首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A procedure was developed for the covalent coupling of anti-alpha-fetoprotein antibody (anti-AFP) to a gold surface modified with a self-assembled monolayer (SAM) of thiourea (TU). The performance of the SAM-antibody layer was compared to those of similar layers based on thioctic acid (TA) and 3-mercaptopropionic acid (MPA) by using flow injection capacitive immunosensor system. Covalent coupling of anti-AFP on self-assembled thiourea monolayer (SATUM) modified gold electrode can be used to detect alpha-fetoprotein with high efficiency, similar sensitivity, the same linear range (0.01-10 microgl(-1)) and detection limit (10 ngl(-1)) as those obtained from sensors based on self-assembled thioctic acid monolayer (SATAM) and self-assembled 3-mercaptopropionic acid monolayer (SAMPAM). The system is specific for alpha-fetoprotein and can be regenerated and reused up to 48 times. Therefore, self-assembled monolayer using thiourea which is cheaper than thioctic acid and 3-mercaptopropionic acid is a good alternative for biosensor applications when SAMs are used.  相似文献   

2.
A multilayer electrode modified with a self-assembled thiourea monolayer (SATUM) followed by gold nanoparticles (AuNPs), mercaptosuccinic acid (MSA) and antibody was investigated for the detection of ultra trace amount of a small molecule (chloramphenicol) in an impedimetric system. The formation of the antibody-antigen complex at the electrode surface caused the impedance to increase. Under optimum conditions three modified electrodes were compared the SATUM/AuNPs/MSA electrode provided a wide linear range (0.50-10) × 10?1? M, and a very low determination limit of 1.0 × 10?1? M. This determination limit was much lower than the SATUM/AuNPs electrode, 1.0 × 10?1? M, and SATUM electrode, 4.7 × 10?1? M. The modified electrode provided good selectivity for chloramphenicol detection and can be reused up to 45 times with a relative standard deviation of lower than 4%. When applied to determine chloramphenicol in shrimp samples, the results agreed well with those obtained by the high-performance liquid chromatography coupled with a photo diode array detector (P > 0.05). The developed system can be applied to detect other small molecules using appropriate affinity binding pairs.  相似文献   

3.
This paper reports, for the first time, the influence of the length and the terminating head group of blocking thiols on the sensitivity and specificity of a label-free capacitive DNA detection system using immobilized pyrrolidinyl peptide nucleic acid (acpcPNA) probes. A C-terminal lysine-modified acpcPNA was immobilized through four different alkanethiol self-assembled monolayers (SAMs), i.e., 3-mercaptopropionic acid (MPA), thioctic acid (TA), thiourea (TU) and mercaptosuccinic acid (MSA). The hybridization between the acpcPNA probes and the target DNA was directly measured using the capacitive system. Five blocking thiols of various lengths (C=3, 6, 8, 9 and 11), with the -OH terminating head group, i.e., 3-mercapto-1-propanol (3-MPL), 6-mercapto-1-hexanol (6-MHL), 8-mercapto-1-octanol (8-MOL), 9-mercapto-1-nonanol (9-MNL), 11-mercapto-1-undecanol (11-MUL) and another blocking thiol (C=11) with a -CH(3) terminating head group, and 1-dodecanethiol (1-DDT) were investigated. The blocking thiol with the same length as the total spacer of the immobilized acpcPNA gave the highest sensitivity and specificity with the -OH terminating head group providing a slightly better signal than the -CH(3) group. Under the optimized conditions, the immobilized acpcPNA probes provided a wide linear range for DNA detection (1.0×10(-11)-1.0×10(-8)M) with a very low detection limit in the picomolar range. The modified acpcPNA electrode could be reused through at least 58 cycles. The high sensitivity and very low detection limits are potentially useful for the analysis of ultra-trace levels of DNA in samples. Preliminary studies were also performed to see the effect of probe concentration and target length.  相似文献   

4.
Antibody was covalently immobilized by amine coupling method to gold surfaces modified with a self-assembled monolayer of thioctic acid. The electrochemical measurements of cyclic voltammetry and impedance spectroscopy showed that the hexacyanoferrate redox reactions on the gold surface were blocked due to the procedures of self-assembly of thioctic acid and antibody immobilization. The binding of a specific antigen to antibody recognition layer could be detected by measurements of the impedance change. A new amplification strategy was introduced for improving the sensitivity of impedance measurements using biotin labeled protein-streptavidin network complex. This amplification strategy is based on the construction of a molecular complex between streptavidin and biotin labeled protein. This complex can be formed in a cross-linking network of molecules so that the amplification of response signal will be realized due to the big molecular size of complex. The results show that this amplification strategy causes dramatic improvement of the detection sensitivity of hIgG and has good correlation for detection of hIgG in the range of 2-10 microg/ml.  相似文献   

