首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Species belonging to the phylum Synergistetes are poorly characterized. Though the known species display Gram-negative characteristics and the ability to ferment amino acids, no single characteristic is known which can define this group. For eight Synergistetes species, complete genome sequences or draft genomes have become available. We have used these genomes to construct detailed phylogenetic trees for the Synergistetes species and carried out comprehensive analysis to identify molecular markers consisting of conserved signature indels (CSIs) in protein sequences that are specific for either all Synergistetes or some of their sub-groups. We report here identification of 32 CSIs in widely distributed proteins such as RpoB, RpoC, UvrD, GyrA, PolA, PolC, MraW, NadD, PyrE, RpsA, RpsH, FtsA, RadA, etc., including a large >300 aa insert within the RpoC protein, that are present in various Synergistetes species, but except for isolated bacteria, these CSIs are not found in the protein homologues from any other organisms. These CSIs provide novel molecular markers that distinguish the species of the phylum Synergistetes from all other bacteria. The large numbers of other CSIs discovered in this work provide valuable information that supports and consolidates evolutionary relationships amongst the sequenced Synergistetes species. Of these CSIs, seven are specifically present in Jonquetella, Pyramidobacter and Dethiosulfovibrio species indicating a cladal relationship among them, which is also strongly supported by phylogenetic trees. A further 15 CSIs that are only present in Jonquetella and Pyramidobacter indicate a close association between these two species. Additionally, a previously described phylogenetic relationship between the Aminomonas and Thermanaerovibrio species was also supported by 9 CSIs. The strong relationships indicated by the indel analysis provide incentives for the grouping of species from these clades into higher taxonomic groups such as families or orders. The identified molecular markers, due to their specificity for Synergistetes and presence in highly conserved regions of important proteins suggest novel targets for evolutionary, genetic and biochemical studies on these bacteria as well as for the identification of additional species belonging to this phylum in different environments.  相似文献   

3.
Detailed phylogenetic and comparative genomic analyses are reported on 140 genome sequenced cyanobacteria with the main focus on the heterocyst-differentiating cyanobacteria. In a phylogenetic tree for cyanobacteria based upon concatenated sequences for 32 conserved proteins, the available cyanobacteria formed 8–9 strongly supported clades at the highest level, which may correspond to the higher taxonomic clades of this phylum. One of these clades contained all heterocystous cyanobacteria; within this clade, the members exhibiting either true (Nostocales) or false (Stigonematales) branching of filaments were intermixed indicating that the division of the heterocysts-forming cyanobacteria into these two groups is not supported by phylogenetic considerations. However, in both the protein tree as well as in the 16S rRNA gene tree, the akinete-forming heterocystous cyanobacteria formed a distinct clade. Within this clade, the members which differentiate into hormogonia or those which lack this ability were also separated into distinct groups. A novel molecular signature identified in this work that is uniquely shared by the akinete-forming heterocystous cyanobacteria provides further evidence that the members of this group are specifically related and they shared a common ancestor exclusive of the other cyanobacteria. Detailed comparative analyses on protein sequences from the genomes of heterocystous cyanobacteria reported here have also identified eight conserved signature indels (CSIs) in proteins involved in a broad range of functions, and three conserved signature proteins, that are either uniquely or mainly found in all heterocysts-forming cyanobacteria, but generally not found in other cyanobacteria. These molecular markers provide novel means for the identification of heterocystous cyanobacteria, and they provide evidence of their monophyletic origin. Additionally, this work has also identified seven CSIs in other proteins which in addition to the heterocystous cyanobacteria are uniquely shared by two smaller clades of cyanobacteria, which form the successive outgroups of the clade comprising of the heterocystous cyanobacteria in the protein trees. Based upon their close relationship to the heterocystous cyanobacteria, the members of these clades are indicated to be the closest relatives of the heterocysts-forming cyanobacteria.  相似文献   

