首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
DNA double-strand breaks (DSBs) are highly cell damaging. We asked whether for a given dose a longer irradiation time would be advantageous for the repair of DSBs. Varying the gamma-irradiation dose and its delivery time (0.05 Gy/min low dose-rate (LDR) compared with 3.5 Gy/min high dose-rate), confluent Chinese hamster ovary cells (CHO-K1) and Ku80 mutant cells (xrs-6) deficient in nonhomologous end-joining (NHEJ) were irradiated in agarose plugs at room temperature using a cesium-137 gamma-ray source. We used pulsed-field gel electrophoresis (PFGE) to measure DSBs in terms of the fraction of activity released (FAR). At LDR, one third of DSBs were repaired in CHO-K1 but not in xrs-6 cells, indicating the involvement of NHEJ in the repair of gamma-induced DSBs at a prolonged irradiation incubation time. To improve DSB measurements, we introduced in our PFGE protocol an antioxidant at the cell lysis step, thus avoiding free-radical side reactions on DNA and spurious DSBs. Addition of the metal chelator deferoxamine (DFO) decreased more efficiently the basal DSB level than did reduced glutathione (GSH), showing that measuring DSBs in the absence of DFO reduces precision and underestimates the role of NHEJ in the dose-rate effect on DSB yield.  相似文献   

2.
Radiation-induced DNA double-strand breaks (DSBs) were analyzed by separating large DNA fragments by pulsed-field gel electrophoresis. Human U-343MG glioma and K562 erythroleukemia cells were irradiated with 60Co gamma rays or nitrogen ions with high linear energy transfer (125 keV/microm). By comparing the fraction of DNA released into the gel below different size thresholds, corresponding to megabase-pair-sized DNA fragments, the relative effectiveness of the nitrogen ions was found to be dependent on both dose and the threshold size used in the evaluation. This dose dependence was most evident for the smallest threshold (6 Mbp) and was due to a linear dose response for release of the fragments for the ions compared to the curvilinear response for the gamma rays. The two curves intersected, and the relative yield of fragments (nitrogen ions/gamma rays) decreased from more than 3 below 1.5 Gy to 0.8 at 30 Gy. For the larger sizes (6-10.5 Mbp), the relative yield was constant at around 0.7. Thus the ion-induced fragments were shifted to smaller sizes compared to the 60Co gamma rays, and the data for nitrogen ions could not be fitted to random fragment distributions at doses < or =20 Gy. From these results, we conclude that a substantial fraction of the DSBs induced by heavy ions were nonrandomly distributed, correlated with DSBs within a region of < or =2 Mbp. After a dose of 20 Gy, the rejoining curves for ion-induced DSBs were different for each fragment size, resulting in different levels of unrejoined breaks after 6 h.  相似文献   

3.
Chromosomes of budding yeast Saccharomyces pastorianus were used to determine the extent of DNA double-strand breaks (DSBs) induced by x-rays (30-50 keV) and 14 MeV neutrons. The yeast chromosomes were separated by pulsed-field gel electrophoresis (PFGE) and the proportion of unbroken molecules corresponding to the largest chromosome no. IV (1500 kbp) was used to calculate the DSB frequency assuming a random distribution of hits. To determine the protective contribution of the cell environment, chromosomes embedded in agarose plugs as well as intact yeast cells, were irradiated under conditions completely inhibiting DNA repair. Following irradiation, the intact cells were also embedded in agarose plugs and the chromosomes isolated to perform PFGE. All radiation experiments resulted in a linear dose-effect curve for DSBs. For both radiation qualities, the yield of DSBs for exposed isolated chromosomes exceeded that for intact yeast cells by a factor of 13. The relative biological effectiveness (RBE) of 14 MeV neutrons in the induction of DNA DSBs was about 2.5. This figure was found to be identical for the in vivo and in vitro exposure of yeast chromosomes (neutrons 36.7 and 2.8, x-rays 14.5 and 1.1 x 10(-8) DSB x Bp-1 Gy-1 for isolated DNA and intact cells, respectively).  相似文献   

