首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Effect of gene Lr34 in the enhancement of resistance to leaf rust of wheat   总被引:1,自引:0,他引:1  
Summary Leaf rust resistance gene Lr34 is present in many wheat cultivars throughout the world that have shown durable resistance to leaf rust. Fourteen pair-wise combinations of Lr34 and seedling leaf rust resistance genes were developed by intercrossing near isogenic Thatcher lines. In both seedling and adult plant tests homozygous paired combinations of specific resistance genes with Lr34 had enhanced resistance relative to either parent to different numbers of isolates that were avirulent to the additional resistance genes. The TcLr34, 18 line also expressed enhanced resistance to specific isolates virulent to Lr18 in seedling and adult plant stages. In rust nursery tests, homozygous lines were more resistant than either parent, if the additional leaf rust gene conditioned an effective of resistance when present singly. The ability of Lr34 to interact with other genes conditioning effective resistance may contribute to the durability of leaf rust resistance in cultivars with Lr34. Contribution 1453 Agriculture Canada  相似文献   

3.
8个小麦育种亲本抗叶锈基因分析   总被引:1,自引:0,他引:1  
选取19个小麦叶锈菌生理小种对8个小麦育种亲本进行成株期和苗期抗叶锈病鉴定及基因推导,同时利用与24个抗叶锈基因紧密连锁或共分离的31个分子标记进行分子检测。推测出L83#-5与L83#-6含有Lr1,可能含有Lr2c和Lr42;L/PL2003-1含有Lr1,可能含有Lr2c、Lr28和Lr42;贵农13号可能含有Lr28;92R137可能含有Lr2c和Lr28;L201含有Lr1,可能含有Lr2c、Lr16和Lr28;TM可能含有Lr41和其他抗叶锈基因。研究结果表明,测试的8个小麦育种亲本中TM的抗叶锈性最好,具有很好的抗叶锈病应用潜力,可作为小麦抗叶锈病育种的重要抗源。  相似文献   

4.
Leaf rust caused by Puccinia recondita f.sp. tritici is a wheat disease of worldwide importance. Wheat genotypes known to carry specific rust resistance genes and segregating lines that originated from various cross combinations and derived from distinct F2 lineage, so as to represent a diverse genetic background, were included in the present study for validation of molecular markers for Lr19 and Lr24. STS markers detected the presence of the leaf rust resistance gene Lr19 in a Thatcher NIL (Tc*Lrl9) and Inia66//CMH81A575 and of the gene Lr24 in the genotypes Arkan, Blue Boy II, Agent and CI 17907. Validation of molecular markers for Lr19 and Lr24 in parental lines, followed by successful detection of these genes in F3 lines from various cross combinations, was carried out. The molecular test corresponded well with the host-pathogen interaction test response of these lines.  相似文献   

5.
More than 100 resistance genes against wheat rust pathogens have been described in wheat and its relatives. Although many of them have been extensively used in wheat resistance breeding, none of these resistance loci has yet been analyzed at the molecular level. By screening a set of near-isogenic lines carrying different leaf rust resistance genes with a wheat probe encoding a serine/threonine protein kinase, we detected a polymorphic DNA fragment in the line with the Lr10 resistance gene. This fragment mapped to the Lr10 disease resistance locus and encodes a receptor-like protein kinase which we called LRK10. LRK10 contains a new type of extracellular domain not found in known plant or animal receptor kinases. Several conserved amino acids in S-domain glycoproteins and receptor-like kinases were also found in LRK10, suggesting that LRK10 and S-domain proteins belong to the same superfamily of specific recognition molecules in plants. Lrk10 was expressed at low levels in young seedlings and belongs to a gene family. Analysis of wheat lines with and without the Lr10 gene demonstrated that Lrk10 and Lr10 belong to the same genetic locus. We conclude that gene isolation based on protein kinase homology can identify new receptor domains and provide candidates for disease resistance genes in the complex wheat genome.  相似文献   