4.
Thermotogae species are currently identified mainly on the basis of their unique toga and distinct branching in the rRNA and other phylogenetic trees. No biochemical or molecular markers are known that clearly distinguish the species from this phylum from all other bacteria. The taxonomic/evolutionary relationships within this phylum, which consists of a single family, are also unclear. We report detailed phylogenetic analyses on Thermotogae species based on concatenated sequences for many ribosomal as well as other conserved proteins that identify a number of distinct clades within this phylum. Additionally, comprehensive analyses of protein sequences from Thermotogae genomes have identified >60 Conserved Signature Indels (CSI) that are specific for the Thermotogae phylum or its different subgroups. Eighteen CSIs in important proteins such as PolI, RecA, TrpRS and ribosomal proteins L4, L7/L12, S8, S9, etc. are uniquely present in various Thermotogae species and provide molecular markers for the phylum. Many CSIs were specific for a number of Thermotogae subgroups. Twelve of these CSIs were specific for a clade consisting of various Thermotoga species except Tt. lettingae, which was separated from other Thermotoga species by a long branch in phylogenetic trees; Fourteen CSIs were specific for a clade consisting of the Fervidobacterium and Thermosipho genera and eight additional CSIs were specific for the genus Thermosipho. In addition, the existence of a clade consisting of the deep branching species Petrotoga mobilis, Kosmotoga olearia and Thermotogales bacterium mesG1 was supported by seven CSIs. The deep branching of this clade was also supported by a number of CSIs that were present in various Thermotogae species, but absent in this clade and all other bacteria. Most of these clades were strongly supported by phylogenetic analyses based on two datasets of protein sequences and they identify potential higher taxonomic grouping (viz. families) within this phylum. We also report 16 CSIs that are shared by either some or all Thermotogae species and some species from other taxa such as Archaea, Aquificae, Firmicutes, Proteobacteria, Deinococcus, Fusobacteria, Dictyoglomus, Chloroflexi and eukaryotes. The shared presence of some of these CSIs could be due to lateral gene transfers between these groups. However, no clear preference for any particular group was observed in this regard. The molecular probes based on different genes/proteins, which contain these Thermotogae-specific CSIs, provide novel and highly specific means for identification of both known as well as previously unknown Thermotogae species in different environments. Additionally, these CSIs also provide valuable tools for genetic and biochemical studies that could lead to discovery of novel properties that are unique to these bacteria.  相似文献   

5.
The genus Borrelia contains two groups of organisms: the causative agents of Lyme disease and their relatives and the causative agents of relapsing fever and their relatives. These two groups are morphologically indistinguishable and are difficult to distinguish biochemically. In this work, we have carried out detailed comparative genomic analyses on protein sequences from 38 Borrelia genomes to identify molecular markers in the forms of conserved signature inserts/deletions (CSIs) that are specifically found in the Borrelia homologues, and conserved signature proteins (CSPs) which are uniquely present in Borrelia species. Our analyses have identified 31 CSIs and 82 CSPs that are uniquely shared by all sequenced Borrelia species, providing molecular markers for this group of organisms. In addition, our work has identified 7 CSIs and 21 CSPs which are uniquely found in the Lyme disease Borrelia species and eight CSIs and four CSPs that are specific for members of the relapsing fever Borrelia group. Additionally, 38 other CSIs, in proteins which are uniquely found in Borrelia species, also distinguish these two groups of Borrelia. The identified CSIs and CSPs provide novel and highly specific molecular markers for identification and distinguishing between the Lyme disease Borrelia and the relapsing fever Borrelia species. We also report the results of average nucleotide identity (ANI) analysis on Borrelia genomes and phylogenetic analysis for these species based upon 16S rRNA sequences and concatenated sequences for 25 conserved proteins. These analyses also support the distinctness of the two Borrelia clades. On the basis of the identified molecular markers, the results from ANI and phylogenetic studies, and the distinct pathogenicity profiles and arthropod vectors used by different Borrelia spp. for their transmission, we are proposing a division of the genus Borrelia into two separate genera: an emended genus Borrelia, containing the causative agents of relapsing fever and a novel genus, Borreliella gen. nov., containing the causative agents of Lyme disease.  相似文献   

6.
Crenarchaeotes found in mesophilic marine environments were recently placed into a new phylum of Archaea called the Thaumarchaeota. However, very few molecular characteristics of this new phylum are currently known which can be used to distinguish them from the Crenarchaeota. In addition, their relationships to deep-branching archaeal lineages are unclear. We report here detailed analyses of protein sequences from Crenarchaeota and Thaumarchaeota that have identified many conserved signature indels (CSIs) and signature proteins (SPs) (i.e., proteins for which all significant blast hits are from these groups) that are specific for these archaeal groups. Of the identified signatures 6 CSIs and 13 SPs are specific for the Crenarchaeota phylum; 6 CSIs and >250 SPs are uniquely found in various Thaumarchaeota (viz. Cenarchaeum symbiosum, Nitrosopumilus maritimus and a number of uncultured marine crenarchaeotes) and 3 CSIs and ~10 SPs are found in both Thaumarchaeota and Crenarchaeota species. Some of the molecular signatures are also present in Korarchaeum cryptofilum, which forms the independent phylum Korarchaeota. Although some of these molecular signatures suggest a distant shared ancestry between Thaumarchaeota and Crenarchaeota, our identification of large numbers of Thaumarchaeota-specific proteins and their deep branching between the Crenarchaeota and Euryarchaeota phyla in phylogenetic trees shows that they are distinct from both Crenarchaeota and Euryarchaeota in both genetic and phylogenetic terms. These observations support the placement of marine mesophilic archaea into the separate phylum Thaumarchaeota. Additionally, many CSIs and SPs have been found that are specific for different orders within Crenarchaeota (viz. Sulfolobales—3 CSIs and 169 SPs, Thermoproteales—5 CSIs and 25 SPs, Desulfurococcales—4 SPs, and Sulfolobales and Desulfurococcales—2 CSIs and 18 SPs). The signatures described here provide novel means for distinguishing the Crenarchaeota and the Thaumarchaeota and for the classification of related and novel species in different environments. Functional studies on these signature proteins could lead to discovery of novel biochemical properties that are unique to these groups of archaea.  相似文献   

