首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Glutamate is an excitatory neurotransmitter implicated in learning and memory processes, but at high concentrations it acts as an excitotoxin causing degeneration and neuronal death. The aim of this work was to determine the excitotoxic effect of glutamate and the regulation of metabotropic glutamate receptors (mGluR) during excitotoxicity in neurons and C6 glioma cells. Results show that glutamate causes excitotoxic damage only in cortical neurons. Loss of cell viability in neurons was glutamate concentration- and time-dependent. Total mGluR levels were significantly reduced in these cells when exposed to glutamate. However, in C6 cells, which have been used as a model of glial cells, these receptors were regulated in a biphasic manner, decreased after 6 h, and increased after 24/48 h of treatment. Results show a cell dependent mGluR regulation by glutamate exposure which could mediate the vulnerability or not to glutamate mediated excitotoxicity.  相似文献   

2.
In addition to supporting rapid nerve conduction, myelination nurtures and stabilizes axons and protects them from acute toxic insults. One myelin molecule that protects and sustains axons is myelin-associated glycoprotein (MAG). MAG is expressed on the innermost wrap of myelin, apposed to the axon surface, where it interacts with axonal receptors that reside in lateral membrane domains including gangliosides, the glycosylphosphatidylinositol-anchored Nogo receptors, and β1-integrin. We report here that MAG protection extends beyond the axon to the neurons from which those axons emanate, protecting them from excitotoxicity. Compared to wild type mice, Mag-null mice displayed markedly increased seizure activity in response to intraperitoneal injection of kainic acid, an excitotoxic glutamate receptor agonist. Mag-null mice also had larger lesion volumes in response to intrastriatal injection of the excitotoxin NMDA. Prior injection of a soluble form of MAG partially protected Mag-null mice from NMDA-induced lesions. Hippocampal neurons plated on proteins extracted from wild-type rat or mouse myelin were resistant to kainic acid-induced excitotoxicity, whereas neurons plated on proteins from Mag-null myelin were not. Protection was reversed by anti-MAG antibody and replicated by addition of soluble MAG. MAG-mediated protection from excitotoxicity was dependent on Nogo receptors and β1-integrin. We conclude that MAG engages membrane-domain resident neuronal receptors to protect neurons from excitotoxicity, and that soluble MAG mitigates excitotoxic damage in vivo.  相似文献   

3.
Glutamate receptor-mediated excitatory neurotransmission plays a key role in neural development, differentiation and synaptic plasticity. However, excessive stimulation of glutamate receptors induces neurotoxicity, a process that has been defined as excitotoxicity. Excitotoxicity is considered to be a major mechanism of cell death in a number of central nervous system diseases including stroke, brain trauma, epilepsy and chronic neurodegenerative disorders. Unfortunately clinical trials with glutamate receptor antagonists, that would logically prevent the effects of excessive receptor activation, have been associated with untoward side effects or little clinical benefit. Therefore, uncovering molecular pathways involved in excitotoxic neuronal death is of critical importance to future development of clinical treatment of many neurodegenerative disorders where excitotoxicity has been implicated. This review discusses the current understanding of the molecular and cellular mechanisms of excitotoxicity and their roles in the pathogenesis of diseases of the central nervous system.  相似文献   

