasopressin known to occur in haemorrhagic conditions were able to produce phosphorylase activation and stimulate 45Ca uptake. (e) Appropriate antagonists (i.e. phentolamine against phenylephrine and an angiotensin analogue against angiotensin) prevented both the enhanced 45Ca uptake and the phosphorylase activation. We interpret our data in favour of a role of calcium (1) as the second messenger in liver for the three cyclic AMP-independent glycogenolytic hormones and (2) as an additional messenger for glucagon which, via cyclic AMP, will make calcium available to the cytoplasm either from extracellular or from intracellular pools. The target enzyme for Ca2+ is most probably phosphorylase b kinase.  相似文献   

10.
A sensitive fluorimetric enzyme assay was developed for study of activation of glycogen phosphorylase (EC 2.4.1.1) in intact platelets and in platelet extracts. Activity was calculated as AMP independent (activity in the absence of AMP), total (activity in the presence of 1 mM AMP), and AMP dependent (difference between AMP independent and total). The following observations were made with intact rat platelets. (1) Stimulation of platelets with thrombin caused a 7-fold increase in total activity, with increases in both AMP-dependent and AMP-independent activities. Maximum activation was obtained within 10 s after addition of thrombin. (2) The divalent cation ionophore A23187 caused a similar, though less pronounced, activation of phosphorylase. (3) Acceleration of glycogenolysis by inhibition of respiration with cyanide caused similar changes in phosphorylase activity but with the maximum effect observed only after 45 s. (4) Dibutyryl cyclic AMP had two effects; it partially activated phosphorylase and blocked further activation by thrombin, but not A23187. Similar effects were observed with human platelets, but low resting levels of phosphorylase activity could not be maintained so that changes were not as large as with rat platelets. Experiments with extracts of rat platelets gave the following results. (1) Phosphorylase activity in many extracts of non-stimulated platelets could be increased by incubation with Mg2+-ATP and Ca2+; ethyleneglycol-bis-(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA) partially inhibited. (2) In some extracts there was essentially no activation by incubation with Mg2+-ATP and Ca2+, but addition of cyclic AMP GAVE PARTIAL ACTIVATIon while addition of rabbit muscle phosphorylase kinase gave full activation. (3) Incubation of extracts of thrombin-stimulated platelets caused conversion of AMP-dependent to AMP-indeptndent activity. It is concluded that platelet phosphorylase exists in an inactive and two active forms. Conversion of the inactive to the active forms and of the AMP-dependent to the AMP-independent form is catalyzed by a kinase(s) that requires Ca2+ for full activity and is activated through a cyclic AMP-mediated process. The major change following physiological stimulation is an increase in both active forms, with little change in their ratio.  相似文献   

11.
Activation of glycogen phosphorylase by hormones was examined in hepatocytes isolated from euthyroid and hypothyroid female rats and incubated by Ca2+-free buffer containing 1 mM-EGTA. Basal glycogen phosphorylase activity was decreased in Ca2+-free buffer. However, the activation of hepatocyte glycogen phosphorylase, in the absence of extracellular Ca2+, in response to adrenaline, glucagon or phenylephrine was slightly lower, whereas that by vasopressin was abolished. The activation of glycogen phosphorylase by phenylephrine, adrenaline or isoproterenol (isoprenaline) in hepatocytes from euthyroid rats incubated in the absence of Ca2+ was not accompanied by any detectable increase in total cyclic AMP. The log-dose/response curves for activation of phosphorylase by phenylephrine or low concentrations of adrenaline were the same in hepatocytes from hypothyroid as compared wit euthyroid rats, whereas the response to isoproterenol was greater in hepatocytes from hypothyroid rats. However, the increases in total cyclic AMP accumulation caused by adrenaline or isoproterenol were greater in hepatocytes from hypothyroid rats than in hepatocytes from euthyroid rats. The increases in cyclic AMP accumulation caused by adrenaline or isoproterenol in Ca2+-depleted hepatocytes from hypothyroid rats were blocked by propranolol, a beta-adrenergic antagonist. In contrast, propranolol was only partially effective asan inhibitor of the activation of glycogen phosphorylase by phenylephrine or adrenaline in hepatocytes from hypothyroid rats and ineffective on phosphorylase activation in cells from euthyroid rats. These data indicate that the alpha-adrenergic activation of glycogen phosphorylase is not affected by the absence of extracellular Ca2+, and the extent to which total cyclic AMP was increased by adrenergic amines did not correlate with glycogen phosphorylase activation.  相似文献   

