首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Side chain oxidized oxysterols have a unique ability to traverse lipophilic membranes. We tested the hypothesis that there is a net flux of 27-hydroxycholesterol from the circulation into the brain using plasma samples collected from the internal jugular vein and an artery of healthy male volunteers. Two independent studies were performed, one in which total levels of 27-hydroxycholesterol were measured and one in which the free fraction of 27-hydroxycholesterol was measured. In the majority of subjects studied, the level of 27-hydroxycholesterol was higher in the artery than in the vein, and uptake from the circulation was calculated to be about 5 mg/24 h. The distribution of 27-hydroxycholesterol in human brain was found to be consistent with an extracerebral origin, with a concentration gradient from the white to the gray matter--a situation opposite that of 24S-hydroxycholesterol, which os exclusively formed in brain. In view of the fact that the blood-brain barrier is impermeable to cholesterol and that 27-hydroxycholesterol is a potent regulator of several cholesterol-sensitive genes, the flux of 27-hydroxycholesterol into the brain may be and important link between intra- and extracerebral cholesterol homeostasis.  相似文献   

2.
Infants with the cholesterol synthesis defect Smith- Lemli-Opitz syndrome (SLO) have reduced activity of the enzyme 7-dehydrocholesterol-7-reductase and accumulate 7-dehydrocholesterol, with the highest concentration in the brain. As a result of the generally reduced content of cholesterol, plasma levels of oxysterols would be expected to be reduced. 24S-hydroxycholesterol is almost exclusively formed in the brain, whereas 27-hydroxycholesterol is mainly formed from extrahepatic and extracerebral cholesterol. In accordance with the expectations, sterol-correlated plasma levels of 24S-hydroxycholesterol were reduced in infants with SLO (by about 50%). In contrast, the sterol-correlated levels of 27-hydroxycholesterol in the circulation were markedly increased. No side-chain oxidized metabolites of 7-dehydrocholesterol were detected in the circulation. Recombinant human CYP27 had markedly lower 27-hydroxylase activity toward 7-dehydrocholesterol than towards cholesterol. HEK293 cells expressing 24S-hydroxylase active toward cholesterol had no significant activity towards 7-dehydrocholesterol. The plasma levels of 3 beta,7 alpha-dihydroxy-5-cholestenoic in the patients acid were reduced, suggesting a generally reduced metabolism of 27-oxygenated steroids. It is concluded that the accumulation of 7-dehydrocholesterol in the brains of patients with SLO reduces formation of 24S-hydroxycholesterol. The condition is associated with markedly increased circulating levels of 27-hydroxycholesterol, most probably due to reduced metabolism of this oxysterol. We discuss the possibility that the circulating levels of 24S-hydroxycholesterol may be used as a marker for the severity of the disease.--Bj?rkhem, I., L. Starck, U. Andersson, D. Lütjohann, S. von Bahr, I. Pikuleva, A. Babiker, and U. Diczfaulsy. Oxysterols in the circulation of patients with the Smith-Lemli-Opitz syndrome: abnormal levels of 24S- and 27-hydroxycholesterol. J. Lipid Res. 2001. 42: 366--371.  相似文献   

3.
Disturbances in cholesterol metabolism have been associated with hypertension and neurodegenerative disorders. Because cholesterol metabolism in the brain is efficiently separated from plasma cholesterol by the blood-brain barrier (BBB), it is an unsolved paradox how high blood cholesterol can cause an effect in the brain. Here, we discuss the possibility that cholesterol metabolites permeable to the BBB might account for these effects. We show that 27-hydroxycholesterol (27-OH) and 24S-hydroxycholesterol (24S-OH) up-regulate the renin-angiotensin system (RAS) in the brain. Brains of mice on a cholesterol-enriched diet showed up-regulated angiotensin converting enzyme (ACE), angiotensinogen (AGT), and increased JAK/STAT activity. These effects were confirmed in in vitro studies with primary neurons and astrocytes exposed to 27-OH or 24S-OH, and were partially mediated by liver X receptors. In contrast, brain RAS activity was decreased in Cyp27a1-deficient mice, a model exhibiting reduced 27-OH production from cholesterol. Moreover, in humans, normocholesterolemic patients with elevated 27-OH levels, due to a CYP7B1 mutation, had markers of activated RAS in their cerebrospinal fluid. Our results demonstrate that side chain-oxidized oxysterols are modulators of brain RAS. Considering that levels of cholesterol and 27-OH correlate in the circulation and 27-OH can pass the BBB into the brain, we suggest that this cholesterol metabolite could be a link between high plasma cholesterol levels, hypertension, and neurodegeneration.  相似文献   