4.
Glutamate receptor overactivation induces excitotoxic neuronal death, but the contribution of glutamate receptor subtypes to this excitotoxicity is unclear. We have previously shown that excitotoxicity by NMDA receptor overactivation is associated with choline release and inhibition of phosphatidylcholine synthesis. We have now investigated whether the ability of non-NMDA ionotropic glutamate receptor subtypes to induce excitotoxicity is related to the ability to inhibit phosphatidylcholine synthesis. alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-induced a concentration-dependent increase in extracellular choline and inhibited phosphatidylcholine synthesis when receptor desensitization was prevented. Kainate released choline and inhibited phosphatidylcholine synthesis by an action at AMPA receptors, because these effects of kainate were blocked by the AMPA receptor antagonist LY300164. Selective activation of kainate receptors failed to release choline, even when kainate receptor desensitization was prevented. The inhibition of phosphatidylcholine synthesis evoked by activation of non-desensitizing AMPA receptors was followed by neuronal death. In contrast, specific kainate receptor activation, which did not inhibit phosphatidylcholine synthesis, did not produce neuronal death. Choline release and inhibition of phosphatidylcholine synthesis were induced by AMPA at non-desensitizing AMPA receptors well before excitotoxicity. Furthermore, choline release by AMPA required the entry of Ca(2+) through the receptor channel. Our results show that AMPA, but not kainate, receptor overactivation induces excitotoxic cell death, and that this effect is directly related to the ability to inhibit phosphatidylcholine synthesis. Moreover, these results indicate that inhibition of phosphatidylcholine synthesis is an early event of the excitotoxic process, downstream of glutamate receptor-mediated Ca(2+) overload.  相似文献   

5.
The central role of glutamate receptors in mediating excitotoxic neuronal death in stroke, epilepsy and trauma has been well established. Glutamate is the major excitatory amino acid transmitter within the CNS and it's signaling is mediated by a number of postsynaptic ionotropic and metabotropic receptors. Although calcium ions are considered key regulators of excitotoxicity, new evidence suggests that specific second messenger pathways rather than total Ca(2+) load, are responsible for mediating neuronal degeneration. Glutamate receptors are found localized at the synapse within electron dense structures known as the postsynaptic density (PSD). Localization at the PSD is mediated by binding of glutamate receptors to submembrane proteins such as actin and PDZ containing proteins. PDZ domains are conserved motifs that mediate protein-protein interactions and self-association. In addition to glutamate receptors PDZ-containing proteins bind a multitude of intracellular signal molecules including nitric oxide synthase. In this way PDZ proteins provide a mechanism for clustering glutamate receptors at the synapse together with their corresponding signal transduction proteins. PSD organization may thus facilitate the individual neurotoxic signal mechanisms downstream of receptors during glutamate overactivity. Evidence exists showing that inhibiting signals downstream of glutamate receptors, such as nitric oxide and PARP-1 can reduce excitotoxic insult. Furthermore we have shown that uncoupling the interaction between specific glutamate receptors from their PDZ proteins protects neurons against glutamate-mediated excitotoxicity. These findings have significant implications for the treatment of neurodegenerative diseases using therapeutics that specifically target intracellular protein-protein interactions.  相似文献   

6.
The role of lipoproteins secreted by cortical glial cells in axon growth of central nervous system (CNS) neurons was investigated. We first established compartmented cultures of CNS neurons (retinal ganglion cells). Addition of glial cell-conditioned medium (GCM) to distal axons increased the rate of axon extension by approximately 50%. Inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase in glial cells diminished the secretion of cholesterol and apolipoprotein E, and prevented the growth stimulatory effect of GCM. When glia-derived lipoproteins containing apolipoprotein E were provided to distal axons, axon extension was stimulated to the same extent as by GCM. In contrast, addition of lipoproteins to cell bodies failed to enhance growth. The growth stimulatory effect of glial lipoproteins was abrogated in the presence of receptor-associated protein, RAP, indicating involvement of receptor(s) of the low density lipoprotein receptor family in stimulation of axonal extension. These observations suggest that glial cells stimulate axon growth of CNS neurons by providing lipoproteins containing cholesterol and apolipoprotein E to distal axons.  相似文献   