4.
Rydberg B 《Radiation research》2000,153(6):805-812
The yield of DNA double-strand breaks (DSBs) in SV40 DNA irradiated in aqueous solution was found to increase by more than a factor of two as a result of postirradiation incubation of the DNA at 50 degrees C and pH 8.0 for 24 h. This is in agreement with data from studies performed at 37 degrees C that were published previously. Importantly, similar results were also obtained from irradiation of mammalian DNA in agarose plugs. These results suggest that heat-labile sites within locally multiply damaged sites are produced by radiation and are subsequently transformed into DSBs. Since incubation at 50 degrees C is typically employed for lysis of cells in commonly used pulsed-field gel assays for detection of DSBs in mammalian cells, the possibility that heat-labile sites are present in irradiated cells was also studied. An increase in the apparent number of DSBs as a function of lysis time at 50 degrees C was found with kinetics that was similar to that for irradiated DNA, although the magnitude of the increase was smaller. This suggests that heat-labile sites are also formed in the cell. If this is the case, a proportion of DSBs measured by the pulsed-field gel assays may occur during the lysis step and may not be present in the cell as breaks but as heat-labile sites. It is suggested that such sites consist mainly of heat-labile sugar lesions within locally multiply damaged sites. Comparing rejoining of DSBs measured with short and long lysis procedure indicates that the heat-labile sites are repaired with fast kinetics in comparison with repair of the bulk of DSBs.  相似文献   

5.
Gradzka I  Iwaneńko T 《DNA Repair》2005,4(10):1129-1139
A PFGE method was adapted to measure DNA double-strand breaks (DSBs) in mammalian cells after low (0-25 Gy) doses of ionising radiation. Instead of radionuclide incorporation, DNA staining in the gel by SYBR-Gold was used, which lowered the background of DNA damage and could be applied to non-cycling cells. DSB level was defined as a product of a fraction of DNA released to the gel (FR) and a number of DNA fragments in the gel (DNA(fragm)) and expressed as a percentage above control value. The slope of the dose-response curve was two-fold higher compared to that with FR alone as DSB level indicator (31.4 versus 15.6% per Gy). Two alternative ways were proposed to determine the total amount of DNA, used for FR calculation: measurement of DNA content in a plug not subjected to electrophoresis, with the use of Pico-Green, or estimation of DNA released to the gel from a plug irradiated with 600 Gy of gamma-rays. The limit of DSB detection was 0.25 Gy for human G1-lymphocytes and 0.5-1 Gy for asynchronous cultures of human glioma M059 K and J or mouse lymphoma L5178Y-R and -S cells. Specificity of our PFGE assay to DSB was confirmed by the fact that no damage was detected after treatment of the cells with H(2)O(2), an inducer of single-strand DNA breaks (SSBs). On the contrary, the H(2)O(2) inflicted damage was detected by neutral comet assay, attaining 160% above control (equivalent to 2.5 Gy of X-radiation). DSB rejoining, measured in cells after X-irradiation with a dose of 10 Gy, generally proceeded faster than that measured previously after higher (30-50 Gy) doses of ionising radiation. Clearly seen were defects in DSB rejoining in radiosensitive M059 J and L5178Y-S cells compared to their radioresistant counterparts, M059 K and L5178Y-R. In some cell lines, a secondary post-irradiation increase in DSB levels was observed. The possibility is considered that these additional DSBs may accumulate during processing of non-DSB clustered DNA damage or/and represent early apoptotic events.  相似文献   

6.
SFM studies of carbon ion induced damages in plasmid DNA   总被引:1,自引:0,他引:1  
In this study we present for the first time detailed scanning force microscopy (SFM) investigations of carbon ion induced damages in plasmid DNA in order to obtain information about the biological effectiveness of particle radiation. For this purpose, we have combined SFM and gel electrophoresis measurements in a dose range between D = 0 Gy and 5000 Gy. After irradiation with C ions, the percentage of double-strand breaks (DSBs) increases drastically, i.e. from initially 0% for D = 0 Gy to 38% for D = 5000 Gy. Increasing the dose over the total range is accompanied by a shortening of the average fragment length from L = 1100 nm to L = 575 nm. In addition to our experiments, the average numbers of induced DSBs per irradiated plasmid and per broken plasmid have been calculated from the SFM measurements. The most important among the numerous results is that a significant amount of plasmids has suffered more than two DSBs for all applied doses, indicating multiple DSBs. The number of DSBs per broken plasmid increases from approximately 1.7 after irradiation with a dose of D = 250 Gy to 3.2 after exposure to the highest dose of D = 5000 Gy. The results provide experimental data for the spatially correlated production of DSBs after carbon irradiation, that are relevant to the understanding of its biological effectiveness.  相似文献   

