首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phosphatidylinositol (PI) 3-kinase has been suggested to mediate cell survival. Consistent with this possibility, apoptosis of conditionally (simian virus 40 Tts) immortalized rat hippocampal H19-7 neuronal cells was increased in response to wortmannin, an inhibitor of PI 3-kinase. Downstream effectors of PI 3-kinase include Rac1, protein kinase C, and the serine-threonine kinase Akt (protein kinase B). Here, we show that activation of Akt is one mechanism by which PI 3-kinase can mediate survival of H19-7 cells during serum deprivation or differentiation. While ectopic expression of wild-type Akt (c-Akt) does not significantly enhance survival in H19-7 cells, expression of activated forms of Akt (v-Akt or myristoylated Akt) results in enhanced survival which can be comparable to that conferred by Bcl-2. Conversely, expression of a dominant-negative mutant of Akt accelerates cell death upon serum deprivation or differentiation. Finally, the results indicate that Akt can transduce a survival signal for differentiating neuronal cells through a mechanism that is independent of induction of Bcl-2 or Bcl-xL or inhibition of Jun kinase activity.  相似文献   

2.
To evaluate the role of mitogen-activated protein (MAP) kinase and other signaling pathways in neuronal cell differentiation by basic fibroblast-derived growth factor (bFGF), we used a conditionally immortalized cell line from rat hippocampal neurons (H19-7). Previous studies have shown that activation of MAP kinase kinase (MEK) is insufficient to induce neuronal differentiation of H19-7 cells. To test the requirement for MEK and MAP kinase (ERK1 and ERK2), H19-7 cells were treated with the MEK inhibitor PD098059. Although the MEK inhibitor blocked the induction of differentiation by constitutively activated Raf, the H19-7 cells still underwent differentiation by bFGF. These results suggest that an alternative pathway is utilized by bFGF for differentiation of the hippocampal neuronal cells. Expression in the H19-7 cells of a dominant-negative Ras (N17-Ras) or Raf (C4-Raf) blocked differentiation by bFGF, suggesting that Ras and probably Raf are required. Expression of dominant-negative Src (pcSrc295Arg) or microinjection of an anti-Src antibody blocked differentiation by bFGF in H19-7 cells, indicating that bFGF also signals through a Src kinase-mediated pathway. Although neither constitutively activated MEK (MEK-2E) nor v-Src was sufficient individually to differentiate the H19-7 cells, coexpression of constitutively activated MEK and v-Src induced neurite outgrowth. These results suggest that (i) activation of MAP kinase (ERK1 and ERK2) is neither necessary nor sufficient for differentiation by bFGF; (ii) activation of Src kinases is necessary but not sufficient for differentiation by bFGF; and (iii) differentiation of H19-7 neuronal cells by bFGF requires at least two signaling pathways activated by Ras and Src.  相似文献   

3.
Lysophospholipids regulate a wide array of biological processes including apoptosis and neutrophil migration. Fas/Apo-1 and its ligand (FasL) participate in neuronal cell apoptosis causing various neurological diseases. Here, we use hippocampal neuroprogenitor cells to investigate how lysophosphatidylcholine (LPC) induces apoptosis in H19-7 hippocampal progenitor cells via Fas/Fas ligand-mediated apoptotic signaling pathway. Exposed cells with LPC presented on apoptotic morphology, positive TUNEL staining, and DNA fragmentation. We found that the expression of FasL was increased after LPC treatment. Furthermore, LPC-induced H19-7 cell apoptosis was decreased by agonistic anti-FasL antibody. In addition to promotion of caspase cascade activity by LPC, the administration of the caspase inhibitor, DEVD-fmk, prevented H19-7 cell apoptosis. LPC also increased the activation of nuclear factor-κB (NF-κB), which in turn, significantly increased FasL mRNA level. The increase in FasL mRNA level by NF-κB transfection was significantly decreased in the presence of IκB-SR, a super-repressor of IκB. Taken together, these results demonstrate that LPC has the ability to induce apoptosis in H19-7 cells through the upregulation of FasL expression via NF-κB activation.  相似文献   