12.
—The intravenous injection of adrenaline, isoprenaline and histamine to 4-6-day-old chicks resulted in a rapid increase in the cyclic AMP content of cerebral hemispheres that had been removed and frozen within 0·5 s using a freeze-blowing technique. Noradrenaline, dopamine, adenosine, 5-HT and acetylcholine did not significantly alter the nucleotide concentration in vivo. Addition of adrenaline, isoprenaline and histamine to incubated chick cerebral cortex slices also increased the cyclic AMP content of the tissue. Noradrenaline was considerably less potent than these amines and adenosine was ineffective. Low phosphorylase a levels (16 per cent of total activity) were observed in instantaneously frozen cerebral hemispheres of untreated chicks. The injection of adrenaline, isoprenaline and histamine resulted in a rapid conversion of phosphorylase b to a and a significant fall in tissue glycogen. Administration of noradrenaline was without effect on the relative forms of phosphorylase and also failed to influence cerebral glycogen. Phosphorylase activation was not observed in chick cerebral slices under conditions producing large increases in cyclic AMP. It is suggested that in vivo phosphorylase activation and subsequent glycogenolysis may occur, at least in part, in glia and that these cells may be damaged during preparation of cerebral slices. The results provide evidence of a metabolic role for cyclic AMP in cerebral tissue.  相似文献   

13.
We have studied the mode of action of three hormones (angiotensin, vasopressin and phenylephrine, an α-adrenergic agent) which promote liver glycogenolysis in a cyclic AMP-independent way, in comparison with that of glucagon, which is known to act essentially via cyclic AMP. The following observations were made using isolated rat hepatocytes: (a) In the normal Krebs-Henseleit bicarbonate medium, the hormones activated glycogen phosphorylase (EC 2.4.1.1) to about the same degree. In contrast to glucagon, the cyclic AMP-independent hormones did not activate either protein kinase (EC 2.7.1.37) or phosphorylase b kinase (EC 2.7.1.38). (b) The absence of Ca2+ from the incubation medium prevented the activation of glycogen phosphorylase by the cyclic AMP-independent agents and slowed down that induced by glucagon. (c) The ionophore A 23187 produced the same degree of activation of glycogen phosphorylase, provided that Ca2+ was present in the incubation medium (d) Glucagon, cyclic AMP and three cyclic AMP-independent hormones caused an enhanced uptake of 45Ca; it was verified that concentrations of angiotensin and of vasopressin known to occur in haemorrhagic conditions were able to produce phosphorylase activation and stimulate 45Ca uptake. (e) Appropriate antagonists (i.e. phentolamine against phenylephrine and an angiotensin analogue against angiotensin) prevented both the enhanced 45Ca uptake and the phosphorylase activation.We interpret our data in favour of a role of calcium (1) as the second messenger in liver for the three cyclic AMP-independent glycogenolytic hormones and (2) as an additional messenger for glucagon which, via cyclic AMP, will make calcium available to the cytoplasm either from extracellular or from intracellular pools. The target enzyme for Ca2+ is most probably phosphorylase b kinase.  相似文献   