7.
The influence of chromatin structure on induction of DNA double-strand breaks (DSBs) by X radiation was studied in DNA from CHO cells. Whole cells, nuclei with condensed or relaxed chromatin, and deproteinized DNA in agarose plugs were irradiated and DSB formation was measured as a decrease in the length of DNA by nondenaturing, pulsed-field, agarose gel electrophoresis. The yield of DSBs in deproteinized DNA (2.3 x 10(-10) DSBs Da-1 Gy-1) was observed to be 70 times greater than the yield of DSBs (3.1 x 10(-12) DSBs Da-1 Gy-1) observed in DNA in the intact cell nucleus. Organization of DNA into the basic nucleosome repeat structure and condensation of the chromatin fiber into higher-order structure protected DNA from DSB induction by factors of 8.3 and 4.5, respectively. An additional twofold protection of DNA in fully condensed chromatin occurred in the intact cell nucleus. Since this protection did not appear to involve chromatin structure, we speculate that this additional protection may result from the association of soluble protein and nonprotein sulfhydryls with DNA in the intact cell nucleus. The results are consistent with the organization of nuclear DNA into both basic nucleosome repeat structure and higher-order chromatin structure providing significant protection against DSB induction.  相似文献   

8.
The purpose of this work was to determine how fractionated radiation used in the treatment of tumors affects the ability of cancer as well as normal cells to repair induced DNA double-strand breaks (DSBs) and how cells that have lost this ability die. Lymphocytic leukemia cells (MOLT4) were used as an experimental model, and the results were compared to those for normal cell types. The results show that cancer and normal cells were mostly unable to repair all DSBs before the next radiation dose induced new DNA damage. Accumulation of DSBs was observed in normal human fibroblasts and healthy lymphocytes irradiated in vitro after the second radiation dose. The lymphocytic leukemia cells irradiated with 4 × 1 Gy and a single dose of 4 Gy had very similar survival; however, there was a big difference between human fibroblasts irradiated with 4 × 1.5 Gy and a single dose of 6 Gy. These results suggest that exponentially growing lymphocytic leukemia cells, similar to rapidly proliferating tumors, are not very sensitive to fraction size, in contrast to the more slowly growing fibroblasts and most late-responding (radiation therapy dose-limiting) normal tissues, which have a low proliferation index.  相似文献   

9.
利用γ射线和不同LET的碳离子辐照小鼠B16黑色素瘤细胞的脱蛋白DNA,采用脉冲场凝胶电泳结合荧光扫描技术研究了DNA双链断裂(DSB)与LET之间的关系。结果表明:不同LET重离子诱导的PR都随剂量的增加而增加,并在超过一定的剂量之后逐渐趋于一个准阈值;而不同LET的重离子诱导的L值都与剂量呈线性关系;对于诱导DSB的RBE值则随着LET的增加先呈上升趋势,在LET超过100ke/μm后下降。  相似文献   

10.
DNA breaks and their repair efficiency were analyzed in irradiated in vitro lymphocytes (at doses 1 Gy, gamma-radiation of 60Co, dose rate 1 Gy/min) isolated from peripheral blood of 41 untreated patients with breast cancer and 25 healthy donors using the DNA comet assay under non-denaturing conditions (mainly double-strand DNA breaks (DSB), as well as apoptotic cell death using the DNA halo assay. To estimate the expression of bystander effect, the cells were incubated in a culture medium obtained from lymphocytes irradiated in vitro at doses 1 Gy. The average DSB level in blood lymphocytes of breast cancer patients was shown to be significantly higher (p < 0.05) compared with that in control donors. In general, the following effects were observed in irradiated in vitro lymphocytes of cancer patients: (1) increased sensitivity to y-radiation-induced DNA DSBs compared with lymphocytes from healthy donors, (2) reduced repair efficiency of these damages. Incubation of irradiated blood lymphocytes in a medium from irradiated cells led to an increased relative number of DNA DSBs and an elevated fraction of cells dying through apoptotic pathway both in blood lymphocytes from cancer patients and control donors. However, these non-targeted effects were more expressed for the blood lymphocytes of breast cancer patients.  相似文献   