4.
Abstract: To characterize the nature of programmed cell death (PCD) induced in neuronal cells during development, three regulators of apoptosis were investigated: one, the bcl-2-related genes, modulate cell survival, and the other two, the interleukin-1β converting enzyme (ICE)-related enzymes and the tumor suppressor protein p53, have been implicated as mediators of apoptosis. These regulators were studied in H19-7 cells, an SV40 Tts-immortalized rat hippocampal neuronal cell line that can be differentiated with basic fibroblast growth factor at the nonpermissive temperature, resulting in a rapid attrition of cells by apoptosis. PCD occurred by two mechanisms in H19-7 cells: The first was initiated by removal of serum from undifferentiated cells, and the second was a consequence of neuronal differentiation. In differentiated H19-7 cells, the survival time was increased by both human bcl-2 and bcl-xL, and this could be reversed by bcl-xS.Addition of a peptide inhibitor of the ICE enzyme family to H19-7 cells resulted in a transient protection against differentiation-associated apoptosis, whereas no further protection was observed in the BCL-2- or BCL-XL-expressing cells. Shifting the differentiated cells to 33°C to inactivate p53 did not significantly affect the apoptotic process, indicating that apoptosis induced by neuronal differentiation is not dependent on the continued presence of p53. By contrast, in undifferentiated cells, cell loss induced by transfer to serum-free media occurred more rapidly on inactivation of large T, consistent with p53 involvement. This medium-induced decrease in cell survival could not be rescued by the ICE inhibitor but was partially rescued by BCL-2 or BCL-XL. Furthermore, studies involving expression of BCL-2 and BCL-XL alone or together revealed differences in the survival dependent on the cellular environment. These results suggest that apoptosis of neuronal cellsoccurs by at least two processes: one in undifferentiated cells initiated by removal of serum and one linked to differentiation. The data implicate the ICE enzyme family but not p53 in apoptosis induced by differentiation and demonstrate that either BCL-2 or BCL-XL can prolong the survival of differentiated neuronal cells.  相似文献   

5.
To elucidate signal transduction pathways leading to neuronal differentiation, we have investigated a conditionally immortalized cell line from rat hippocampal neurons (H19-7) that express a temperature sensitive simian virus 40 large T antigen. Treatment of H19-7 cells with the differentiating agent basic fibroblast growth factor at 39 degrees C, the nonpermissive temperature for T function, resulted in the activation of c-Raf-1, MEK, and mitogen-activated protein (MAP) kinases (ERK1 and -2). To evaluate the role of Raf-1 in neuronal cell differentiation, we stably transfected H19-7 cells with v-raf or an oncogenic human Raf-1-estrogen receptor fusion gene (deltaRaf-1:ER). deltaRaf-1:ER transfectants in the presence of estradiol for 1 to 2 days expressed a differentiation phenotype only at the nonpermissive temperature. However, extended exposure of the deltaRaf-1:ER transfectants to estradiol or stable expression of the v-raf construct yielded cells that extended processes at the permissive as well as the nonpermissive temperature, suggesting that cells expressing the large T antigen are capable of responding to the Raf differentiation signal. deltaRaf-1:ER, MEK, and MAP kinase activities in the deltaRaf-1:ER cells were elevated constitutively for up to 36 h of estradiol treatment at the permissive temperature. At the nonpermissive temperature, MEK and ERKs were activated to a significantly lesser extent, suggesting that prolonged MAP kinase activation may not be sufficient for differentiation. To test this possibility, H19-7 cells were transfected or microinjected with constitutively activated MEK. The results indicate that prolonged activation of MEK or MAP kinases (ERK1 and -2) is not sufficient for differentiation of H19-7 neuronal cells and raise the possibility that an alternative signaling pathway is required for differentiation of H19-7 cells by Raf.  相似文献   

6.
Zinc is an essential catalytic and structural element of many proteins and a signaling messenger that is released by neuronal activity at many central excitatory synapses. Excessive synaptic release of zinc followed by entry into vulnerable neurons contributes severe neuronal cell death. We have previously observed that zinc-induced neuronal cell death is accompanied by Akt activation in embryonic hippocampal progenitor (H19-7) cells. In the present study, we examined the role of Akt activation and its downstream signaling events during extracellular zinc-induced neuronal cell death. Treatment of H19-7 cells with 10 microM of zinc plus zinc ionophore, pyrithione, led to increased phosphorylation of Akt at Ser-473/Thr-308 and increased Akt kinase activity. Zinc-induced Akt activation was accompanied by increased Tyr-phosphorylated GSK-3beta as well as increased GSK-3beta kinase activity. Transient overexpression of a kinase-deficient Akt mutant remarkably suppressed GSK-3beta activation and cell death. Furthermore, tau phosphorylation, but not the degradation of beta-catenin, was dependent upon zinc-induced GSK-3beta activation and contributed to cell death. The current data suggest that, following exposure to zinc, the sequential activation of Akt and GSK-3beta plays an important role directing hippocampal neural precursor cell death.  相似文献   