6.
Breeding for durable disease resistance is challenging, yet essential to improve crops for sustainable agriculture. The wheat Lr34 gene is one of the few cloned, durable resistance genes in plants. It encodes an ATP binding cassette transporter and has been a source of resistance against biotrophic pathogens, such as leaf rust (Puccinina triticina), for over 100 years. As endogenous Lr34 confers quantitative resistance, we wanted to determine the effects of transgenic Lr34 with specific reference to how expression levels affect resistance. Transgenic Lr34 wheat lines were made in two different, susceptible genetic backgrounds. We found that the introduction of the Lr34 resistance allele was sufficient to provide comparable levels of leaf rust resistance as the endogenous Lr34 gene. As with the endogenous gene, we observed resistance in seedlings after cold treatment and in flag leaves of adult plants, as well as Lr34‐associated leaf tip necrosis. The transgene‐based Lr34 resistance did not involve a hypersensitive response, altered callose deposition or up‐regulation of PR genes. Higher expression levels compared to endogenous Lr34 were observed in the transgenic lines both at seedling as well as adult stage and some improvement of resistance was seen in the flag leaf. Interestingly, in one genetic background the transgenic Lr34‐based resistance resulted in improved seedling resistance without cold treatment. These data indicate that functional variability in Lr34‐based resistance can be created using a transgenic approach.  相似文献   

7.
Spot blotch caused by Bipolaris sorokiniana is a major disease of wheat in warm and humid wheat growing regions of the world including south Asian countries such as India, Nepal and Bangladesh. The CIMMYT bread wheat line Saar which carries the leaf tip necrosis (LTN)-associated rust resistance genes Lr34 and Lr46 has exhibited a low level of spot blotch disease in field trials conducted in Asia and South America. One hundred and fourteen recombinant inbred lines (RILs) of Avocet (Susceptible) × Saar, were evaluated along with parents in two dates of sowing in India for 3 years (2007–2008 to 2009–2010) to identify quantitative trait loci (QTL) associated with spot blotch resistance, and to determine the potential association of Lr34 and Lr46 with resistance to this disease. Lr34 was found to constitute the main locus for spot blotch resistance, and explained as much as 55 % of the phenotypic variation in the mean disease data across the six environments. Based on the large effect, the spot blotch resistance at this locus has been given the gene designation Sb1. Two further, minor QTL were detected in the sub-population of RILs not containing Lr34. The first of these was located about 40 cM distal to Lr34 on 7DS, and the other corresponded to Lr46 on 1BL. A major implication for wheat breeding is that Lr34 and Lr46, which are widely used in wheat breeding to improve resistance to rust diseases and powdery mildew, also have a beneficial effect on spot blotch.  相似文献   

8.
The effectiveness of molecular markers for the identification of leaf rust resistance genes Lr28, Lr35 and Lr47 transferred to common wheat from Ae. speltoides was assessed using samples of Triticum spp. and Aegilops spp. The markers Sr39F2/R3, BCD260F1/35R2 of the gene Lr35 and PS10 of the Lr47 gene were characterized by high efficiency and were revealed in the lines of common wheat containing these genes, and samples of Ae. speltoides species, the donor of these genes. The marker SCS421 of the Lr28 gene and the markers Sr39#22r, Sr39#50s, BE500705 of the Lr35/Sr39 genes turned out to be less specific. The marker SCS421 was amplified in the samples of the T. timopheevii species, line KS90WRC010 (Lr41), the cultivar of common wheat Pamyati Maystrenko, obtained using synthetic hexaploid T. timopheevii × Ae. tauschii and introgressive lines obtained using Ae. speltoides. The marker BE500705, which indicates the absence of the Lr35/Sr39 genes, was not revealed in the lines TcLr35 and MqSr39, in Ae. speltoides, Ae. tauschii and T. boeoticum (kk-61034, 61038). Analysis of the nucleotide sequences of amplification products obtained with the markers SCS421 and Sr39#22r indicated their low homology with TcLr28 and TcLr35. Using molecular markers, a different distribution of the Lr28 (77%), Lr35 (100%) and Lr47 (15%) genes in 13 studied samples of Ae. speltoides was shown. In introgressive lines derived from Ae. speltoides, contemporary Russian cultivars of common wheat and triticale the Lr28, Lr35, Lr47 genes were not revealed.  相似文献   