14.
In liver cells isolated from fed female rats, glucagon (290nM) increased adenosine 3':5'-monophosphate (cyclic AMP) content and decreased cyclic AMP binding 30 s after addition of hormones. Both returned to control values after 10 min. Glucagon also stimulated cyclic AMP-independent protein kinase activity at 30 s and decreased protein kinase activity assayed in the presence of 2 muM cyclic AMP at 1 min. Glucagon increased the levels of glycogen phosphorylase a, but there was no change in total glycogen phosphorylase activity. Glucagon increased glycogen phosphorylase a at concentrations considerably less than those required to affect cyclic AMP and protein kinase. The phosphodiesterase inhibitor, 1-methyl-3-isobutyl xanthine, potentiated the action of glucagon on all variables, but did not increase the maximuM activation of glycogen phosphorylase. Epinephrine (1muM) decreased cyclic AMP binding and increased glycogen phosphorylase a after a 1-min incubation with cells. Although 0.1 muM epinephrine stimulated phosphorylase a, a concentration of 10 muM was required to increase protein kinase activity. 1-Methyl-3-isobutyl xanthine (0.1 mM) potentiated the action of epinephrine on cyclic AMP and protein kinase. (-)-Propranolol (10muM) completely abolished the changes in cyclic AMP binding and protein kinase due to epinephrine (1muM) in the presence of 0.1mM 1-methyl-3-isobutyl xanthine, yet inhibited the increase in phosphorylase a by only 14 per cent. Phenylephrine (0.1muM) increased glycogen phosphorylase a, although concentrations as great as 10 muM failed to affect cyclic AMP binding or protein kinase in the absence of phosphodiesterase inhibitor. Isoproterenol (0.1muM) stimulated phosphorylase and decreased cyclic AMP binding, but only a concentration of 10muM increased protein kinase. 1-Methyl-3-isobutyl xanthine potentiated the action of isoproterenol on cyclic AMP binding and protein kinase, and propranolol reduced the augmentation of glucose release and glycogen phosphorylase activity due to isoproterenol. These data indicate that both alpha- and beta-adrenergic agents are capable of stimulating glycogenolysis and glycogen phosphorylase a in isolated rat liver cells. Low concentrations of glucagon and beta-adrenergic agonists stimulate glycogen phosphorylase without any detectable increase in cyclic AMP or protein kinase activity. The effects of alpha-adrenergic agents appear to be completely independent of changes in cyclic AMP protein kinase activity.  相似文献   

15.
T Mine  S Kimura  H Osawa  E Ogata 《Life sciences》1986,38(25):2285-2292
Cobalt ions (2 mM) inhibited the glycogenolysis induced by phenylephrine and glucagon in perfused rat liver. Cobalt ions also inhibited 45Ca++ efflux from prelabelled livers induced by phenylephrine and glucagon. In addition, they inhibited the rise in tissue levels of cyclic AMP caused by glucagon, but did not inhibit the stimulation of 45Ca++ efflux or glycogenolysis by cyclic AMP or dibutyryl cyclic AMP. The specific binding of glucagon and alpha-agonist to hepatocytes was not inhibited by cobalt ions. These data suggest that cobalt ions, presumably through their high affinity for calcium binding sites on membranes inhibit the stimulation of glycogenolysis by phenylephrine and glucagon in distinct ways; one by inhibiting calcium mobilization and the other by inhibiting cyclic AMP production. Therefore, it is conceivable that membrane-bound calcium plays an important role in stimulating Ca++ mobilization by phenylephrine, and cyclic AMP production by glucagon.  相似文献   

16.
Adrenalectomy results in significant changes in the mechanism of adrenergic activation of hepatic glycogenolysis. In adrenalectomized rats a greater role for the beta-adrenergic receptor is observed, whereas the alpha 1-adrenergic-mediated phosphorylase activation declines. Our present findings document that adrenalectomy causes a significant decrease in the high-affinity population of the alpha 1-adrenergic receptor labelled with [3H]adrenaline. Our data indicate a large increase in the number of beta-adrenergic binding sites after adrenalectomy. This increase was not consistent with the observed modest increase in the beta-adrenergic-mediated activation of cyclic AMP accumulation and glycogen phosphorylase. When alpha-adrenergic antagonists are present along with the catecholamine, a 100% increase in the adrenaline-mediated accumulation of cyclic AMP in hepatocytes from adrenalectomized rats was observed. Adrenalectomy was also shown to cause a significant increase in the hepatic alpha 2-adrenergic binding sites. These data are consistent with an inhibitory role on the beta-adrenergic-mediated activation of glycogenolysis by the hepatic alpha 2-adrenergic receptor in adrenalectomy.  相似文献   