7.
8.
Glutamate is the principal excitatory neurotransmitter in the mammalian CNS. By analyzing the metabolic incorporation of azidohomoalanine, a methionine analogue, in newly synthesized proteins, we find that glutamate treatments up-regulate protein translation not only in intact rat cortical neurons in culture but also in the axons emitting from cortical neurons before making synapses with target cells. The process by which glutamate stimulates local translation in axons begins with the binding of glutamate to the ionotropic AMPA receptors and metabotropic glutamate receptor 1 and members of group 2 metabotropic glutamate receptors on the plasma membrane. Subsequently, the activated mammalian target of rapamycin (mTOR) signaling pathway and the rise in Ca2+, resulting from Ca2+ influxes through calcium-permeable AMPA receptors, voltage-gated Ca2+ channels, and transient receptor potential canonical channels, in axons stimulate the local translation machinery. For comparison, the enhancement effects of brain-derived neurotrophic factor (BDNF) on the local protein synthesis in cortical axons were also studied. The results indicate that Ca2+ influxes via transient receptor potential canonical channels and activated the mTOR pathway in axons also mediate BDNF stimulation to local protein synthesis. However, glutamate- and BDNF-induced enhancements of translation in axons exhibit different kinetics. Moreover, Ca2+ and mTOR signaling appear to play roles carrying different weights, respectively, in transducing glutamate- and BDNF-induced enhancements of axonal translation. Thus, our results indicate that exposure to transient increases of glutamate and more lasting increases of BDNF would stimulate local protein synthesis in migrating axons en route to their targets in the developing brain.  相似文献   

9.
Excitotoxicity is one of the most extensively studied processes of neuronal cell death, and plays an important role in many central nervous system (CNS) diseases, including CNS ischemia, trauma, and neurodegenerative disorders. First described by Olney, excitotoxicity was later characterized as an excessive synaptic release of glutamate, which in turn activates postsynaptic glutamate receptors. While almost every glutamate receptor subtype has been implicated in mediating excitotoxic cell death, it is generally accepted that the N-methyl-D-aspartate (NMDA) subtypes play a major role, mainly owing to their high calcium (Ca2+) permeability. However, other glutamate receptor subtypes such as 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionate (AMPA) or kainate receptors have also been attributed a critical role in mediating excitotoxic neuronal cell death. Although the molecular basis of glutamate toxicity is uncertain, there is general agreement that it is in large part Ca2+-dependent. The present review is aimed at summarizing the molecular mechanisms of NMDA receptor and AMPA/kainate receptor-mediated excitotoxic neuronal cell death.  相似文献   

10.
Xu W  Wong TP  Chery N  Gaertner T  Wang YT  Baudry M 《Neuron》2007,53(3):399-412
Excitotoxicity mediated by glutamate receptors plays crucial roles in ischemia and other neurodegenerative diseases. Whereas overactivation of ionotropic glutamate receptors is neurotoxic, the role of metabotropic glutamate receptors (mGluRs), and especially mGluR1, remains equivocal. Here we report that activation of NMDA receptors results in calpain-mediated truncation of the C-terminal domain of mGluR1alpha at Ser(936). The truncated mGluR1alpha maintains its ability to increase cytosolic calcium while it no longer activates the neuroprotective PI(3)K-Akt signaling pathways. Full-length and truncated forms of mGluR1alpha play distinct roles in excitotoxic neuronal degeneration in cultured neurons. A fusion peptide derived from the calpain cleavage site of mGluR1alpha efficiently blocks NMDA-induced truncation of mGluR1alpha in primary neuronal cultures and exhibits neuroprotection against excitotoxicity both in vitro and in vivo. These findings shed light on the relationship between NMDA and mGluR1alpha and indicate the existence of a positive feedback regulation in excitotoxicity involving calpain and mGluR1alpha.  相似文献   