5.
A label-free immunosensor based on a modified gold electrode incorporated with silver (Ag) nanoparticles (NPs) to enhance the capacitive response to microcystin-LR (MCLR) has been developed. Anti-microcystin-LR (anti-MCLR) was immobilized on silver nanoparticles bound to a self-assembled thiourea monolayer. Interaction of anti-MCLR and MCLR were directly detected by capacitance measurement. Under optimum conditions, MCLR could be determined with a detection limit of 7.0pgl(-1) and linearity between 10pgl(-1) and 1mugl(-1). The immobilized anti-MCLR on self-assembled thiourea monolayer incorporated with silver nanoparticles was stable and good reproducibility of the signal could be obtained up to 43 times with an R.S.D. of 2.1%. Comparing to the modified electrode without silver nanoparticles it gave 1.7-fold higher sensitivity and lower limit of detection. The developed immunosensor was applied to analyze MCLR in water samples and the results were in good agreement with those obtained by high-performance liquid chromatography (HPLC) (P<0.05).  相似文献   

6.
Heparin (HEP) has been covalently immobilized onto 4-aminothiophenol (ATP) self-assembled monolayer (SAM) deposited onto gold (Au)-coated glass plate for low density lipoprotein (LDL) detection. The HEP/ATP/Au and LDL/HEP/ATP/Au electrodes have been characterized using cyclic voltammetry (CV) and scanning electron microscopy (SEM). Surface plasmon resonance (SPR) measurements reveal that HEP/ATP/Au electrode is sensitive to detection of the LDL in the range 0.03 microM (10 mg/dl)-0.39 microM (130 mg/dl). The values of association and dissociation rate constants in the association phase calculated by kinetic analysis have been found to be k(a) = 9.67 x 10(1) M(-1) s(-1) and k(d) = 2.64 x 10(-4) s(-1).  相似文献   

7.
A method for the electrochemical detection of superoxide radical was developed, based on cytochrome c (cyt c) immobilized on the binary self-assembled monolayers (SAMs) of thioctic acid (T-COOH) and thioctic amide (T-NH2) on gold electrode. The sensor works by electrochemically detecting cyt c reduced by the superoxide radical generated by a xanthine-XOD system. The electrochemical properties of immobilized cyt c were investigated in aqueous buffer and in a mixture of aqueous and organic solvents. The interaction of superoxide radical with the modified electrode was characterized in phosphate buffer solution (PBS) and in the mixtures of both PBS and dimethyl sulfoxide (DMSO) and PBS and glycerol (Gly). The results showed that the sensors responded immediately to superoxide radical in PBS and gave a steady-state anodic current within 10s during the generation of superoxide radical. In 40% DMSO and in 30% Gly solution, the current response reached a steady-state anodic current within 20s. The sensor could also be used to estimate superoxide dismutase (SOD).  相似文献   

8.
The degradation product of penicillin G potassium can react with potassium permanganate in acidic medium and produce chemiluminescence, which is greatly enhanced by formaldehyde. The optimum conditions for this chemiluminescent reaction were studied in detail using a flow-injection system. The experiments indicated that under optimum conditions, the chemiluminescence intensity was linearly related to the concentration of penicillin G potassium within the range 1.0 x 10(-7)-1.0 x 10(-5) g/mL, with a detection limit (3sigma) of 7 x 10(-8) g/mL. The relative standard deviation was 1.0% for 4.0 x 10(-7) g/mL penicillin G potassium solution (n = 11). This method has the advantages of simple operation, fast response and high sensitivity. The method was successfully applied to the analysis of penicillin G potassium in raw medicines.  相似文献   