4.
There is a significant flux of the neurotoxic oxysterol 27-hydroxycholesterol (27OHC) from the circulation across the blood-brain barrier. Because there is a correlation between 27OHC and cholesterol in the circulation and lipoprotein-bound cholesterol does not pass the blood-brain barrier, we have suggested that 27OHC may mediate the effects of hypercholesterolemia on the brain. We previously demonstrated a modest accumulation of 27OHC in brains of patients with sporadic Alzheimer's disease (AD), consistent with a role of 27OHC as a primary pathogenetic factor. We show here that there is a 4-fold accumulation of 27OHC in different regions of the cortexes of patients carrying the Swedish amyloid precursor protein (APPswe) 670/671 mutation. The brain levels of sitosterol and campesterol were not significantly different in the AD patients compared with the controls, suggesting that the blood-brain barrier was intact in the AD patients. We conclude that accumulation of 27OHC is likely to be secondary to neurodegeneration, possibly a result of reduced activity of CYP7B1, the neuronal enzyme responsible for metabolism of 27OHC. We discuss the possibility of a vicious circle in the brains of the patients with familial AD whereby neurodegenerative changes cause an accumulation of 27OHC that further accelerates neurodegeneration.  相似文献   

5.
Cerebral and extracerebral cholesterol metabolism are altered in Alzheimer's disease (AD) as indicated by reduced plasma levels of the cholesterol elimination products 24S-hydroxycholesterol, which is of cerebral origin, and of 27-hydroxycholesterol, which is formed extracerebrally. However, it has to be evaluated, if changes of cholesterol metabolism in the whole body or in the CNS are exclusively due to the altered elimination of cholesterol or are also due to altered de novo synthesis in AD. We investigated CSF and plasma levels of cholesterol and of its precursors lanosterol, lathosterol and desmosterol in AD patients and non-demented controls. We found CSF levels of cholesterol (p = 0.011), absolute levels of all investigated cholesterol precursors (each p < 0.001) and ratios of cholesterol precursors/cholesterol (each < 0.01) to be lower in AD patients as compared to controls. In plasma, the absolute levels of lanosterol (p = 0.026) and lathosterol (p < 0.001) and the ratio of lathosterol/cholesterol (p = 0.002) but none of the other investigated parameters were reduced in AD patients (p > 0.1). Furthermore, ratios of desmosterol/lathosterol in CSF (p = 0.023) and plasma (p = 0.009) were higher in AD patients as compared to controls. Our data support the hypothesis that cholesterol metabolism is altered in AD and further suggest that especially cholesterol de novo synthesis within the CNS of AD patients might be reduced. These findings raise doubt on a beneficial effect of cholesterol lowering treatment in manifest AD.  相似文献   

6.
7.
In contrast to their parent molecule cholesterol, two of its side-chain oxidized metabolites are able to cross the blood–brain barrier. There is a concentration-driven flux of 24S-hydroxycholesterol (24S-OHC) from the brain into the circulation, which is of major importance for elimination of excess cholesterol from the brain. The opposite flux of 27-hydroxycholesterol (27-OHC) from the circulation into the brain may regulate a number of key enzymes within the brain. In vitro experiments suggest that the balance between the levels of these two molecules may be of importance for the generation of β-amyloid peptides. In primary cultures of rat hippocampal cells 27-OHC is able to suppress expression of the activity regulated cytoskeleton-associated protein (Arc), a protein important in memory consolidation which is reduced in patients with Alzheimer’s disease (AD). In the present work we explore the possibility that the flux of 27-OHC from the circulation into the brain represents the missing link between AD and hypercholesterolemia, and discuss the possibility that modification of this flux may be a therapeutic strategy. Lastly, we discuss the use of oxysterols as diagnostic markers in neurodegenerative disease.  相似文献   

