首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Cationic lipids provide a promising alternative to the use of viruses for delivering genes therapeutically. Among the several classes of lipidic vectors, those bearing a heterocyclic cationic head have shown important advantages, such as low cytotoxicity and improved efficiency across different cell lines. We recently reported a simple and efficient strategy for obtaining pyridinium cationic lipids, starting from pyrylium salts and primary amines. The present study is aimed to compare the cellular toxicity and transfection efficiency generated by the pyridinium polar head versus the tetramethylammonium one on several tumor cell lines and also in experimental animals, delivered via intratumor injections. Thus, the lead compound 1-(2,3-dioleoyloxypropyl)-2,4,6-trimethylpyridinium lipid (2Oc), coformulated with different helper lipids in various molar ratios, was tested against its ammonium congener DOTAP-a standard transfection reagent. The results revealed that when formulated with cholesterol at 1:1 molar ratio, the pyridinium lipid 2Oc was able to transfect several cancer cell lines with similar or better efficiency than its tetraalkylammonium congener DOTAP, while producing lower cytotoxicity. The NCI-H23 lung cancer cell line was found to be the most susceptible to be transfected. Therefore, we designed an in vivo assay based on this type of carcinoma in nude mice, which were injected intratumoral with 2Oc- and DOTAP-based lipoplexes. The red fluorescent protein reporter revealed that the pyridinium cationic lipid was superior to its tetraalkylammonium congener, transfecting the tissue on a higher area and with higher efficiency. These encouraging findings, together with the simple and efficient synthetic strategy, lay the foundation for further development of pyridinium lipids for gene therapy with improved transfection efficiency in vivo and even further reduced cytotoxicity.  相似文献   

2.
Sonication of a pre-agitated aqueous solution of cationic lipid having a (EtO)3SiCH2CH2CH2 group on the quarternized ammonium nitrogen results in partially silica- or ceramic-coated liposome (cerasome), which can be used as an excellent transfection agent. Non-silylated reference lipid, which may represent cationic lipids that are used in conventional lipofection experiments, form a compact liposome, which undergoes DNA-induced fusion to provide transfection-irrelevant and larger (100-300 nm), more toxic particles. The surface-rigidified cerasome is infusible and the monomeric cerasome complex of DNA is of viral size (approximately 70 nm) and exhibits a remarkable transfection performance with a 10(2)-10(3)-fold higher efficiency (relative to the non-silylated reference lipid), minimized cytotoxicity and serum compatibility. The cerasome lipid is obtained by the reaction of 3-bromopropyltriethoxysilane with a tertiary amine derivative of the lipid. Preparation of an aqueous cerasome solution takes 1-2 h. The cerasome-DNA complex and the transfection takes about 3 d to complete.  相似文献   

3.
This study evaluated the effects of a novel, pH-sensitive surfactant, dodecyl 2-(1'-imidazolyl) propionate (DIP), on cationic lipid mediated transfection in primary rat brain neuronal and glial cultures. The cationic lipid complex DOTAP/DOPE (1, 2-dioleoyl-3-trimethylammonium propionate and dioleoyl phosphatidylethanolamine, respectively) was added over a range of concentrations (0-120 microg/ml) with DNA concentration kept constant (1.6 microg/ml). The neuron-specific enolase (NSE) and cytomegalovirus (CMV) promoters were found to drive green fluorescent protein (GFP) expression in neuron-enriched and glial cultures, respectively, using adeno-associated virus (AAV) derived constructs. NSE-driven GFP expression was not observed in glial cultures. Addition of DOTAP/DOPE increased transfection efficiency over a wide range of lipid concentrations (5-50 microg/ml) keeping DNA concentration constant (1.6 microg/ml). Addition of DIP to the lipid/DNA complex increased maximum transfection efficiencies in glial and neuronal cultures 2-3-fold. Transfection efficiencies were at their maximum with a similar total lipid concentration (50 microg/ml) in both cell-types in the presence of DIP. Neuronal cultures were more sensitive than glia to the toxic actions of DOTAP/DOPE, with or without DIP. These results indicate that AAV-mediated gene-transfer to neurons and glia can be facilitated by addition of a pH-sensitive surfactant to cationic liposome/DNA complexes and that endosomal escape could be a limiting factor in transgene expression.  相似文献   