9.
A copper monolayer was formed on a gold electrode surface via underpotential deposition (UPD) method to construct a Cu UPD|DTBP-Protein G immunosensor for the sensitive detection of 17β-estradiol. Copper UPD monolayer can minimize the non-specific adsorption of biological molecules on the immunosensor surface and enhance the binding efficiency between immunosensor surface and thiolated Protein G. The crosslinker DTBP (Dimethyl 3,3'-dithiobispropionimidate · 2HCl) has strong ability to immobilize Protein G molecules on the electrode surface and the immobilized Protein G provides an orientation-controlled binding of antibodies. A monolayer of propanethiol was firstly self-assembled on the gold electrode surface, and a copper monolayer was deposited via UPD on the propanethiol modified electrode. Propanethiol monolayer helps to stabilize the copper monolayer by pushing the formation and stripping potentials of the copper UPD monolayer outside the potential range in which copper monolayer can be damaged easily by oxygen in air. A droplet DTBP-Protein G was then applied on the modified electrode surface followed by the immobilization of estradiol antibody. Finally, a competitive immunoassay was conducted between estradiol-BSA (bovine serum albumin) conjugate and free estradiol for the limited binding sites of estradiol antibody. Square wave voltammetry (SWV) was employed to monitor the electrochemical reduction current of ferrocenemethanol and the SWV current decreased with the increase of estradiol-BSA conjugate concentration at the immunosensor surface. Calibration of immunosensors in waste water samples spiked with 17β-estradiol yielded a linear response up to ≈ 2200 pg mL(-1), a sensitivity of 3.20 μA/pg mL(-1) and a detection limit of 12 pg mL(-1). The favorable characteristics of the immunosensors such as high selectivity, sensitivity and low detection limit can be attributed to the Cu UPD|DTBP-Protein G scaffold.  相似文献   

10.
Gold nanoparticles have been attached onto glassy carbon electrode surface through sulfhydryl-terminated monolayer and characterized by X-ray photoelectron spectroscopy, atomic force microscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The gold nanoparticles-attached glassy carbon electrodes have been applied to the immobilization/adsorption of hemoglobin, with a monolayer surface coverage of about 2.1 x 10(-10) mol cm(-2), and consequently obtained the direct electrochemistry of hemoglobin. Gold nanoparticles, acting as a bridge of electron transfer, can greatly promote the direct electron transfer between hemoglobin and the modified glassy carbon electrode without the aid of any electron mediator. In phosphate buffer solution with pH 6.8, hemoglobin shows a pair of well-defined redox waves with formal potential (E0') of about -0.085 V (versus Ag/AgCl/saturated KCl). The immobilized hemoglobin maintained its biological activity, showing a surface controlled electrode process with the apparent heterogeneous electron transfer rate constant (ks) of 1.05 s(-1) and charge-transfer coefficient (a) of 0.46, and displays the features of a peroxidase in the electrocatalytic reduction of hydrogen peroxide. A potential application of the hemoglobin-immobilized gold nanoparticles modified glassy carbon electrode as a biosensor to monitor hydrogen peroxide has been investigated. The steady-state current response increases linearly with hydrogen peroxide concentration from 2.0 x 10(-6) to 2.4 x 10(-4) M. The detection limit (3sigma) for hydrogen peroxide is 9.1 x 10(-7) M.  相似文献   

11.
A novel electrochemical method for the detection of bioaffinity interactions based on a gold-nanoparticles sensing platform and on the usage of stripping voltammetry technique was developed. The oxidation of gold surface (resulted in gold oxide formation) upon polarization served as a basis for analytical response. As a model, thrombin-thrombin binding aptamer couple was chosen. The aptamer was immobilized on a screen-printed electrode modified with gold-nanoparticles by avidin-biotin technology. Cathodic peak area was found proportional to thrombin quantity specifically adsorbed onto electrode surface. Sigmoid calibration curve as is typical for immunoassay was obtained, with thrombin detection limit of 10(-9)M. Linear range corresponds from 10(-8) to 10(-5)M thrombin concentration or 2 x 10(-14) to 2 x 10(-11)mol/electrode (R=0.996). Binding of thrombin to an aptamer has also been detected using the ferricyanide/ferrocyanide redox couple as electrochemical indicator.  相似文献   

12.
We describe a non-labeled electrochemiluminescence (ECL) immunosensor based on CdSe quantum dots (QDs) for the detection of human prealbumin (PAB, antigen). The immunosensor was fabricated by layer by layer coupled with nanoparticle-amplification techniques. After two gold nanoparticle layers were self-assembled onto the gold electrode surface through cysteamine, anti-PAB (antibody) were conjugated with -COOH groups of both the CdSe QDs and cysteine, which were linked to the gold nanoparticle-modified electrode. The principle of ECL detection was that the immunocomplex inhibited the ECL reaction between CdSe QDs and K(2)S(2)O(8), which resulted in the decrease of ECL intensity. On the one hand, the immunocomplex increased the steric hindrance. On the other hand, the immunocomplex maybe inhibit the transfer of K(2)S(2)O(8) to the surface of the CdSe QD-electrode. The PAB concentration was determined in the range of 5.0 x 10(-10) to 1.0 x 10(-6) g mL(-1), and the detection limit was 1.0 x 10(-11) g mL(-1). The developed CdSe QD-based ECL immunosensor provides a rapid, simple, and sensitive immunoassay protocol for protein detection, which could be applied in more bioanalytical systems.  相似文献   