7.
8.
Currently, 76 lantibiotics have been described; the vast majority being produced by members of the Firmicute phylum of bacteria. There is a growing number being identified from the Actinobacteria phylum and some of these exhibit novel modifications leading to an increased functional diversity among lantibiotics. In this review, we discuss the currently characterized lantibiotics highlighting the expanding diversity provided by those from the Actinobacteria. This increased diversity has the potential to expand lantibiotic applications as antimicrobials in foods and pharmaceuticals. In addition, a phylogenetic classification system based on the full prepropeptide sequences showed remarkable consistency with current classification systems and may provide a more rapid and convenient means for classifying lantibiotics.  相似文献   

9.
Steroidal alkaloids (SA) are nitrogen-containing specialized metabolites applied as chemophenetic markers in Solanum L. (Solanaceae). Over time, Solanum has been the focus of several molecular phylogenetic studies in an attempt to resolve its infrageneric classification and the relationship among species belonging to this genus. Here we aimed to study SA chemodiversity to identify chemical patterns and to perform a chemophenetic characterization of the Solanum genus and its major clades. Chemical literature data about Solanum steroidal alkaloids was assessed and structural variability of this biogenetic group was used in the chemometric analysis, by applying a Principal Component Analysis and Hierarchical Cluster Analysis. The results demonstrate that the SA chemodiversity in Solanum is represented by the occurrence of nine SA subtypes. The biosynthetic predominance of the spirosolane-type in Solanum clades was observed, except for the preference of the Potato clade in producing the solanidane-type. The Geminata clade displayed low SA glycosylation patterns, containing 3-oxy groups. In addition, low SA production in the Cyphomandra clade was observed. Chemical similarities between the Archaesolanum, Dulcamaroid and Morelloid clades were observed by chemometric analyses. In sum, chemophenetics was proven a reliable and additional tool to describe the array of specialized metabolites in Solanum clades, showing chemical information suitable to corroborate molecular phylogenetic studies.  相似文献   

10.
The species from the order Neisseriales are currently distinguished from other bacteria on the basis of branching in 16S rRNA gene trees. For this order containing a single family, Neisseriaceae, no distinctive molecular, biochemical, or phenotypic characters are presently known. We report here detailed phylogenetic and comparative analyses on the 27 genome sequenced species of the order Neisseriales. Our comparative genomic analyses have identified 54 conserved signature indels (CSIs) in widely distributed proteins that are specific for either all of the sequenced Neisseriales species or a number of clades within this order that are also supported by phylogenetic analyses. Of these CSIs, 11 are specifically present in all of the sequenced species from this order, but are not found in homologous proteins from any other bacteria. These CSIs provide novel molecular markers specific for, and delimiting, this order. Twenty-one CSIs in diverse proteins are specific for a group comprised of the genera Neisseria, Eikenella, Kingella, and Simonsiella (Clade I), which are obligate host-associated organisms, lacking flagella and exhibiting varied morphology. The species from these genera also formed a strongly supported clade in phylogenetic trees based upon concatenated protein sequences; a monophyletic grouping of these genera and other genera displaying similar morphological characteristics was also observed in the 16S rRNA gene tree. A second clade (Clade II), supported by seven of the identified CSIs and phylogenetic trees based upon concatenated protein sequences, grouped together species from the genera Chromobacterium, Laribacter, and Pseudogulbenkiania that are rod-shaped bacteria, which display flagella-based motility and are capable of free living. The remainder of the CSIs were uniquely shared by smaller groups within these two main clades. Our analyses also provide novel insights into the evolutionary history of the Neisseriales and suggest that the CSIs that are specific for the Clade I species may play an important role in the evolution of obligate host-association within this order. On the basis of phylogenetic analysis, the identified CSIs, and conserved phenotypic characteristics of different Neisseriales genera, we propose a division of this order into two families: an emended family Neisseriaceae (corresponding to Clade I) containing the genera Alysiella, Bergeriella, Conchiformibius, Eikenella, Kingella, Neisseria, Simonsiella, Stenoxybacter, Uruburuella and Vitreoscilla and a new family, Chromobacteriaceae fam. nov., harboring the remainder of the genera from this order (viz. Andreprevotia, Aquaspirillum, Aquitalea, Chitinibacter, Chitinilyticum, Chitiniphilus, Chromobacterium, Deefgea, Formivibrio, Gulbenkiania, Iodobacter, Jeongeupia, Laribacter, Leeia, Microvirgula, Paludibacterium, Pseudogulbenkiania, Silvimonas, and Vogesella).  相似文献   