4.
A novel cholesterol-based cationic lipid containing a tri-2- hydroxyethylamine head group and ether linker (Chol- THEA) was synthesized and examined as a potent gene delivery vehicle. In the preparation of cationic liposome, the addition of DOPE as helper lipid significantly increased the transfection efficiency. To find the optimum transfection efficiency, we screened various weight ratios of DOPE and liposome/DNA (N/P). The best transfection efficiency was found at the Chol-THEA:DOPE weight ratio of 1:1 and N/P weight ratio of 10~15. Most of the plasmid DNA was retarded by this liposome at the optimum N/P weight ratio of 10. The transfection efficiency of Chol-THEA liposome was compared with DOTAP, Lipofectamine, and DMRIE-C using the luciferase assay and GFP expression. Chol-THEA liposome with low toxicity had better or similar potency of gene delivery compared with commercial liposomes in COS-7, Huh-7, and MCF-7 cells. Therefore, Chol-THEA could be a useful non-viral vector for gene delivery.  相似文献   

5.
Lipoplex size determines lipofection efficiency with or without serum   总被引:5,自引:0,他引:5  
In order to identify factors affecting cationic liposome-mediated gene transfer, the relationships were examined among cationic liposome/DNA complex (lipoplex)-cell interactions, lipoplex size and lipoplex-mediated transfection (lipofection) efficiency. It was found that lipofection efficiency was determined mainly by lipoplex size, but not by the extent of lipoplex-cell interactions including binding, uptake or fusion. In addition, it was found that serum affected mainly lipoplex size, but not lipoplex-cell interactions, which effect was the major reason behind the inhibitory effect of serum on lipofection efficiency. It was concluded that, in the presence or absence of serum, lipoplex size is a major factor determining lipofection efficiency. Moreover, in the presence or absence of serum, lipoplex size was found to affect lipofection efficiency by controlling the size of the intracellular vesicles containing lipoplexes after internalization, but not by affecting lipoplex-cell interactions. In addition, large lipoplex particles showed, in general, higher lipofection efficiency than small particles. These results imply that, by controlling lipoplex size, an efficient lipid delivery system may be achieved for in vitro and in vivo gene therapy.  相似文献   

6.
Synthetic cationic lipids can be used as DNA carriers and are regarded to be the most promising non-viral gene carriers. For this investigation, six novel phosphatidylcholine (PC) cationic derivatives with various hydrophobic moieties were synthesized and their transfection efficiencies for human umbilical artery endothelial cells (HUAEC) were determined. Three compounds with relatively short, myristoleoyl or myristelaidoyl 14:1 chains exhibited very high activity, exceeding by ∼ 10 times that of the reference cationic derivative dioleoyl ethylPC (EDOPC). Noteworthy, cationic lipids with 14:1 hydrocarbon chains have not been tested as DNA carriers in transfection assays previously. The other three lipids, which contained oleoyl 18:1 and longer chains, exhibited moderate to weak transfection activity. Transfection efficiency was found to correlate strongly with the effect of the cationic lipids on the lamellar-to-inverted hexagonal, Lα → HII, phase conversion in dipalmitoleoyl phosphatidylethanolamine dispersions (DPoPE). X-ray diffraction on binary DPoPE/cationic lipid mixtures showed that the superior transfection agents eliminated the direct Lα → HII phase transition and promoted formation of an inverted cubic phase between the Lα and HII phases. In contrast, moderate and weak transfection agents retained the direct Lα → HII transition but shifted to higher temperatures than that of pure DPoPE, and induced cubic phase formation at a later stage. On the basis of current models of lipid membrane fusion, promotion of a cubic phase by the high-efficiency agents may be considered as an indication that their high transfection activity results from enhanced lipoplex fusion with cellular membranes. The distinct, well-expressed correlation established between transfection efficiency of a cationic lipid and the way it modulates nonlamellar phase formation of a membrane lipid could be useful as a criterion to assess the quality of lipid carriers and for rational design of new and superior nucleotide delivery agents.  相似文献   