8.
Cholesterol metabolism in the brain is distinct from that in other tissues due to the fact that cholesterol itself is unable to pass across the blood-brain barrier. Elimination of brain cholesterol is mainly dependent on a neuronal-specific cytochrome P450, CYP46A1, catalyzing the conversion of cholesterol into 24(S)-hydroxycholesterol (24OHC), which is able to pass the blood-brain barrier. A suitable model for studying this elimination from human neuronal cells has not been described previously. It is shown here that differentiated Ntera2/clone D1 (NT2) cells express the key genes involved in brain cholesterol homeostasis including CYP46A1, and that the expression profiles of the genes observed during neuronal differentiation are those expected to occur in vivo. Thus there was a decrease in the mRNA levels corresponding to cholesterol synthesis enzymes and a marked increase in the mRNA level of CYP46A1. The latter increase was associated with increased levels of CYP46A1 protein and increased production of 24OHC. The magnitude of the secretion of 24OHC from the differentiated NT2 cells into the medium was similar to that expected to occur under in vivo conditions. An alternative to elimination of cholesterol by the CYP46A1 mechanism is elimination by CYP27A1, and the product of this enzyme, 27-hydroxycholesterol (27OHC), is also known to pass the blood-brain barrier. The CYP27A1 protein level decreased during the differentiation of the NT2 cells in parallel with decreased production of 27OHC. The ratio between 24OHC and 27OHC in the medium from the cultured cells increased, by a factor of 13, during the differentiation process. The results suggest that progenitor cells eliminate cholesterol in the form of 27OHC while neurogenesis induces a change to the CYP46A1 dependent pathway. Furthermore this study demonstrates that differentiated NT2 cells are suitable for studies of cholesterol homeostasis in human neurons.  相似文献   

9.
Alzheimer's disease (AD) is characterized by the presence of senile plaques, neurofibrillary tangles, and neuronal cell loss associated with membrane cholesterol release. 24S-hydroxycholesterol (24S-OH-Chol) is an enzymatically oxidized product of cholesterol mainly synthesized in the brain. We tested the hypothesis that plasma levels of this oxysterol could be used as a putative biochemical marker for an altered cholesterol homeostasis in the brain of AD patients. Thirty patients with clinical criteria for AD, 30 healthy volunteers, 18 depressed patients, and 12 patients with vascular dementia (non-Alzheimer demented) were studied. Plasma concentrations of 24S-OH-Chol were assayed by isotope dilution;-mass spectrometry, cholesterol was measured enzymatically, and apolipoprotein E (apoE) was genotyped by polymerase chain reaction and restricted fragment length polymorphism. The concentration of 24S-OH-Chol in AD and non-Alzheimer demented patients was modestly but significantly higher than in healthy controls and in depressed patients. There was no significant difference in the concentrations of 24S-OH-Chol between depressed patients and healthy controls nor between AD and non-Alzheimer demented patients. The apoE straightepsilon4 allele influences plasma 24S-OH-Chol. However, this influence could be completely accounted for by the elevated plasma cholesterol in apoE4 hetero- or homozygotes. Plasma 24S-OH-Chol levels correlated negatively with the severity of dementia. AD and vascular demented patients appear to have higher circulating levels of 24S-OH-Chol than depressed patients and healthy controls. We speculate that 24S-OH-Chol plasma levels may potentially be used as an early biochemical marker for an altered cholesterol homeostasis in the central nervous system. 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients.  相似文献   

10.
Removal of cholesterol from extrahepatic sources by oxidative mechanisms.   总被引:5,自引:0,他引:5  
Sterol 27-hydroxylase is an evolutionarily old cytochrome P450 species that is critical for oxidation of the side chain of cholesterol in connection with bile acid biosynthesis in the liver. The wide tissue and organ distribution of the enzyme suggests that it may also have other functions. It was recently shown that some cells (e.g. macrophages) have a high capacity to convert cholesterol into both 27-hydroxycholesterol and cholestenoic acid and that there is a significant flux of these steroids from extrahepatic sources to the liver where they are further oxidized into bile acids. The magnitude of this flux is such that it may be of importance for overall homeostasis of cholesterol. Very recently it was shown that the brain utilizes a similar mechanism for removal of cholesterol. A unique brain-specific 24S-hydroxylase converts cholesterol into 24S-hydroxycholesterol that is transported over the blood-brain barrier much more rapidly than unmetabolized cholestero. When 24S-hydroxycholesterol has reached the circulation it is taken up by the liver and further metabolized, most probably into bile acids. This flux is likely to be of importance for cholesterol homeostasis in the brain. This review summarizes our current knowledge regarding oxidative mechanisms for removal of extrahepatic cholesterol. It is evident that some cells utilize these mechanisms as alternatives or complements to the classical HDL-dependent reverse cholesterol transport.  相似文献   