7.
8.
9.
NO (Nitric oxide) has been known as a biological signaling molecule that can function as a beneficial agent in physiologically essential functions such as differentiation or neurotransmission. In this study, we elucidated how nicotine inhibits neuronal differentiation induced by the basic fibroblast growth factor (bFGF) in hippocampal cell line, H19-7 cells, because nicotine is one of the key neuroregulatory components. Treatment of H19-7 cells with bFGF increased NO production through upregulated iNOS/nNOS expression, and also increased expressions of neuronal markers such as brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) and Neuro-D. Pretreatment of the cells with nicotine decreased iNOS promoter activity as well as iNOS/nNOS expression induced by bFGF, resulting in decreased NO production. Nicotine also suppressed expressions of BDNF, NT3 and Neuro-D, resulting in decreased bFGF-induced neurite outgrowth. These results indicate that nicotine inhibits bFGF-induced neuronal differentiation in H19-7 cells through inhibition of NO formation by suppressing iNOS/nNOS expressions.  相似文献   

10.
Store-operated calcium entry (SOCE) and TRPC protein expression were investigated in the rat-derived hippocampal H19-7 cell line. Thapsigargin-stimulated Ba2+ entry and the expression of TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7 mRNA and protein were observed in proliferating H19-7 cells. When cells were placed under differentiating conditions, a change in TRPC homolog expression profile occurred. The expression of TRPC1 and TRPC3 mRNA and protein dramatically increased, while the expression of TRPC4 and TRPC7 mRNA and protein dramatically decreased; in parallel a 3.4-fold increase in the level of thapsigargin-stimulated Ba2+ entry was observed and found to be inhibited by 2-aminoethoxydiphenylborane. The selective suppression of TRPC protein levels by small interfering RNA (siRNA) approaches indicated that TRPC1 and TRPC3 are involved in mediating SOCE in proliferating H19-7 cells. Although TRPC4 and TRPC7 are expressed at much higher levels than TRPC1 and TRPC3 in proliferating cells, they do not appear to mediate SOCE. The co-expression of siRNA specific for TRPC1 and TRPC3 in proliferating cells inhibited approximately the same amount of SOCE as observed with expression of either siRNA alone, suggesting that TRPC1 and TRPC3 work in tandem to mediate SOCE. Under differentiating conditions, co-expression of siRNA for TRPC1 and TRPC3 blocked the normal 3.4-fold increase in SOCE and in turn blocked the differentiation of H19-7 cells. This study suggests that placing H19-7 cells under differentiating conditions significantly alters TRPC gene expression and increases the level of SOCE and that this increase in SOCE is necessary for cell differentiation.  相似文献   

11.
12.
Abstract: Epidermal growth factor (EGF) functions in a bimodal capacity in the nervous system, acting as a mitogen in neuronal stem cells and a neurotrophic factor in differentiated adult neurons. Thus, it is likely that EGF signal transduction, as well as receptor expression, differs among various cell types and possibly in the same cell type at different stages of development. We used hippocampal neuronal cell lines capable of terminal differentiation to investigate changes in EGF receptor expression, DNA synthesis, and stimulation of mitogen-activated protein (MAP) kinase by EGF before and after differentiation. H19-7, the line that was most representative of hippocampal neurons, was mitogenically responsive to EGF only before differentiation and increased in EGF binding after differentiation. MAP kinase was stimulated by EGF in both undifferentiated and differentiated cells, as well as in primary hippocampal cultures treated with either EGF or glutamate. These results indicate that the activation of MAP kinase by EGF is an early signaling event in both mitotic and postmitotic neuronal cells. Furthermore, these studies demonstrate the usefulness of hippocampal cell lines as a homogeneous neuronal system for studies of EGF signaling or other receptor signaling mechanisms in the brain.  相似文献   