11.
PURPOSE: The present study aimed at investigating if 2'-2' difluorodeoxycytidine (dFdC) radioenhancement was mediated by an effect on induction and/or repair of radiation-induced DNA DSBs and chromosome aberrations in cells with different intrinsic radiosensitivity. METHODS: Confluent human head and neck squamous cell carcinoma cell lines designated SCC61 and SQD9 were treated with 5 microM dFdC for 3 or 24 h prior to irradiation. DNA DSBs induction and repair were analyzed by PFGE. Radiation-induced chromosome aberrations were examined with a FISH technique. RESULTS: In both cell lines, dFdC did not modify radiation-induced DNA DSBs in a dose range between 0 and 40 Gy. After a single dose of 40 Gy, dFdC affected neither the kinetic of repair nor the residual amount of DNA DSBs up to 4 h after irradiation. Whereas dFdC did not increase the induction of chromosome aberrations, after a single dose of 5 Gy, the percentage of aberrant cells and the number of aberrations per aberrant cells were significantly higher in combination with dFdC. CONCLUSION: Our data suggest that under experimental conditions yielding substantial radioenhancement, dFdC decreases the repair of genomic lesions inducing secondary chromosome breaks but has no effect on DNA DSBs repair as measured by PFGE.  相似文献   

12.
It has been suggested that the technique for measuring repair fidelity of radiation-induced DNA double-strand breaks (DSBs) using Southern blotting and hybridization to defined regions of the genome could be compromised by broken or poorly-digested DNA. Since misrepair of DNA DSBs is an important aspect of radiation-induced chromosome aberrations, mutations, and cell killing, we checked for such a supposition in non-transformed human fibroblasts. DSB misrepair was assessed in a NotI-cleavable DNA fragment of 3.2 Mbp located on the long arm of chromosome 21 and detected by D21S1 probe. We hypothesized that the suggested DNA degradation, whether spurious in nature or the results of irradiation-induced phenomena such as apoptosis and/or necrosis, should be detectable with or without NotI restriction enzyme treatment. When the DNA embedded in agarose plugs was separated by electrophoresis without prior NotI restriction, no significant difference was observed in the relative amount of migrating DNA between the control (no irradiation) and 24 h of repair following 80 Gy irradiation. Furthermore, only about 10% of the total signal was located below the 3.2 Mbp band. This suggests that the amount of DNA fragmentation due to biological (apoptosis or necrosis) or technical processes was negligible. The Tunel assay supported these results, as there was little to no apoptosis detectable in these fibroblasts up to 24 h after irradiation. We conclude that in primary human fibroblasts, the NotI method for measuring radiation-induced misrepair is not compromised by DNA degradation.  相似文献   

13.
DNA double strand breaks (DSBs) pose a severe hazard to the genome as erroneous rejoining of DSBs can lead to mutation and cancer. Here, we have investigated the correlation between X irradiation-induced γ-H2AX foci, theoretically induced DSBs, and the minimal number of mis-rejoined DNA breaks (MNB) in irradiated lymphocytes obtained from two healthy humans by painting of the whole chromosome complement by spectral karyotyping. There were less γ-H2AX foci/dose than theoretically expected, while misrepair, as expressed by MNB/γ-H2AX focus, was similar at 0.5 and 1 Gy but 3.6-fold up at 3 Gy. Hence, our results suggest that X-ray-induced γ-H2AX foci in G0 lymphocyte nuclei contain more than one DSB and that the increasing number of DSBs per γ-H2AX repair factory lead to an increased rate of misrepair.  相似文献   

14.
An experimental setup using static-field gel electrophoresis (SFGE) was developed to determine radiation-induced DNA double-strand breaks (DSBs) in CHO-K1 cells after exposure to X-rays or heavy charged particles. The fraction of DNA eluted into the gel matrix depends on the quantity of DSBs introduced. In agreement with a recent report, SFGE and pulsed-field electrophoresis were found to be equally sensitive in DSB detection. With radiolabeled DNA from cell cultures, the absolute amount of DNA migrating out of agarose plugs into the gel was quantified by determining the radioactivity in the gel lane. Alternatively, relative measurements of the amount of DNA released into the gel were achieved with a standardized protocol for both SFGE and a subsequent densitometric scanning of photographic negatives from gels stained with ethidium bromide. After calibration with the radioactive method, the fractions of DNA retained could be calculated directly from the data obtained with the densitometric assay to set up classical dose-effect curves. This procedure was validated for its application with heavy ions using an 500 MeV/u lead beam.  相似文献   