7.
The effects of composition and molecular packing on the overall ionic property of mixed monolayer involving cationic, anionic and zwitterionic lipids were studied by measuring surface potential change when the concentration of sodium or calcium ions in the aqueous substrate was varied. Those lipids used were N,N-dimethyl-N-n-hexadecyl-n-octadecyl ammonium chloride (DDAC) as cationic lipid, stearic acid (StH) or sodium docosylsulfate (SDocS) as anionic lipid, and 1,2-dipalmitoyl-sn-glycero-3-phosphorylethanolamine (PE) and 1,2-distearoyl-sn-glycero-3-phosphorylcholine (PC) as ampholytic lipids. For the equimolar mixture of StH and DDAC, the reversal of apparent charge is observed when molecular packing exceeds 3.25 X 10(-10) M/cm2. The effect is rendered to the discreteness of cationic and anionic charges in the monolayer. It was also found that the addition of 30% of PC drastically changes the ionic property of PE closer to that of PC.  相似文献   

8.
Abstract

Cationic liposome (CL)-DNA complexes (lipoplexes) have appeared as leading nonviral gene carriers in worldwide gene therapy clinical trials. Arriving at therapeutic dosages requires the full understanding of the mechanism of transfection. However, using CLs to deliver therapeutic nucleic acids and drugs to target organs have some problems, including low transfection efficiency. The aim of this study was developing novel CLs containing four neutral lipids; cholesterol, 1,2-dioleoyl phosphatidylethanolamine, distearoylphosphatidylcholine and dipalmitoylphosphatidylcholine as a helper lipid and dimethyl dioctadecyl ammonium bromide as a cationic lipid to increase transfection efficiency. We have investigated the correlation between number of lipid composition and transfection efficiency. The morphology, size and zeta potential of liposomes and lipoplexes were measured and lipoplexes formation was monitored by gel retardation assay. Transfection efficiency was assessed using firefly luciferase reporter assay. It was found that transfection efficiency markedly depended on liposome to plasmid DNA (pDNA) weight ratio, lipid composition and efficiency of pDNA entrapment. High transfection efficiency of plasmid by four component lipoplexes was achieved. Moreover, lipoplexes showed lower transfection efficiency and less cytotoxicity compared to Lipofectamine?. These results suggest that lipid composition of nanoliposomes is an important factor in control of their physical properties and also yield of transfection.  相似文献   

9.
It is widely accepted that most cell types efficiently exclude oligonucleotides in vitro and require specific delivery systems, such as cationic lipids, to enhance uptake and subsequent antisense effects. Oligonucleotides are not readily transfected into leukaemia cell lines using cationic lipid systems and streptolysin O (SLO) is used to effect their delivery. We wished to investigate the optimal oligonucleotide composition for antisense efficacy and specificity following delivery into leukaemia cells using SLO. For this study the well characterised chronic myeloid leukaemia cell line KYO-1 was selected and oligonucleotides (20mers) were targeted to an empirically identified accessible site of c- myc mRNA. The efficiency and specificity of antisense effect was measured 4 and 24 h after SLO-mediated delivery of the oligonucleotides. C5-propyne phosphodiester and phosphorothioate compounds were found to present substantial non-specific effects at 20 microM but were inactive at 0.2 microM. Indeed, no antisense-specific effect was noted at any concentration at either time. All of the other oligonucleotides tested induced some measurable antisense effect, except 7 (chimeric, all-phosphorothioate, 2'-methoxyethoxy termini) which was essentially inactive at 20 microM. The rank efficiency order of the remaining antisense compounds was 4 = 3 >> 9 >> 10 = 8 = 5 = 6 > 11. The efficient antisense effects induced by the chimeric methylphosphonate-phosphodiester compounds were found to be highly specific. Increased phosphorothioate content in the oligonucleotide backbone correlated with reduced antisense activity (efficacy: 2'-methoxyethoxy series 9 >> 8 >> 7, 2'-methoxytriethoxy series 10 > 11). No consistent evidence was obtained for increased activity correlating with increased oligonucleotide-mRNA heteroduplex thermal stability. In conclusion, the chimeric methylphosphonate-phosphodiester oligodeoxynucleotides present the most favourable characteristics of the compounds tested, for efficient and specific antisense suppression of gene expression following SLO-mediated delivery.  相似文献   