9.
Thirty-seven wheat cultivars originating from seven European countries were examined by using sequence tagged site (STS) markers for seven Lr (leaf rust = brown rust) resistance genes against the fungal pathogen of wheat Puccinia recondita f. sp. tritici (Lr9, Lr10, Lr19, Lr24, Lr26 and Lr37). Additionally, 22 accessions with various Lr genes from two germplasm collections were tested. A Scar (sequence-characterized amplified region) marker for Lr24 and a CAPS (Cleaved Amplified Polymorphic Sequence) marker for Lr47 were also used to identify those genes in the wheat accessions. Each marker amplified one specific DNA fragment. Three Lr gene markers were identified in wheat cultivars (Lr10, Lr26 and Lr37). Another four markers (Lr9, Lr19, Lr24 and Lr47) were found in breeding lines carrying leaf rust resistance genes. The results were compared with leaf rust resistance gene postulations made in previous studies, based on multipathotype testing. Markers for Lr10, Lr26 and Lr37 may be useful in marker-assisted breeding.  相似文献   

10.
Martínez F  Niks RE  Singh RP  Rubiales D 《Hereditas》2001,135(2-3):111-114
Components of resistance conferred by the Lr46 gene, reported as causing "slow rusting" resistance to leaf rust in wheat, were studied and compared with the effects of Lr34 and genes for quantitative resistance in cv. Akabozu. Lr34 is a gene that confers non-hypersensitive type of resistance. The effect of Lr46 resembles that of Lr34 and other wheats reported with partial resistance. At macroscopic level, Lr46 produced a longer latency period than observed on the susceptible recurrent parent Lalbahadur, and a reduction of the infection frequency not associated with hypersensitivity. Microscopically, Lr46 increased the percentage of early aborted infection units not associated with host cell necrosis and decreased the colony size. The effect of Lr46 is comparable to that of Lr34 in adult plant stage, but in seedling stage its effect is weaker than that of Lr34.  相似文献   

11.
Hypersensitive adult plant resistance genes Lr48 and Lr49 were named based on their genetic independence of the known adult plant resistance genes. This study was planned to determine genomic locations of these genes. Recombinant inbred line populations derived from crosses involving CSP44 and VL404, sources of Lr48 and Lr49, respectively, and the susceptible parent WL711, were used to determine the genomic locations of these genes. Bulked segregant analyses were performed using multiplex-ready PCR technology. Lr48 in genotype CSP44 was mapped on chromosome arm 2BS flanked by marker loci Xgwm429b (6.1 cM) and Xbarc7 (7.3 cM) distally and proximally, respectively. Leaf rust resistance gene Lr13, carried by the alternate parent WL711, was proximal to Lr48 and was flanked by Xksm58 (5.1 cM) and Xstm773-2 (8.7 cM). Lr49 was flanked by Xbarc163 (8.1 cM) and Xwmc349 (10.1 cM) on chromosome arm 4BL. The likely presence of the durable leaf rust resistance gene Lr34 in both CSP44 and VL404 was confirmed using the tightly linked marker csLV34. Near-isogenic lines for Lr48 and Lr49 were developed in cultivar Lal Bahadur. Genotypes combining Lr13 and/or Lr34 with Lr48 or Lr49 were identified as potential donor sources for cultivar development programs.  相似文献   