11.
The glutamate-induced excitotoxicity pathway has been reported in several neurodegenerative diseases. Molecules that inhibit the release of glutamate or cause the overactivation of glutamate receptors can minimize neuronal cell death in these diseases. Osmotin, a homolog of mammalian adiponectin, is a plant protein from Nicotiana tabacum that was examined for the first time in the present study to determine its protective effects against glutamate-induced synaptic dysfunction and neurodegeneration in the rat brain at postnatal day 7. The results indicated that glutamate treatment induced excitotoxicity by overactivating glutamate receptors, causing synaptic dysfunction and neuronal apoptosis after 4 h in the cortex and hippocampus of the postnatal brain. In contrast, post-treatment with osmotin significantly reversed glutamate receptor activation, synaptic deficit and neuronal apoptosis by stimulating the JNK/PI3K/Akt intracellular signaling pathway. Moreover, osmotin treatment abrogated glutamate-induced DNA damage and apoptotic cell death and restored the localization and distribution of p53, p-Akt and caspase-3 in the hippocampus of the postnatal brain. Finally, osmotin inhibited glutamate-induced PI3K-dependent ROS production in vitro and reversed the cell viability decrease, cytotoxicity and caspase-3/7 activation induced by glutamate. Taken together, these results suggest that osmotin might be a novel neuroprotective agent in excitotoxic diseases.  相似文献   

12.
Lipoproteins originating from axon and myelin breakdown in injured peripheral nerves are believed to supply cholesterol to regenerating axons. We have used compartmented cultures of rat sympathetic neurons to investigate the utilization of lipids from lipoproteins for axon elongation. Lipids and proteins from human low density lipoproteins (LDL) and high density lipoproteins (HDL) were taken up by distal axons and transported to cell bodies, whereas cell bodies/proximal axons internalized these components from only LDL, not HDL. Consistent with these observations, the impairment of axonal growth, induced by inhibition of cholesterol synthesis, was reversed when LDL or HDL were added to distal axons or when LDL, but not HDL, were added to cell bodies. LDL receptors (LDLRs) and LR7/8B (apoER2) were present in cell bodies/proximal axons and distal axons, with LDLRs being more abundant in the former. Inhibition of cholesterol biosynthesis increased LDLR expression in cell bodies/proximal axons but not distal axons. LR11 (SorLA) was restricted to cell bodies/proximal axons and was undetectable in distal axons. Neither the LDL receptor-related protein nor the HDL receptor, SR-B1, was detected in sympathetic neurons. These studies demonstrate for the first time that lipids are taken up from lipoproteins by sympathetic neurons for use in axonal regeneration.  相似文献   

13.
Glutamate excitotoxicity causes neuronal dysfunction and degeneration. It is implicated in chronic disorders, including Alzheimer's disease, and in acute CNS insults such as ischemia. These disorders share prominent morphological features, including axon degeneration and cell body death. However, the molecular mechanism underlying excitotoxicity-induced neurodegeneration remains poorly understood. A key molecular feature of neurodegeneration is deficits in microtubule-based cargo transport that plays a pivotal role in maintaining the balance of survival and stress signaling in the axon. We developed an excitotoxicity-induced neurodegeneration system in primary neuronal cultures. We find that excitotoxicity generates a C-terminal truncated form of p150Glued, a major component of the dynactin complex, which exacerbates axon degeneration. This p150Glued truncated form was identified in brain tissues of patients with Alzheimer's disease. Overexpression of wild-type (WT) dynein intermediate chain (DIC), a dynein component that interacts with p150Glued and links dynein and dynactin complexes, DIC (S84D) mutant, and WT p150Glued suppressed axon degeneration. These modulating effects of p150Glued and DIC on excitotoxicity-induced axon degeneration are also observed in apoptosis and cell body death. Thus, our findings identify retrograde transport proteins, p150Glued and DIC, as novel modulators of neurodegeneration induced by glutamate excitotoxicity.  相似文献   