15.
We investigated the repair kinetics of DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) in unstimulated normal human peripheral blood lymphocytes (HPBL). SSBs and DSBs induced by gamma-irradiation (at 0 degree C) were assayed without radiolabel by alkaline and neutral filter elution, respectively. Incubation of irradiated cells at 37 degrees C for various lengths of time demonstrated that the percent DNA rejoined increased until it reached a plateau at approximately 60 min; this repair plateau underwent no substantial change when incubation continued for 20-24 h. The level of the plateau indicated how closely the elution profile of DNA from cells irradiated and incubated (experimental) resembled the elution profile of DNA from unirradiated cells (control). After 6 Gy and 60 min incubation, the alkaline elution profile of DNA from experimental cells from 5 donors was indistinguishable from that seen in DNA from control cells, suggesting that rejoining of SSBs was complete. In contrast after 100 Gy and 60 min incubation the neutral elution profile of DNA from cells from the same donors demonstrated that, compared to DNA from control cells, rejoining of DSBs was approximately two-thirds complete. In the range of 2-8 Gy, 85-104% of SSBs were rejoined after 60 min incubation; in the range of 30-120 Gy, 46-80% of DSBs were rejoined after 60 min incubation. These unexpected results stand in contrast to our previous studies with confluent normal human diploid fibroblasts (HDF), in which rejoining of both SSBs and DSBs was greater than 90% complete by 60 min repair incubation and 100% complete after 18-24 h.  相似文献   

16.
The repair of radiation-induced DNA double-strand breaks (DSBs) is frequently investigated by measuring the time-dependent decrease in the fraction of fragmented DNA that is able to enter electrophoresis gels. When transformed into equivalent doses without repair, such measurements are thought to reflect the removal of DSBs, and they typically exhibit a fast initial component and a decreasing rate at longer repair intervals. This formalism, however, assumes that the spatial distribution of unrejoined breakage resembles the pattern of induction of DSBs. While the size distributions for initial fragmentation, such as that resolved by conventional pulsed-field gel electrophoresis (PFGE) (between about 10(5) and 10(7) bp), are well known to agree with the prediction of random breakage, no data are available from studies explicitly testing this relationship for residual breakage. Therefore, Chinese hamster V79 cells and MeWo (human melanoma) cells were irradiated with different doses (10-100 Gy) or were incubated for repair for up to 4 h after a single dose of 100 Gy (V79) or 90 Gy (MeWo) before being subjected to PFGE. Fragment size distributions were calculated by convolution of the PFGE profiles with an appropriately generated size calibration function. The results clearly demonstrate an over-representation of smaller fragments (below about 2-3 Mbp) compared to the prediction of randomness for residual breakage. In consequence, the time-dependent decrease of dose-equivalent values calculated from data on the fraction released may not directly reflect DSB rejoining rates. The present findings are compatible with an earlier suggestion of slow rejoining of breaks which have been induced as multiple breaks (two or more) in large chromosomal loops, thus also predicting an increase of the slowly rejoining DSB fraction with increasing dose.  相似文献   

17.
The role of Ku80 in the repair of DNA double-strand breaks (DSBs) was examined in fibroblasts derived from a Ku80 knockout mouse model described by Nussenzweig et al. (Nature 382, 551-555, 1996). Primary fibroblasts from Ku80+/+ and Ku80-/- mice were immortalized by transfection with plasmids containing either the human MYC proto-oncogene or the Simian virus 40 (SV40) T antigen and were used to measure induction and rejoining of DSBs after exposure to ionizing radiation. The number of DSBs in the cells was quantified by either asymmetric field-inversion gel electrophoresis (AFIGE) or clamped homogeneous electrical-field gel electrophoresis (CHEF). The latter method was introduced for a more reliable quantification of repair even when DNA degradation occurs in a fraction of the irradiated cell population during the postirradiation incubation time. The results confirm that Ku80-deficient mouse fibroblasts are sensitive to ionizing radiation and demonstrate that the increased radiosensitivity may result from a deficiency in DSB rejoining. The results further indicate that unless techniques are employed that allow for distinction between DNA degradation and DNA repair, erroneous conclusions may be drawn regarding the potential of cells to repair DSBs.  相似文献   