12.
This study was conducted to identify microsatellite markers (SSR) linked to the adult-plant leaf rust resistance gene Lr22a and examine their cross-applicability for marker-assisted selection in different genetic backgrounds. Lr22a was previously introgressed from Aegilops tauschii Coss. to wheat (Triticum aestivum L.) and located to chromosome 2DS. Comparing SSR alleles from the donor of Lr22a to two backcross lines and their recurrent parents showed that between two and five SSR markers were co-introgressed with Lr22a and the size range of the Ae. tauschii introgression was 9-20 cM. An F(2) population from the cross of 98B34-T4B x 98B26-N1C01 confirmed linkage between the introgressed markers and Lr22a on chromosome 2DS. The closest marker, GWM296, was 2.9 cM from Lr22a. One hundred and eighteen cultivars and breeding lines of different geographical origins were tested with GWM296. In total 14 alleles were amplified, however, only those lines predicted or known to carry Lr22a had the unique Ae. tauschii allele at GWM296 with fragments of 121 and 131 bp. Thus, GWM296 is useful for selecting Lr22a in diverse genetic backgrounds. Genotypes carrying Lr22a showed strong resistance to leaf rust in the field from 2002 to 2006. Lr22a is an ideal candidate to be included in a stack of leaf rust resistance genes because of its strong adult-plant resistance, low frequency of commercial deployment, and the availability of a unique marker.  相似文献   

13.
Spring wheat nursery accessions, including 18 spring wheat lines derived in CIMMYT, Mexico, and 12 spring wheat cultivars bred in Poland, along with cultivars Frontana and Sumai 3 as resistant controls, were examined for resistance to leaf rust under field conditions. Multipathotype tests with 16 different pathogen isolates were performed for postulation of Lr genes in Polish cultivars. Besides, STS markers for resistance genes Lr1, Lr9, Lr10, Lr24, Lr28, Lr37 were analysed in the studied cultivars and lines with Thatcher near-isogenic lines as positive controls. All Polish cultivars appeared to be susceptible to leaf rust. Ten of the CIMMYT nursery lines (IPG-SW: #7, 11, 14, 21, 22, 23, 27, 29, 30, 32) and cv. Frontana were resistant in the same environment and can be sources of resistance genes. Marker for the Lr10 gene was identified in 6 accessions (IPG-SW #14, 22, 23, 29, 30, 32) exhibiting resistance to leaf rust, whereas markers for Lr1 and Lr28 genes were observed in all the examined accessions. STS markers for Lr9, Lr24 and Lr37 genes were not identified in the investigated accessions.  相似文献   

14.
The objective of this work was to develop a marker for the adult plant leaf rust resistance gene Lr35. The Lr35 gene was originally introgressed into chromosome 2B from Triticum speltoides, a diploid relative of wheat. A segregating population of 96 F 2 plants derived from a cross between the resistant line ThatcherLr35 and the susceptible variety Frisal was analysed. Out of 80 RFLP probes previously mapped on wheat chromosome 2B, 51 detected a polymorphism between the parents of the cross. Three of them were completely linked with the resistance gene Lr35. The co-segregating probe BCD260 was converted into a PCR-based sequence-tagged-site (STS) marker. A set of 48 different breeding lines derived from several European breeding programs was tested with the STS marker. None of these lines has a donor for Lr35 in its pedigree and all of them reacted negatively with the STS marker. As no leaf rust races virulent on Lr35 have been found in different areas of the world, the STS marker for the Lr35 resistance gene is of great value to support the introgression of this gene in combination with other leaf rust (Lr) genes into breeding material by marker-assisted selection. Received: 14 December 1998 / Accepted: 30 January 1999  相似文献   

15.
山东省12个主栽小麦品种(系)抗叶锈性分析   总被引:1,自引:0,他引:1  
本研究旨在明确山东省12个小麦主栽品种(系)抗叶锈性及抗叶锈基因,为小麦品种推广与合理布局、叶锈病防治及抗病育种提供依据。利用2015年采自山东省的5个小麦叶锈菌流行小种的混合小种对这些材料进行苗期抗性鉴定,然后选用15个小麦叶锈菌生理小种对这些品种(系)进行苗期基因推导,并利用与24个小麦抗叶锈基因紧密连锁(或共分离)的30个分子标记对其进行抗叶锈基因分子检测。结果显示,山东省12个主栽小麦品种(系)苗期对该省2015年的5个小麦叶锈菌混合流行小种均表现高度感病。通过基因推导与分子检测发现,济南17含有Lr16,矮抗58和山农20含有Lr26,其余济麦系列、烟农系列、良星系列等9个品种(系)均未检测到所供试标记片段。此外,本研究还对山东省3个非主栽品种进行了检测,结果发现,中麦175含有抗叶锈基因Lr1和Lr37,含有成株抗性基因;皖麦38只检测到Lr26,济麦20未检测到所供试标记片段。综合以上结果,山东省主栽小麦品种(系)所含抗叶锈基因丰富度较低,尤其不含有对我国小麦叶锈菌流行小种有效的抗锈基因,应该引起高度重视,今后育种工作应注重引入其他抗叶锈基因,提高抗叶锈性。  相似文献   