14.
New methods have been developed for studying lipid metabolism and transport in primary cultures of neurons. Sympathetic neurons from rats and mice, as well as retinal ganglion neurons from rats, can be cultured in three-compartmented culture dishes in which the cell bodies reside in a compartment separate from that housing the distal axons. In addition, the three compartments contain completely independent fluid environments. Consequently, these neuronal cultures represent an excellent model for studying the intra-neuronal transport of lipids and proteins between cell bodies and distal axons. In addition, compartmented neuron cultures are particularly appropriate for investigating factors that regulate axonal growth and neuronal survival. The application of the compartmented culture model for use with murine neurons has opened up many new possibilities for studying lipid metabolism in neurons derived from genetically modified mice. Examples are given in which compartmented cultures of primary neurons have been used in studies on (i) lipid analysis of distal axons and cell bodies/proximal axons, (ii) immunoblotting of neuronal proteins involved in lipid metabolism, (iii) the compartmentalization of lipid metabolism, (iv) the role of lipids in axonal growth and survival, and (v) intracellular lipid transport.  相似文献   

15.
Yue Z 《Autophagy》2007,3(2):139-141
Autophagy has recently emerged as potential drug target for prevention of neurodegeneration. However, the details of autophagy process and regulation in the central nervous system (CNS) are unclear. By using a neuronal excitotoxicity model mice, we engineered expression of a fluorescent autophagic marker and systematically investigated autophagic activity under neurodegenerative condition. The study reveals an early response of Purkinje cells to excitotoxic insult by induction of autophagy in axon terminals, and that axonal autophagy is particularly robust in comparison to the cell body and dendrites. The accessibility of axons to rapid autophagy induction suggests local biogenesis of autophagosomes in axons. Characterization of functional interaction between autophagosome protein LC3 and microtubule-associated protein 1B (MAP1B), which is involved in axonal growth, injury and transport provides evidence for neuron or axon-specific regulation of autophagosomes. Furthermore, we propose that p62/SQSTM1, a putative autophagic substrate can serve as a marker for evaluating impairment of autophagic degradation, which helps resolve the controversy over autophagy levels under various pathological conditions. Future study of the relationship between autophagy and axonal function (e.g., transport) will provide insight into the mechanism underlying axonopathy which is directly linked to neurodegeneration.  相似文献   

16.
Mechanisms of excitotoxicity in neurologic diseases.   总被引:22,自引:0,他引:22  
M F Beal 《FASEB journal》1992,6(15):3338-3344
Excitotoxicity refers to neuronal cell death caused by activation of excitatory amino acid receptors. A substantial body of evidence has implicated excitotoxicity as a mechanism of cell death in both acute and chronic neurologic diseases. A major recent advance has been the successful cloning and expression of the N-methyl-D-aspartate (NMDA), non-NMDA, and metabotropic glutamate receptors. The cellular mechanisms responsible for cell death after activation of these receptors are still being clarified. In acute neurologic diseases such as stroke and head trauma, excitotoxicity may be related to excessive glutamate release. In chronic neurodegenerative diseases, however, a slow excitotoxic process is more likely to occur as a consequence of either a receptor abnormality or an impairment of energy metabolism. Recent therapeutic studies have demonstrated the efficacy of non-NMDA receptor antagonists in experimental studies of global ischemia.  相似文献   

17.
An increasing body of evidence has implicated excitoxicity as a mechanism of neuronal death in both acute and chronic neurological diseases. A major recent advance has been the successful cloning and expression of the non-NMDA, NMDA, and metabotropic glutamate receptors. The cellular mechanisms responsible for cell death following activation of these receptors are still being clarified. A recent advance in conceptualizing excitotoxicity is the notion that a slow excitotoxic process may occur as a consequence of either a receptor abnormality or an impairment of energy metabolism. It is possible that such a mechanism may occur in neurodegenerative illnesses. Recent therapeutic studies have focused on glycine site antagonists and on the efficacy of non-NMDA antagonists in ischemia.  相似文献   