13.
A new procedure for fabricating deoxyribonucleic acid (DNA) electrochemical biosensor was developed based on covalent immobilization of target single-stranded DNA (ssDNA) on Au electrode that had been functionalized by direct coupling of sol-gel and self-assembled technologies. Two siloxanes, 3-mercaptopropyltrimethoxysiloxane (MPTMS) and 3-glycidoxypropyltrimethoxysiloxane (GPTMS) were used as precursors to prepare functionally self-assembly sol-gel film on Au electrode. The thiol group of MPTMS allowed assembly of MPTMS sol-gel on gold electrode surface. Through co-condensation between silanols, GPTMS sol-gel with epoxide groups interconnected into MPTMS sol-gel and enabled covalent immobilization of target NH(2)-ssDNA through epoxide/amine coupling reaction. The concentration of MPTMS and GPTMS influenced the performance of the resulting biosensor due to competitive sol-gel process. The linear range of the developed biosensor for determination of complementary ssDNA was from 2.51 x 10(-9) to 5.02 x 10(-7)M with a detection limit of 8.57 x 10(-10)M. The fabricated biosensor possessed good selectivity and could be regenerated. The covalent immobilization of target ssDNA on self-assembled sol-gel matrix could serve as a versatile platform for DNA immobilization and fabrication of biosensors.  相似文献   

14.
An electrochemical impedimetric immunosensor was developed for ultrasensitive determination of insulin-like growth factor-1 (IGF-1) based on immobilization of a specific monoclonal antibody on gold nanoparticles (GNPs) modified gold electrode. Self-assembly of colloidal gold nanoparticles on the gold electrode was conducted through the thiol groups of 1,6-hexanedithiol (HDT) monolayer as a cross linker. The redox reactions of [Fe(CN)(6)](4-)/[Fe(CN)(6)](3-) on the electrode surface was probed for studying the immobilization and determination processes, using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The interaction of antigen with grafted antibody recognition layer was carried out by soaking the modified electrode into antigen solution at 37°C for 3 h. The immunosensor showed linearity over 1.0-180.0 pg mL(-1) and the limit of detection was 0.15 pg mL(-1). The association constant between IGF-1 and immobilized antibody was calculated to be 9.17×10(11) M(-1). The proposed method is a useful tool for screening picogram amounts of IGF-1 in clinical laboratory as a diagnostic test.  相似文献   

15.
Rhodopsin, the G protein-coupled receptor (GPCR) which mediates the sense of vision, was prepared from calf eyes and used as receptor enriched membrane fraction. In this study it was immobilized onto gold electrode by two different techniques: Langmuir-Blodgett (LB) and a strategy based on a self-assembled multilayer. We demonstrated that Langmuir and LB films of rhodopsin are not stable. Thus, in this study a new protein multilayer was prepared on gold electrode by building up layer-by-layer a self-assembled multilayer. It is composed of a mixed self-assembled monolayer formed by MHDA and biotinyl-PE, followed by a biotin-avidin system which allows binding of biotinylated antibody specific to rhodopsin. The immobilization of rhodopsin in membrane fraction, by the specific antibody bound previously on self-assembled multilayer, was monitored with electrochemical impedance spectroscopy (EIS). In addition, the specificity and sensitivity of this self-assembled multilayer system to the presence of rhodopsin were investigated. No effect was observed when the system was in contact with olfactory receptor I7 in membrane fraction used for control measurements. All these results demonstrate that rhodopsin can be immobilized efficiently, specifically, quantitatively and stably on gold electrode through the self-assembled multilayer.  相似文献   

16.
The enantioselectivity imparted to a gold electrode by modifying its surface with a self-assembled monolayer (SAM) of cysteine (Cys) was investigated for the electrochemical redox reaction of 3,4-dihydroxyphenylalanine (DOPA). A cyclic voltammetric study of the redox reaction revealed that the enantioselectivity was determined by the surface coverage of the gold electrode with Cys molecules. The electrode modified with approximately 1.8 x 10(14) Cys molecules cm(-2) exhibited enantioselectivity in the voltammogram for the oxidation and reduction of DOPA, while the voltammograms obtained by the electrodes with either more or less surface coverages did not exhibit significant enantioselectivity. It is suggested that the accessibility of DOPA to that area of the gold surface which is not blocked by Cys molecules at an optimum surface coverage, is required for the enantioselective redox reaction of DOPA to proceed.  相似文献   