16.
新疆的小麦品种(系)苗期和成株期抗叶锈性鉴定   总被引:1,自引:0,他引:1  
对来自新疆的104个小麦品种、高代品系及35个含有已知抗叶锈基因载体品种,在苗期接种12个中国小麦叶锈菌生理小种进行抗叶锈基因推导分析和分子检测;2007-2008年和2008-2009年连续2年度对这些材料进行成株抗叶锈性鉴定并筛选慢叶锈性品种。研究结果显示,在41个品种中共鉴定出6个已知抗叶锈基因Lr26、Lr34、Lr50、Lr3ka、Lr1和Lr14a,其中Lr26存在于21个品种中,Lr34在17个品种被发现,Lr1和Lr14a分别存在于3个品种中,还有2个品种携带Lr3ka以及1个品种携带Lr50。2年田间抗叶锈性鉴定筛选出7个慢叶锈性品种,可用于小麦抗病育种。  相似文献   

17.
Comparative study of disease resistance genes in crop plants and their relatives provides insight on resistance gene function, evolution and diversity. Here, we studied the allelic diversity of the Lr10 leaf rust resistance gene, a CC‐NBS‐LRR coding gene originally isolated from hexaploid wheat, in 20 diploid and tetraploid wheat lines. Besides a gene in the tetraploid wheat variety ‘Altar’ that is identical to the hexaploid wheat Lr10, two additional, functional resistance alleles showing sequence diversity were identified by virus‐induced gene silencing in tetraploid wheat lines. In contrast to most described NBS‐LRR proteins, the N‐terminal CC domain of LR10 was found to be under strong diversifying selection. A second NBS‐LRR gene at the Lr10 locus, RGA2, was shown through silencing to be essential for Lr10 function. Interestingly, RGA2 showed much less sequence diversity than Lr10. These data demonstrate allelic diversity of functional genes at the Lr10 locus in tetraploid wheat, and these new genes can now be analyzed for agronomic relevance. Lr10‐based resistance is highly unusual both in its dependence on two, only distantly, related CC‐NBS‐LRR proteins, as well as in the pattern of diversifying selection in the N‐terminal domain. This indicates a new and complex molecular mechanism of pathogen detection and signal transduction.  相似文献   

18.
The Lr20-Sr15-Pm1 resistance locus in hexaploid wheat confers resistance to three different fungal wheat pathogens (leaf rust, stem rust, and powdery mildew). It was previously localized in the distal region of chromosome arm 7AL. As a first step towards the isolation of this complex locus, we performed molecular mapping of the Lr20 and Pm1 genes in three F2 populations. In two populations, a cluster of 8 and 12 markers, respectively, cosegregated with the resistance genes. In a third population based on a cross between a susceptible lr20 mutant and a resistant cultivar, all clustered markers were monomorphic. However, in this population the recombination frequency proximal to the Lr20 gene was up to 60 times higher, indicating that the complete genetic linkage of the clustered markers is not due to a close physical linkage of the probes but is caused by suppressed recombination. This was supported by the analysis of Triticum monococcum BAC clones where no physical linkage between cosegregating probes was observed. Suppressed recombination at the Lr20-Pm1 locus is likely the result of an alien introgression of chromatin from an unidentified wild relative species or is due to chromosomal rearrangements.  相似文献   

19.
The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad‐spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field‐grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome‐encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up‐regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress‐response genes were up‐regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad‐spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号