17.
The role of Ca2+ ions in alpha-adrenergic activation of hepatic phosphorylase was studied using isolated rat liver parenchymal cells. The activation of glucose release and phosphorylase by the alpha-adrenergic agonist phenylephrine was impaired in cells in which calcium was depleted by ethylene glycol bis(beta-aminoethyl ether)N,N'-tetraacetic acid (EGTA) treatment and restored by calcium addition, whereas the effects of a glycogenolytically equivalent concentration of glucagon on these processes were unaffected. EGTA treatment also reduced basal glucose release and phosphorylase alpha activity, but did not alter the level of cAMP or the protein kinase activity ratio (-cAMP/+cAMP) or impair viability as determined by trypan blue exclusion, ATP levels, or gluconeogenic rates. The effect of EGTA on basal phosphorylase and glucose output was also rapidly reversed by Ca2+, but not by other ions. Phenylephrine potentiated the ability of low concentrations of calcium to reactivate phosphorylase in EGTA-treated cells. The divalent cation inophore A23187 rapidly increased phosphorylase alpha and glucose output without altering the cAMP level, the protein kinase activity ratio, and the levels of ATP, ADP, or AMP, The effects of the ionophore were abolished in EGTA-treated cells and restored by calcium addition. Phenylephrine rapidly stimulated 45Ca uptake and exchange in hepatocytes, but did not affect the cell content of 45Ca at late time points. A glycogenolytically equivalent concentration of glucagon did not affect these processes, whereas higher concentrations were as effective as phenylephrine. The effect of phenylephrine on 45Ca uptake was blocked by the alpha-adrenergic antagonist phenoxybenzamine, was unaffected by the beta blocker propranolol, and was not mimicked by isoproterenol. The following conclusions are drawn: (a) alpha-adrenergic activation of phosphorylase and glucose release in hepatocytes is more dependent on calcium than is glucagon activation of these processes; (b) variations in liver cell calcium can regulate phosphorylase alpha levels and glycogenolysis; (c) calcium fluxes across the plasma membrane are stimulated more by phenylephrine than by a glycogenolytically equivalent concentration of glucagon. It is proposed that alpha-adrenergic agonists activate phosphorylase by increasing the cytosolic concentration of Ca2+ ions, thus stimulating phosphorylase kinase.  相似文献   

18.
The role of extracellular calcium in hormone-induced glycogenolysis was examined in a rat liver perfusion system by manipulating the perfusate calcium concentration and by using calcium antagonistic drugs. When the perfusate contained 1 mM CaCl2, 5 microM phenylephrine, 20 nM vasopressin, and 10 nM angiotensin II caused a persistent increase in glucose output and phosphorylase activity as well as a transient increase in 45Ca efflux from 45Ca preloaded liver. Verapamil hydrochloride (20-100 microM) inhibited the activation of glucose output by these hormones in a dose-dependent manner. This inhibitory effect was also associated with the inhibition of hormone-induced activation of phosphorylase and 45Ca efflux. In the absence of CaCl2 in the perfusate, the glycogenolytic effect of phenylephrine and its inhibition by verapamil were obtained equally as in the presence of CaCl2. However, the effects of vasopressin and angiotensin II were markedly attenuated and were not inhibited any further by verapamil. The substitution of diltiazem hydrochloride for verapamil produced essentially identical results. Cyclic AMP concentrations in the tissue did not change under any of these test conditions. The results indicate that the glycogenolytic effect of alpha-adrenergic agonists depends on intracellular calcium but those of vasopressin and angiotensin II on extracellular calcium, and support the concept that calcium antagonistic drugs inhibit the glycogenolytic effects of calcium-dependent hormones at least by inhibiting the mobilization of calcium ion from cellular pools.  相似文献   

19.
Glycogenolysis was stimulated by catecholamines in in vitro cultures of hepatic tissue of Xenopus laevis. Dose response curves showed that adrenaline and isoprenaline were equally effective while noradrenaline and phenylephrine were progressively less effective in eliciting glycogen breakdown. Neither oxymetazoline nor methoxamine had any effect on glycogenolysis. Administration of adrenaline to cultures was followed within 1 min by a rise in tissue cyclic AMP concentration and within 2 min by an increase in phosphorylase a activity. Both these responses were blocked by propranolol but little affected by phenoxybenzamine. These findings suggest that catecholamines activate glycogenolysis via a beta-adrenergic receptor in X. laevis and that alpha-adrenergic receptors play no role in regulating hepatic glycogenolysis in this species.  相似文献   

20.
Aqueous extracts of corpora cardiaca cause glycogenolysis in the ventral nerve cord of the cockroach. The duration of the glycogenolytic response is shorter than in fat body and requires a higher concentration of extract for its initiation. The evidence suggests that glycogenolysis is accelerated in the presence of extract because of the activation of phosphorylase caused by an increase in the level of cyclic AMP. The activation of nerve cord phosphorylase by the cardiaca factor in vitro is completely inhibited by 1×10?4 M 5-hydroxytryptamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号