18.
Elaboration of cellular DNA breaks by hydroperoxides.   总被引:2,自引:0,他引:2  
Cellular damage produced by ionizing radiation and peroxides, hydrogen peroxide (HOOH) and the organic peroxides tert-butyl (tBuOOH) or cumene hydroperoxide (CuOOH) were compared. DNA breaks, toxicity, malondialdehyde production, and the rate of peroxide disappearance were measured in a human adenocarcinoma cell line (A549). The alkaline and neutral filter elution assays were used to quantitate the kinetics of single and double strand break formation and repair (SSB and DSB), respectively. Peroxides, at 0.01-1.0 mM, produce multiphasic dose response curves for both toxicity and DNA SSBs. Radiation, 1-6 Gy, produced a shouldered survival curve, and both DNA SSB and DSBs produced in cells x-rayed on ice were nearly linear with dose. The peroxides produced more SSBs than radiation at equitoxic doses. X-ray induced DNA single strand breaks were rejoined rapidly by cells at 37 degrees C with approximately 80% of initial damage repaired in 20 min. Peroxide induced SSBs were maximal after 15 min at 37 degrees C. Rejoining proceeded thereafter, but at a rate less than for x-ray induced strand breaks. Significant DNA DSBs could not be achieved by peroxides even at concentrations 50-fold higher than required to produce SSBs. HOOH treatment of DNA on filters following cell lysis and proteolysis produced SSBs. CuOOH and tBuOOH produced no SSBs in lysed cell DNA. None of the peroxides produced DSBs when incubated with lysed cell DNA. Malondialdehyde was released from cells incubated with organic hydroperoxides, but not HOOH, nor up to 40 Gy of x-rays. HOOH was metabolized three times faster than the organic peroxides. The overall results demonstrate the necessity for a metabolically active cell environment to elaborate maximal DNA strand breaks and cell death at hydroperoxide concentrations of 10(-4) or greater, but prevent strand breaks and stimulate cell growth at 10(-5) M.  相似文献   

19.
The frequency of cells with chromosome aberrations and the number of aberrations per cell have been studied by metaphase analysis in the nonirradiated progeny of irradiated human blood lymphocytes. DNA fragmentation (DNA double-stranded breaks) has been investigated by DNA comet assay. To study the adaptive response (AR), PHA-stimulated lymphocytes were irradiated by the adaptive dose (0.05 Gy) in 24 h and by challenge dose (1 Gy) in 48 h after stimulation. The first through fourth mitoses were identified by 5-bromodeoxyuridine. It was found that the frequency of chromosome aberrations and double-strand breaks were increased in all mitotic cycles after the challenge irradiation. In most individuals, the adaptive response is induced by adaptive and challenge irradiations in the first and the second mitotic cycles (48 and 72 h after stimulation, respectively); however, it is absent in the third and the fourth mitoses. In the first mitosis (1Gy in 48 h after stimulation), only chromatid aberrations are observed; chromosome aberrations were registered in subsequent mitoses. DNA comet assay showed that the adaptive response was obvious at 48–72 h, but not 96 h, after stimulation. It can be concluded that the nonirradiated progeny of irradiated lymphocytes have genomic instability. The adaptive response is manifested up to the third mitosis and is explained by the decreasing number of chromatid and chromosome aberrations and DNA fragmentation. We suppose that double-stranded DNA breaks may be damage signals for the induction of adaptive response.  相似文献   

20.
Pulsed-field gel electrophoresis combined with Southern hybridization and rare-cutting restriction endonuclease digestion has been used recently to quantify misrejoining of DNA double-strand breaks (DSBs) resulting from exposure to ionizing radiation. Measurements are made 24 h after a high dose of radiation. These studies have suggested that a large fraction of DSBs are misrejoined to result in gross rearrangements. In the experiments described here, we show that elimination of broken DNA also eliminates "misrejoined" DNA. Mouse cells resistant to high levels of methotrexate by virtue of 100-fold amplification of the dyhydrofolate reductase (Dhfr) gene were treated with 50 and 100 Gy of ionizing radiation. The cells were allowed to repair the damage for 24 h. After the repair period, the cells were immobilized in agarose. Aliquots of each sample were pre-electrophoresed to remove linear DNA molecules smaller than 6 Mbp resulting from apoptosis or necrosis. The samples repairing damage from 50 or 100 Gy that did not receive the pre-electrophoresis showed high levels of label in a region of the lane that could be due to misrejoining DNA molecules. However, when the DNA from cells undergoing apoptosis or necrosis was removed from these samples, the levels of "misrejoined" DNA were reduced to levels far below those of unirradiated controls. These results suggest that other radiation-induced effects present 24 h after irradiation with 50 or 100 Gy are more significant than misrejoining for altering hybridization to regions of the lane outside the specific bands. Measurements of misrejoining using PFGE, rare-cutting restriction endonucleases, and Southern hybridization are likely to be compromised by nonspecific hybridization to broken and difficult-to-digest DNA resulting from apoptosis or necrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号