17.
A new electrochemical method to monitor biotin-streptavidin interaction on carbon paste electrode, based on silver electrodeposition catalyzed by colloidal gold, was investigated. Silver reduction potential changed when colloidal gold was attached to an electrode surface through the biotin-streptavidin interaction. Thus, the direct reduction of silver ions on the electrode surface could be avoided and therefore, they were only reduced to metallic silver on the colloidal gold particle surface, forming a shell around these particles. When an anodic scan was performed, this shell of silver was oxidized and an oxidation process at + 0.08 V was recorded in NH3 1.0 M. Biotinylated albumin was adsorbed on the pretreated electrode surface. This modified electrode was immersed in colloidal gold-streptavidin labeled solutions. The carbon paste electrode was then activated in adequate medium (NaOH 0.1 M and H2SO4 0.1 M) to remove proteins from the electrode surface while colloidal gold particles remained adsorbed on it. Then, a silver electrodeposition at -0.18 V for 2 min and anodic stripping voltammetry were carried out in NH3 1.0 M containing 2.0 x 10(-5) M of silver lactate. An electrode surface preparation was carried out to obtain a good reproducibility of the analytical signal (5.3%), using a new electrode for each experiment. In addition, a sequential competitive assay was carried out to determine streptavidin. A linear relationship between peak current and logarithm of streptavidin concentration from 2.25 x 10(-15) to 2.24 x 10(-12) M and a limit of detection of 2.0 x 10(15) M were obtained.  相似文献   

18.
A novel method for fabrication of DNA biosensors has been developed by means of self-assembling colloidal Ag (Ag) to a thiol-containing sol-gel network. The thiol groups of 3-mercaptopropyltrimethoxysilane (MPTS) serve as binding sites for the covalent attachment to gold electrode surface. Then the one-dimensional network of silane unites (1dMPTS) was combined together into a two-dimensional sol-gel network (2dMPTS) by dipping into aqueous NaOH. The second silane layer (B2dMPTS) was formed by immersing electrodes back into the MPTS solution overnight, and then the Ag nanoparticles were chemisorbed onto the thiol groups of the second silane layer. Finally, the mercapto oligonucleotide was self-assembled onto the surface via the Ag nanoparticles. The modified process was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). In addition, we utilized the impedance spectroscopy as a platform for DNA sensing assay. The factors influencing the performance of the resulting biosensor were studied in detail. The linear range of the biosensor was from 8.0 x 10(-9) to 1.0 x 10(-6) M with a detection limit of 4.0 x 10(-9) M at 3sigma. In addition, the experiment results indicate that oligonucleotide immobilized on this way exhibits a good sensitivity and selectivity, high stability and a long-term maintenance of bioactivity.  相似文献   

19.
Immunosensor using surface plasmon resonance (SPR) onto self-assembled protein G layer was developed for the detection of Legionella pneumophila. A self-assembled protein G layer on gold (Au) surface was fabricated by adsorbing a mixture of 11-mercaptoundecanoic acid (MUA) and hexanethiol (molar ratio of 1:2) and the activation process for chemical binding between free amine (-NH(2)) of protein G and 11-(MUA) using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDAC) in series. The formation of self-assembled protein G layer on Au substrate and the binding of antibody and antigen in series were confirmed by SPR spectroscopy. The surface morphology analyses of self-assembled protein G layer on Au substrate and monoclonal antibody against L. pneumophila immobilized on protein G were performed by atomic force microscope (AFM). The immunosensor for detection of L. pneumophila using SPR was developed and its detection limit could find up to 10(5) cells/ml.  相似文献   

20.
This article describes the selective determination of guanine (G) using the self-assembled monolayer (SAM) of 1,8,15,22-tetraaminophthalocyanatonickel(II) (4α-Ni(II)TAPc) modified glassy carbon electrode (GCE) in 0.2 M acetate buffer solution (pH 4.0). The SAM of 4α-Ni(II)TAPc was formed on GCE by spontaneous adsorption of 1 mM 4α-Ni(II)TAPc in dimethylformamide (DMF). It shows two pairs of redox waves corresponding to Ni(III)/Ni(II) and Ni(III)Pc(-1)/Ni(III)Pc(-2) in 0.2 M acetate buffer solution. The SAM modified electrode exhibits excellent electrocatalytic activity toward the oxidation of G by enhancing its oxidation current with 150 mV less positive potential shift in contrast to bare GCE. Furthermore, the SAM modified electrode selectively determines G in the presence of high concentration of adenine (A). In differential pulse voltammetry measurements, the oxidation current response of G was increased linearly in the concentration range of 10 to 100 μM, and a detection limit was found to be 3×10(-8)M (signal/noise=3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号