11.
Familial combined hyperlipidemia (FCHL), the most common inherited disorder of lipid metabolism is characterized by increasing cholesterol synthesis precursors due to hepatic overproduction of cholesterol. The bile acids synthesis pathway has not been previously studied in FCHL. The aim of this work was to study the oxysterol levels which are involved in the bile acids synthesis from cholesterol in FCHL. Clinical parameters and subclinical atherosclerosis were studied in a total of 107 FCHL patients and 126 normolipidemic controls. Non cholesterol sterols (desmosterol and lanosterol) and oxysterols (27-hydroxycholesterol and 24S-hydroxycholesterol) were measured by high performance liquid chromatography tandem mass spectrometry. Desmosterol and lanosterol, markers of cholesterol synthesis, had a positive correlation with BMI and apo B. However, no correlation was found for 24S-hydroxycholesterol and 27-hydroxycholesterol, precursors of bile acids, with these clinical parameters. Only 27-hydroxycholesterol had a positive correlation with apo B, ρ = 0.204 (P = 0.037). All oxysterol levels were higher in FHCL as compared to normal controls. A total of 59 FCHL subjects (59%) presented values of 24S-hydroxycholesterol above the 95th percentile of this oxysterol in the control population. All oxysterols showed no association with fat mass in contrast with non-cholesterol sterols. FCHL subjects with oxysterol overproduction had less carotid intima media thickness (cIMT), which suggests less atherosclerosis in these subjects. In summary, our data indicate that high oxysterol levels might be good markers of FCHL, unrelated to fat mass, and may exert a protective mechanism for cholesterol accumulation.  相似文献   

12.
Recent epidemiological studies suggest that inhibitors of 3-hydroxy-3-methyl-glutaryl CoA reductase, so-called statins, are effective in lowering the prevalence of Alzheimer's disease. Whether the effect of statins is due to a local inhibition of cholesterol synthesis in the brain or whether it is mediated by the reduced levels of cholesterol in the circulation is not known. In the present work, we tested the possibility that high doses of lipophilic and hydrophilic statins, simvastatin and pravastatin, respectively, or a diet high in cholesterol could affect cholesterol homeostasis in the brain of guinea pigs. The total brain cholesterol levels were not affected by high-dose simvastatin or pravastatin treatment. Significantly lower levels of the cholesterol precursor lathosterol and its ratio to cholesterol were found in the brains of simvastatin and pravastatin-treated animals. 24S-Hydroxycholesterol, the transportable form of cholesterol across the blood-brain barrier, was significantly lower in the brain of pravastatin-treated animals. Excessive cholesterol feeding resulted in higher serum cholesterol levels but did not affect total brain cholesterol level. However, de novo cholesterol synthesis in the brain seemed to be down-regulated, as indicated by lower absolute levels and cholesterol-related ratios of lathosterol compared with controls. The passage of deuterium-labeled cholesterol across the blood-brain barrier in one animal was found to be approximately 1%. Our results suggest that brain cholesterol synthesis in guinea pigs can be slightly, but significantly, influenced by high doses of lipophilic and hydrophilic statins as well as by high dietary cholesterol intake, while total brain cholesterol content and thus, cholesterol homeostasis is maintained.  相似文献   

13.
CYP27-overexpressed transgenic mice were generated with the use of a human full-length CYP27 coding region cloned into a ubiquitous expression vector. Positive transgenic mice were identified by tail DNA genotyping and high fecal 27-hydroxycholesterol content. The levels of 27-hydroxycholesterol were found to be 3-5 times higher in the circulation and the tissues of the overexpressed mice when compared with littermate controls. There were no gross morphological differences between the overexpressed mice and their controls. Total cholesterol and triglyceride levels were not affected by overexpression of CYP27. Serum lathosterol was also normal, suggesting a normal rate of cholesterol synthesis. Serum levels of 7alpha-hydroxycholesterol were unaffected, suggesting a normal rate of bile acid formation in the pathway involving cholesterol 7alpha-hydroxylase. Biliary bile acid composition was slightly affected by CYP27 overexpression in female but not in male mice. Fecal levels of neutral steroids were slightly but significantly increased in overexpressor female mice but not in male mice. Levels of 24-hydroxycholesterol in the circulation were significantly reduced in the overexpressed mice, probably as a consequence of a recently described catabolic pathway involving CYP27. Combined with the results of our previous work on mice with a disruption of the CYP27 gene, the present results suggest that the levels of 27-hydroxycholesterol are not of critical importance for cholesterol homeostasis in mice.  相似文献   