10.
In order to identify factors affecting cationic Iiposome-mediated gene transfer, the relationships were examined among cationic liposome/DNA complex (lipoplex)-cell interactions, lipoplex size and lipoplex-mediated transfection (lipofection) efficiency. It was found that lipofection efficiency was determined mainly by lipoplex size, but not by the extent of lipoplex-cell interactions including binding, uptake or fusion. In addition, it was found that serum affected mainly lipoplex size, but not lipoplex-cell interactions, which effect was the major reason behind the inhibitory effect of serum on lipofection efficiency. It was concluded that, in the presence or absence of serum, lipoplex size is a major factor determining Iipofection efficiency. Moreover, in the presence or absence of serum, lipoplex size was found to affect lipofection efficiency by controlling the size of the intracellular vesicles containing lipoplexes after internalization, but not by affecting lipoplex-cell interactions. In addition, large lipoplex particles showed, in general, higher lipofection efficiency than small particles. These results imply that, by controlling lipoplex size, an efficient lipid delivery system may be achieved for in vitro and in vivo gene therapy.  相似文献   

11.
Synthetic cationic amphiphiles for liposome-mediated DNA transfection   总被引:3,自引:0,他引:3  
The compounds with efficient DNA transfection ability into eukaryotic cells were searched from various synthetic amphiphiles which have cationic heads and long saturated hydrocarbon tails. The efficiency of amphiphiles in gene transfer was examined by the transient expression of cytochrome b5 from its cDNA in COS cells. Among various synthetic amphiphiles, including N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride which is commercially available lipid, O,O'-didodecyl-N-[p-(2-trimethylammonioethyloxy)benzoyl]-(L) -glutamate bromide was highest in efficiency. The optimum condition for the amount of the amphiphile and DNA, and the incubation time were established to be 7.5-15 micrograms/22 mm dish and 1-10 micrograms/22 mm dish, and 48-72 h, respectively.  相似文献   

12.
Our understanding of how antimicrobial and cell-penetrating peptides exert their action at cell membranes would benefit greatly from direct visualization of their modes of action and possible targets within the cell membrane. We previously described how the cationic antimicrobial peptide, indolicidin, interacted with mixed zwitterionic planar lipid bilayers as a function of both peptide concentration and lipid composition [Shaw, J.E. et al., 2006. J. Struct. Biol. 154 (1), 42-58]. In the present report, in situ atomic force microscopy was used to characterize the interactions between three families of cationic peptides: (1) tryptophan-rich antimicrobial peptides--indolicidin and two of its analogues, (2) an amphiphilic alpha-helical membranolytic peptide--melittin, and (3) an arginine-rich cell-penetrating peptide--Tat with phase-separated planar bilayers containing 1,2-dioleoyl-sn-glycerol-3-phosphocholine (DOPC)/1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC) or DOPC/N-stearoyl-D-erythro-sphingosylphosphorylcholine (SM)/cholesterol. We found that these cationic peptides all induced remodelling of the model membranes in a concentration, and family-dependent manner. At low peptide concentration, these cationic peptides, despite their different biological roles, all appeared to reduce the interfacial line tension at the domain boundary between the liquid-ordered and liquid-disordered domains. Only at high peptide concentration was the membrane remodelling induced by these peptides morphologically distinct among the three families. While the transformation caused by indolicidin and its analogues were structurally similar, the concentration required to initiate the transformation was strongly dependent on the hydrophobicity of the peptide. Our use of lipid compositions with no net charge minimized the electrostatic interactions between the cationic peptides and the model supported bilayers. These results suggest that peptides within the same functional family have a common mechanism of action, and that membrane insertion of short cationic peptides at low peptide concentration may also alter membrane structure through a common mechanism regardless of the peptide's origin.  相似文献   