13.
14.
15.
Mutations in the alpha-synuclein and parkin genes cause heritable forms of Parkinson's disease. In the present study, we examined the possible functional relationship between the parkin and alpha-synuclein genes in a conditionally immortalized embryonic hippocampal cell (H19-7) line. Whereas transient transfection of alpha-synuclein into neuronal H19-7 cells caused the formation of its intracytoplasmic inclusions and a significant cell death, the combined overexpression of parkin restored the alpha-synuclein-induced decrease in cell viability to control levels. In addition, the overexpression of parkin was found to generate selective cleavage of alpha-synuclein. Furthermore, the cytoprotective effect of parkin on alpha-synuclein-induced cell death was not inhibited in the presence of a proteasome inhibitor. Interestingly, the overexpression of parkin induced the activation of an intracellular cysteine protease, calpain, but not caspase, and the cytoprotective effect of parkin on alpha-synuclein cytotoxicity was significantly inhibited by the presence of calpain-specific inhibitors. In conclusion, our results suggest that parkin accelerates the degradation of alpha-synuclein via the activation of the nonproteasomal protease, calpain, leading to the prevention of alpha-synuclein-induced cell death in embryonic hippocampal progenitor cells.  相似文献   

16.
Intrahippocamal injections of kainic acid (KA) significantly increase the expression of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2) in the ipsilateral hippocampus at 2-4 h and 21-45 days post-administration, suggesting the possible involvement of these chemokines in both neurodegenerative and regenerative processes. To examine the possible role of these chemokines on neuronal cell death, hippocampal neurons were incubated with either MCP-1 or MIP-2 in vitro and examined to assess the effects on neuronal cell viability. These treatments resulted in significant neuronal apoptosis that could be abrogated by prior treatment with the caspase-1 inhibitor, Z-VAD-FMK, the caspase-3 inhibitor, Z-DEVD-FMK, the Galphai inhibitor, pertussis toxin, or the MAO-B inhibitor, (-)deprenyl. Furthermore, this chemokine apoptotic effect could also be observed in vivo as intrahippocampal injections of MCP-1 or MIP-2 resulted in the apoptosis of hippocampal neurons, thus supporting a direct role of these chemokines in neuronal death. In contrast, immunohistological analysis of kainic acid lesions on days 21-45 revealed significant expression of MCP-1 and MIP-2 associated with reactive astrocytes and macrophages, respectively, with no apoptotic populations being observed. These results suggested that these chemokines might also mediate distinct biological effects on local microenvironmental cell populations at various stages post truama and during cellular repair. To address this possibility, astrocyte were cultured in the presence or absence of these chemokines and examined by microarray analysis for effects on astrocytes gene expression. A number of genes encoding proteins associated with inflammation, cellular signaling, differentiation, and repair were directly modulated by chemokine treatment. More specifically, the RNA and protein expression of the neurotrophic factor, basic fibroblast growth factor (bFGF), was found to be significantly increased upon culture with MCP-1 and MIP-2. Conditioned media derived from chemokine-stimulated astrocytes also facilitated bFGF-dependent neuronal cell differentiation and promoted survival of H19-7 neurons in vitro, suggesting a possible role for chemokine-activated astrocytes as a source of trophic support. Taken together, these data support possible autocrine and paracrine roles for MCP-1 and MIP-2 in both the "death and life" of hippocampal neurons following CNS injury.  相似文献   

17.
Changes in expression of the proto-oncogene Bcl-2 are well known in the developing brain, with a high expression level in young post-mitotic neurons that are beginning the outgrowth of processes. The physiological significance of the Bcl-2 up-regulation in these neurons is not fully understood. We used a differentiation model for human CNS neurons to study the expression and function of Bcl-2. NT2/D1 human neuronal precursor cells differentiated into a neuronal phenotype in the presence of 10 microM retinoic acid for 3-5 weeks. This concentration of retinoic acid was not toxic to undifferentiated NT2/D1 cells but was sufficient to up-regulate the BCL-2 protein in 6 days. The BCL-2 levels increased further after 3 weeks, i.e. when the cells started to show neuronal morphology. Inhibition of the accumulation of endogenous BCL-2 with vectors expressing the antisense mRNA of Bcl-2 caused extensive apoptosis after 3 weeks of the retinoic acid treatment. The loss of neuron-like cells from differentiating cultures indicated that the dead cells were those committed to neuronal differentiation. Death was related to the presence of retinoic acid since withdrawal of retinoic acid after 16 days of treatment dramatically increased cell surviving. The ability of BCL-2 to prevent retinoic acid-induced cell death was also confirmed in undifferentiated NT2/D1 cells that were transfected with a vector containing Bcl-2 cDNA in sense orientation and exposed to toxic doses (40-80 microM) of retinoic acid. Furthermore, down-regulation of BCL-2 levels by an antisense oligonucleotide in neuronally differentiated NT2/D1 cells increased their susceptibility to retinoic acid-induced apoptosis. These results indicate that one function of the up-regulation of endogenous BCL-2 during neuronal differentiation is to regulate the sensitivity of young post-mitotic neurons to retinoic acid-mediated apoptosis.  相似文献   