14.
Apolipoprotein E knockout (apoE-KO) mice present synaptic loss, cognitive dysfunction, and high plasma lipid levels that may affect brain function simulating Alzheimer disease. Plasma and brain sterols were measured in apoE-KO and in wild type control mice on a cholesterol-free, phytosterol-containing diet by gas chromatography coupled to a mass spectrometer. Plasma cholesterol and phytosterols (campesterol and sitosterol) were higher in apoE-KO compared to control mice. Cholesterol precursors (desmosterol and lathosterol) were not detected in plasma of control mice but were present in apoE-KO mice. In the brain amounts of cholesterol, desmosterol, campesterol and 24-hydroxycholesterol were significantly lower in apoE-KO than in controls. There is a tendency in apoE-KO for lower values of 7α-hydroxycholesterol and 7β-hydroxycholesterol. Cholesterol content, synthesis rates (desmosterol) and export of 24-hydroxycholesterol are reduced in the brain of the severe hypercholesterolemic apoE-KO mice.  相似文献   

15.
The brain is the almost exclusive site of formation of 24S-hydroxycholesterol in man, and there is a continuous flux of this oxysterol across the blood-brain barrier into the circulation. The hepatic metabolism of 24S-hydroxycholesterol was studied here by three different approaches: incubation of tritium-labeled 24S-hydroxycholesterol with human primary hepatocytes, administration of tritium-labeled 24S-hydroxycholesterol to a human volunteer, and quantitation of free and conjugated 24S-hydroxycholesterol and its neutral metabolites in ileocecal fluid from patients with ileal fistulae. 24S-Hydroxycholesterol as well as 24R-hydroxycholesterol were converted into bile acids by human hepatocytes at a rate of about 40% of that of the normal intermediate in bile acid synthesis, 7 alpha-hydroxycholesterol. There was also a conversion of 24S-hydroxycholesterol into conjugate(s) of 5-cholestene-3 beta,24S,27-triol at a rate similar to the that of conversion into bile acids. When administered to a human volunteer, labeled 24S-hydroxycholesterol was converted into bile acids at about half the rate of simultaneously administered labeled 7 alpha-hydroxycholesterol. Free, sulfated, and glucuronidated 24S-hydroxycholesterol and 5-cholestene-3 beta,24,27-triol were identified in ileocecal fluid. The excretion of these steroids was about 3.5 mg/24 h, amounting to more than 50% of the total estimated flux of 24S-hydroxycholesterol from the brain. It is concluded that 24S-hydroxycholesterol is a less efficient precursor to bile acids and that about half of it is conjugated and eliminated in bile as such or as a conjugate of a 27-hydroxylated metabolite. The less efficient metabolism of 24S-hydroxycholesterol may explain the surprisingly high levels of this oxysterol in the circulation and is of interest in relation to the suggested role of 24S-hydroxycholesterol as a regulator of cholesterol homeostasis.  相似文献   

16.
Oxysterols possess powerful biological activities. Some of their effects on the regulation of key enzymes are similar to those of cholesterol, but are much more potent. One of the critical properties of oxysterols is their ability to pass lipophilic membranes at a high rate. Transfer of unesterified 25-hydroxycholesterol from red blood cells to plasma has been reported to occur more than 1,000 times faster than cholesterol. Here we have measured the relative rate of such translocation of the three major oxysterols in human circulation: 27-hydroxycholesterol, 24S-hydroxycholesterol, and 4beta-hydroxycholesterol. The distance from the 3beta-hydroxyl group to the additional hydroxyl group is the greatest possible in 27-hydroxycholesterol and the least possible in 4beta-hydroxycholesterol. The rate of exchange between erythrocytes and plasma was found to be high for 27-hydroxycholesterol and 24S-hydroxycholesterol, and hardly possible to measure for 4beta-hydroxycholesterol and cholesterol. When injected intravenously into humans, deuterium labeled 24- and 27-hydroxycholesterol caused an immediate high enrichment of the corresponding plasma sterols followed by a decay. After injection of labeled 4beta-hydroxycholesterol, the maximum deuterium enrichment occurred after 2-3 h, when secretion of the oxysterol from the liver is likely to be the limiting factor. When radiolabeled cholesterol was injected under the same conditions, maximum appearance of label occurred after about 2 days. The results illustrate the importance of the position of the additional oxygen in oxysterols and are discussed in relation to the rate of metabolism and biological effects of these oxysterols.  相似文献   