18.
Excitotoxic stress has been associated with several different neurological disorders, and it is one of the main causes of neuronal degeneration and death. To identify new potential proteins that could represent key factors in excitotoxic stress and to study the relationship between polyamine catabolism and excitotoxic damage, a novel transgenic mouse line overexpressing spermine oxidase enzyme in the neocortex (Dach-SMOX) has been engineered. These transgenic mice are more susceptible to excitotoxic injury and display a higher oxidative stress, highlighted by 8-Oxo-2′-deoxyguanosine increase and activation of defense mechanisms, as demonstrated by the increase of nuclear factor erythroid 2-related factor 2 (Nrf-2) in the nucleus. In Dach-SMOX astrocytes and neurons, an alteration of the phosphorylated and non-phosphorylated subunits of glutamate receptors increases the kainic acid response in these mice. Moreover, a decrease in excitatory amino acid transporters and an increase in the system xc? transporter, a Nrf-2 target, was observed. Sulfasalazine, a system xc? transporter inhibitor, was shown to revert the increased susceptibility of Dach-SMOX mice treated with kainic acid. We demonstrated that astrocytes play a crucial role in this process: neuronal spermine oxidase overexpression resulted in an alteration of glutamate excitability, in glutamate uptake and efflux in astrocytes involved in the synapse. Considering the involvement of oxidative stress in many neurodegenerative diseases, Dach-SMOX transgenic mouse can be considered as a suitable in vivo genetic model to study the involvement of spermine oxidase in excitotoxicity, which can be considered as a possible therapeutic target.  相似文献   

19.
Glutamate excitotoxicity, oxidative stress, and acidosis are primary mediators of neuronal death during ischemia and reperfusion. Astrocytes influence these processes in several ways. Glutamate uptake by astrocytes normally prevents excitotoxic glutamate elevations in brain extracellular space, and this process appears to be a critical determinant of neuronal survival in the ischemic penumbra. Conversely, glutamate efflux from astrocytes by reversal of glutamate uptake, volume sensitive organic ion channels, and other routes may contribute to extracellular glutamate elevations. Glutamate activation of neuronal N-methyl-D-aspartate (NMDA) receptors is modulated by glycine and D-serine: both of these neuromodulators are transported by astrocytes, and D-serine production is localized exclusively to astrocytes. Astrocytes influence neuronal antioxidant status through release of ascorbate and uptake of its oxidized form, dehydroascorbate, and by indirectly supporting neuronal glutathione metabolism. In addition, glutathione in astrocytes can serve as a sink for nitric oxide and thereby reduce neuronal oxidant stress during ischemia. Astrocytes probably also influence neuronal survival in the post-ischemic period. Reactive astrocytes secrete nitric oxide, TNFalpha, matrix metalloproteinases, and other factors that can contribute to delayed neuronal death, and facilitate brain edema via aquaporin-4 channels localized to the astrocyte endfoot-endothelial interface. On the other hand erythropoietin, a paracrine messenger in brain, is produced by astrocytes and upregulated after ischemia. Erythropoietin stimulates the Janus kinase-2 (JAK-2) and nuclear factor-kappaB (NF-kB) signaling pathways in neurons to prevent programmed cell death after ischemic or excitotoxic stress. Astrocytes also secrete several angiogenic and neurotrophic factors that are important for vascular and neuronal regeneration after stroke.  相似文献   

20.
Glutamate excitotoxicity is responsible for neuronal death in acute neurological disorders including stroke, trauma and neurodegenerative disease. Loss of calcium homeostasis is a key mediator of glutamate-induced cell death. The neurotransmitter dopamine (DA) is known to modulate calcium signalling, and here we show that it can do so in response to physiological concentrations of glutamate. Furthermore, DA is able to protect neurons from glutamate-induced cell death at pathological concentrations of glutamate. We demonstrate that DA has a novel role in preventing delayed calcium deregulation in cortical, hippocampal and midbrain neurons. The effect of DA in abolishing glutamate excitotoxicity can be induced by DA receptor agonists, and is abolished by DA receptor antagonists. Our data indicate that the modulation of glutamate excitotoxicity by DA is receptor-mediated. We postulate that DA has a major physiological function as a safety catch to restrict the glutamate-induced calcium signal, and thereby prevent glutamate-induced cell death in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号