13.
14.
Herein, we report on the design and synthesis of a novel nontoxic cationic amphiphile N,N-di-n-tetradecyl-N-[2-[N',N'-bis(2-hydroxyethyl)amino]ethyl]-N-(2-hydroxyethyl)ammonium chloride (lipid 1) whose in vitro gene transfer efficacies in CHO, COS-1, MCF-7, and HepG2 cells are remarkably enhanced when used in combination with 30 mole percent added myristic acid. Reporter gene expression assay using p-CMV-SPORT-beta-gal reporter gene revealed poor gene transfer properties of the cationic liposomes of lipid 1 and cholesterol (colipid). However, the in vitro gene delivery efficacies of lipid 1 were found to be remarkably enhanced when the cationic liposomes of lipid 1 and cholesterol were prepared in the presence of 30 mole percent added myristic acid (with respect to lipid 1) as the third liposomal ingredient. The whole cell histochemical X-gal staining of representative CHO cells further confirmed the significantly enhanced gene transfer properties of the fatty acid-loaded cationic liposomes of lipid 1 and cholesterol. Electrophoretic gel patterns in the gel mobility shift assay supports the notion that better DNA release from fatty acid lipoplexes might play a role in their enhanced gene transfer properties. In addition, such myristic acid-loaded lipoplexes of lipid 1 were also found to be serum-compatible up to 30% added serum. Taken together, our present findings demonstrate that the transfection efficacies of fatty acid-loaded lipoplexes are worth evaluating particularly when traditional cationic liposomes prepared with either cholesterol or DOPE colipids fail to transfect cultured cells.  相似文献   

15.

Background

Six new cationic gemini lipids based on cholesterol possessing different positional combinations of hydroxyethyl (-CH2CH2OH) and oligo-oxyethylene -(CH2CH2O)n- moieties were synthesized. For comparison the corresponding monomeric lipid was also prepared. Each new cationic lipid was found to form stable, clear suspensions in aqueous media.

Methodology/Principal Findings

To understand the nature of the individual lipid aggregates, we have studied the aggregation properties using transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements and X-ray diffraction (XRD). We studied the lipid/DNA complex (lipoplex) formation and the release of the DNA from such lipoplexes using ethidium bromide. These gemini lipids in presence of a helper lipid, 1, 2-dioleoyl phophatidyl ethanol amine (DOPE) showed significant enhancements in the gene transfection compared to several commercially available transfection agents. Cholesterol based gemini having -CH2-CH2-OH groups at the head and one oxyethylene spacer was found to be the most effective lipid, which showed transfection activity even in presence of high serum levels (50%) greater than Effectene, one of the potent commercially available transfecting agents. Most of these geminis protected plasmid DNA remarkably against DNase I in serum, although the degree of stability was found to vary with their structural features.

Conclusions/Significance

-OH groups present on the cationic headgroups in combination with oxyethylene linkers on cholesterol based geminis, gave an optimized combination of new genera of gemini lipids possessing high transfection efficiency even in presence of very high percentage of serum. This property makes them preferential transfection reagents for possible in vivo studies.  相似文献   

16.
A structure-activity relationship has been explored on the gene transfection efficiencies of cardiolipin mimicking gemini lipid analogues upon variation of length and hydrophilicity of the spacer between the cationic ammonium headgroups and lipid hydrocarbon chain lengths. All the gemini lipids were found to be highly superior in gene transfer abilities as compared to their monomeric lipid and a related commercially available formulation. Pseudoglyceryl gemini lipids bearing an oxyethylene (-CH2-(CH2-O-CH2)m-CH2-) spacer were found to be superior gene transfecting agents as compared to those bearing polymethylene (-CH2)m-) spacers. The major characteristic feature of the present set of gemini lipids is their serum compatibility, which is most often the major hurdle in liposome-mediated gene delivery.  相似文献   

17.
Two major barriers that limit cationic lipids in gene delivery are low transfection efficiency and toxicity. In the present studies, we used dithiodiglycolic acid as a new tether for the polar and hydrophobic domains of a cationic lipid, cholesteryl hemidithiodiglycolyl tris(aminoethyl)amine (CHDTAEA). We compared the transfection activity and toxicity of CHDTAEA with its nondisulfide analogue and cholesteryl N-(dimethylaminoethyl) carbamate (DC-Chol). The liposomes of CHDTAEA had more than 2 orders of magnitude greater transfection activity than DC-Chol in CHO cells and 7 times greater transfection activity in SKnSH cells. CHDTAEA also demonstrated much less toxicity than the other two lipids. Dithiodiglycolic acid may act as an excellent linker in the application of cationic lipid syntheses.  相似文献   