17.
The side chain oxidized oxysterol 24S-hydroxycholesterol (24-OH-chol) is formed almost exclusively in the brain, and there is a continuous passage of this oxysterol through the circulation to the liver. 27-Hydroxycholesterol (27-OH-chol) is produced in most organs and is also taken up by the liver. The 27-OH-chol-24-OH-chol ratio is about 0.1 in the brain and about 2 in the circulation. This ratio was found to be about 0.4 in cerebrospinal fluid (CSF) of asymptomatic patients, consistent with a major contribution from the circulation in the case of 27-OH-chol. In accordance with this, we demonstrated a significant flux of deuterium labeled 27-OH-chol from plasma to the CSF in a healthy volunteer. Patients with a defective blood-brain barrier were found to have markedly increased absolute levels (up to 10-fold) of both 27-OH-chol and 24-OH-chol in CSF, with a ratio between the two sterols reaching up to 2. There was a significant positive correlation between the levels of both oxysterols in CSF and the albuminCSF-albuminplasma ratio. The 27-OH-cholCSF-24-OH-cholCSF ratio was found to be about normal in patients with active multiple sclerosis and significantly increased in patients with meningitis, polyneuropathy, or hemorrhages. Results are discussed in relation to the possible use of 24-OH-cholCSF as a surrogate marker of central nervous system demyelination and/or neuronal death.  相似文献   

18.
19.
Cholesterol is implicated to play a role in Alzheimer disease pathology. Therefore, the concentrations of cholesterol, its precursors, and its degradation products in brain homogenates of aging wild-type and beta-amyloid precursor protein transgenic mice carrying the Swedish mutation (APP23) were analyzed. Among the sterols measured, lanosterol is the first common intermediate of two different pathways, which use either desmosterol or lathosterol as the predominant precursors for de novo synthesis of brain cholesterol. In young mice, cholesterol is mainly synthesized via the desmosterol pathway, while in aged mice, lathosterol is the major precursor. 24S-hydroxycholesterol (cerebrosterol), which plays a key role in the removal of cholesterol from the brain, modestly increased during aging. No differences in the levels of cholesterol, its precursors, or its metabolites were found between wild-type and APP23 transgenic mice. Moreover, the levels of the exogenous plant sterols campesterol and sitosterol were significantly elevated in the brains of APP23 animals at age 12 and 18 months. This time point coincides with abundant plaque formation.  相似文献   

20.
Chronic inflammatory events appear to play a fundamental role in Alzheimer''s disease (AD)-related neuropathological changes, and to result in neuronal dysfunction and death. The inflammatory responses observed in the AD brain include activation and proliferation of glial cells, together with up-regulation of inflammatory mediators and of free radicals. Along with glial cells, neurons themselves can also react and contribute to neuroinflammatory changes in the AD brain, by serving as sources of inflammatory mediators. Because excess cholesterol cannot be degraded in the brain, it must be excreted from that organ as cholesterol oxidation products (oxysterols), in order to prevent its accumulation. Among risk factors for this neurodegenerative disease, a mechanistic link between altered cholesterol metabolism and AD has been suggested; oxysterols appear to be the missing linkers between the two, because of their neurotoxic effects. This study shows that 24-hydroxycholesterol, 27-hydroxycholesterol, and 7β-hydroxycholesterol, the three oxysterols potentially implicated in AD pathogenesis, induce some pro-inflammatory mediator expression in human neuroblastoma SH-SY5Y cells, via Toll-like receptor-4/cyclooxygenase-2/membrane bound prostaglandin E synthase (TLR4/COX-2/mPGES-1); this clearly indicates that oxysterols may promote neuroinflammatory changes in AD. To confirm this evidence, cells were incubated with the anti-inflammatory flavonoid quercetin; remarkably, its anti-inflammatory effects in SH-SY5Y cells were enhanced when it was loaded into β-cyclodextrin-dodecylcarbonate nanoparticles, versus cells pretreated with free quercetin. The goal of loading quercetin into nanoparticles was to improve its permeation across the blood-brain barrier into the brain, and its bioavailability to reach target cells. The findings show that this drug delivery system might be a new therapeutic strategy for preventing or reducing AD progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号