18.
An excessive activation of poly(ADP-ribose) polymerase (PARP) has been proposed to play a key role in post-ischemic neuronal death. We examined the neuroprotective effects of the PARP inhibitors benzamide, 6(5H)-phenanthridinone, and 3,4-dihydro-5-[4-1(1-piperidinyl)buthoxy]-1(2H)-isoquinolinone in three rodent models of cerebral ischemia. Increasing concentrations of the three PARP inhibitors attenuated neuronal injury induced by 60 min oxygen-glucose deprivation (OGD) in mixed cortical cell cultures, but were unable to reduce CA1 pyramidal cell loss in organotypic hippocampal slices exposed to 30 min OGD or in gerbils following 5 min bilateral carotid occlusion. We then examined the necrotic and apoptotic features of OGD-induced neurodegeneration in cortical cells and hippocampal slices using biochemical and morphological approaches. Cortical cells exposed to OGD released lactate dehydrogenase into the medium and displayed ultrastructural features of necrotic cell death, whereas no caspase-3 activation nor morphological characteristics of apoptosis were observed at any time point after OGD. In contrast, a marked increase in caspase-3 activity was observed in organotypic hippocampal slices after OGD, together with fluorescence and electron microscope evidence of apoptotic neuronal death in the CA1 subregion. Moreover, the caspase inhibitor Z-VAD-FMK reduced OGD-induced CA1 pyramidal cell loss. These findings suggest that PARP overactivation may be an important mechanism leading to post-ischemic neurodegeneration of the necrotic but not of the apoptotic type.  相似文献   

19.
The proto-oncogene cyclin D1 and the neuron-specific cyclins p35 and p39 are expressed during brain maturation. To investigate the role of these cyclins in neuronal differentiation, we used a conditionally immortalized rat hippocampal cell line, H19-7, that expresses cyclin-dependent kinases 4 and 5 (cdk4 and -5). Cyclin D1, which activates cdk4 and binds but does not activate cdk5, was increased upon differentiation of the H19-7 cells. However, microinjection of either sense or antisense cyclin D1 cDNA or anti-cyclin D1 antibodies had no effect on morphological differentiation of the cells. On the other hand, neurite outgrowth was stimulated by expression of p35 or p39, both of which activate cdk5. A dominant-negative mutant of cdk5 blocked both p35- and p39-induced neurite extension as well as basic fibroblast growth factor (bFGF)-induced neuronal differentiation. However, of these cyclins, only antisense p39 prevented bFGF-induced neurite outgrowth. These studies indicate that cyclin D1 is neither necessary nor sufficient for morphological differentiation, that p35 is sufficient but not required, and that p39 is both necessary and sufficient for neurite outgrowth in the hippocampal cells. Taken together, these results represent the first demonstration of a specific role for p39 in neuronal differentiation, implicate the cyclin-activated kinase cdk5 in this process, and indicate that p39 is able to mediate neurite outgrowth in the presence or absence of cyclin D1.  相似文献   

20.
Apoptotic cell death was observed during aggregate culture of the mouse embryonal carcinoma cell line P19 exposed to all-trans retinoic acid (tRA). This finding was confirmed by genomic DNA agarose gel electrophoresis and transmission electron microscopy. Apoptosis was associated with P19 cell neuronal differentiation; alternative causes of cell death, i.e., cavitation-related, cytotoxicity of tRA, or spontaneous cell death were excluded. Analysis by flow cytometry revealed that the apoptosis was likely to occur in multiplying cells that underwent to reentering into S phase. We therefore examined 5-bromo-2′-deoxyuridine (BrdU) incorporation and proliferating cell nuclear antigen (PCNA) expression and localization in the aggregates by immunofluorescent staining. Although the P19 cells in the aggregates exposed to tRA incorporated BrdU at an equivalent level to those not exposed to tRA, the cells showed diminished PCNA expression and nuclear accumulation. We propose that P19 apoptosis during neuronal differentiation is a model system in which programmed cell death occurs simultaneously with cell division leading to differentiation. J. Cell. Physiol. 172:25–35, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号