18.
Mechanisms of cationic lipid-based nucleic acid delivery are receiving increasing attention, but despite this the factors that determine high or low activity of lipoplexes are poorly understood. This study is focused on the fine structure of cationic lipid-DNA complexes (lipoplexes) and its relevance to transfection efficiency. Monocationic (N-(1-(2,3-dioleoyloxy)propyl),N,N,N-trimethylammonium chloride, N-(1-(2,3-dimyristyloxypropyl)-N,N-dimethyl-(2-hydroxyethyl)ammonium bromide) and polycationic (2,3-dioleyloxy-N-[2(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanammonium trifluoroacetate) lipid-based assemblies, with or without neutral lipid (1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine, 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine, cholesterol) were used to prepare lipoplexes of different L(+)/DNA(-) charge ratios. Circular dichroism, cryogenic-transmission electron microscopy, and static light scattering were used for lipoplex characterization, whereas expression of human growth hormone or green fluorescent protein was used to quantify transfection efficiency. All monocationic lipids in the presence of inverted hexagonal phase-promoting helper lipids (1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine, cholesterol) induced appearance of Psi(-) DNA, a chiral tertiary DNA structure. The formation of Psi(-) DNA was also dependent on cationic lipid-DNA charge ratio. On the other hand, monocationic lipids either alone or with 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine as helper lipid, or polycationic 2,3-dioleyloxy-N-[2(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanammonium trifluoroacetate-based assemblies, neither of which promotes a lipid-DNA hexagonal phase, did not induce the formation of Psi(-) DNA. Parallel transfection studies reveal that the size and phase instability of the lipoplexes, and not the formation of Psi(-) DNA structure, correlate with optimal transfection.  相似文献   

19.
Dolichyl monophosphate and its sugar derivatives in plants.   总被引:10,自引:5,他引:5       下载免费PDF全文
A glucose acceptor was isolated from soya beans by extraction with chloroform/methanol (2:1, v/v), followed by DEAE-cellulose column chromatography of the extract. This acceptor could not be distinguished from liver dolichyl monophosphate by t.l.c. It could replace dolichyl monophosphate as a mannose acceptor with a liver enzyme and its glucosylated derivative could replace dolichyl monophosphate glucose as a glucose donor in the same system. These results, together with those already reported [Pont Lezica, Brett, Romero Martinez & Dankert (1975) Biochem, Biophys. Res. Commun. 66, 980-987], indicate that the acceptor from soya bean is a dolichyl monophosphate. Gel filtration of its glucosylated derivative on Sephadex G-75 in the presence of sodium deoxycholate indicated that the acceptor contained 17 or 18 isoprene units. An enzyme preparation from pea seedlings was shown to use endogenous acceptors to form lipid phosphate sugars containing mannose and N-acetylglucosamine from GDP-mannose and UDP-N-acetylglucosamine. Chromatographic and degradative techniques indicated that the compounds formed were lipid monophosphate mannose, lipid pyrophosphate N-acetylglucosamine, lipid pyrophosphate chitobiose and a series of lipid pyrophosphate oligosaccharides containing both mannose and N-acetylglucosamine. None of these compounds was degraded by catalytic hydrogenation, and so the lipid moiety in each case was probably an alpha-saturated polyprenol. The endogenous acceptors for mannose and N-acetylglucosamine in peas may therefore be dolichyl monophosphate, as has been found in mammalian systems.  相似文献   

20.
Various amounts of Ovalbumin (OVA) were encapsulated into positively and negatively charged multilamellar liposomes, with the aim to investigate the entrapment efficiency in different buffers and to study their effects on the liposome size and zeta potential. Results showed that the entrapment efficiency of OVA in anionic liposomes was the same in 10 mM Phosphate Buffer (PB) as in Phosphate-Buffered Saline (PBS; PB?+?0.15 M NaCl). Also, liposome size was approximately 1200 nm for all anionic liposomes incorporating OVA. The entrapment efficiency of OVA in cationic liposomes was highly dependent on ionic strength. The size of cationic liposomes was approximately 1200 nm in PBS, regardless of protein content, but increased with the amount of the incorporated protein in PB. Aggregation of cationic liposomes in PB was observed when the mass of the protein was 2.5 mg or greater. The zeta potential of anionic liposomes was negative and of cationic liposomes positive in the whole range of protein mass tested. These results show how different compositions of lipid and aqueous phases can be used to vary the entrapment efficiency, liposome size, and zeta potential—the factors that are of great importance for the use of liposomes as drug carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号