11.
Members of the phylum Fibrobacteres are highly efficient cellulolytic bacteria, best known for their role in rumen function and as potential sources of novel enzymes for bioenergy applications. Despite being key members of ruminants and other digestive microbial communities, our knowledge of this phylum remains incomplete, as much of our understanding is focused on two recognized species, Fibrobacter succinogenes and F. intestinalis. As a result, we lack insights regarding the environmental niche, host range, and phylogenetic organization of this phylum. Here, we analyzed over 1000 16S rRNA Fibrobacteres sequences available from public databases to establish a phylogenetic framework for this phylum. We identify both species- and genus-level clades that are suggestive of previously unknown taxonomic relationships between Fibrobacteres in addition to their putative lifestyles as host-associated or free-living. Our results shed light on this poorly understood phylum and will be useful for elucidating the function, distribution, and diversity of these bacteria in their niches.  相似文献   

12.
Vorticella includes more than 100 currently recognized species and represents one of the most taxonomically challenging genera of ciliates. Molecular phylogenetic analysis of Vorticella has been performed so far with only sequences coding for small subunit ribosomal RNA (SSU rRNA); only a few of its species have been investigated using other genetic markers owing to a lack of similar sequences for comparison. Consequently, phylogenetic relationships within the genus remain unclear, and molecular discrimination between morphospecies is often difficult because most regions of the SSU rRNA gene are too highly conserved to be helpful. In this paper, we move molecular systematics for this group of ciliates to the infrageneric level by sequencing additional molecular markers—fast-evolving internal transcribed spacer (ITS) regions—in a broad sample of 66 individual samples of 28 morphospecies of Vorticella collected from Asia, North America and Europe. Our phylogenies all featured two strongly supported, highly divergent, paraphyletic clades (I, II) comprising the morphologically defined genus Vorticella. Three major lineages made up clade I, with a relatively well-resolved branching order in each one. The marked divergence of clade II from clade I confirms that the former should be recognized as a separate taxonomic unit as indicated by SSU rRNA phylogenies. We made the first attempt to elucidate relationships between species in clade II using both morphological and multi-gene approaches, and our data supported a close relationship between some morphospecies of Vorticella and Opisthonecta, indicating that relationships between species in the clade are far more complex than would be expected from their morphology. Different patterns of helix III of ITS2 secondary structure were clearly specific to clades and subclades of Vorticella and, therefore, may prove useful for resolving phylogenetic relationships in other groups of ciliates.  相似文献   

13.
Thaumarchaeota are globally distributed and abundant microorganisms occurring in diverse habitats and thus represent a major source of archaeal lipids. The scope of lipids as taxonomic markers in microbial ecological studies is limited by the scarcity of comparative data on the membrane lipid composition of cultivated representatives, including the phylum Thaumarchaeota. Here, we comprehensively describe the core and intact polar lipid (IPL) inventory of ten ammonia‐oxidising thaumarchaeal cultures representing all four characterized phylogenetic clades. IPLs of these thaumarchaeal strains are generally similar and consist of membrane‐spanning, glycerol dibiphytanyl glycerol tetraethers with monoglycosyl, diglycosyl, phosphohexose and hexose‐phosphohexose headgroups. However, the relative abundances of these IPLs and their core lipid compositions differ systematically between the phylogenetic subgroups, indicating high potential for chemotaxonomic distinction of thaumarchaeal clades. Comparative lipidomic analyses of 19 euryarchaeal and crenarchaeal strains suggested that the lipid methoxy archaeol is synthesized exclusively by Thaumarchaeota and may thus represent a diagnostic lipid biomarker for this phylum. The unprecedented diversity of the thaumarchaeal lipidome with 118 different lipids suggests that membrane lipid composition and adaptation mechanisms in Thaumarchaeota are more complex than previously thought and include unique lipids with as yet unresolved properties.  相似文献   

14.
Termites inhabit tropical and subtropical areas where they contribute to structure and composition of soils by efficiently degrading biomass with aid of resident gut microbiota. In this study, culture-independent molecular analysis was performed based on bacterial and archaeal 16S rRNA clone libraries to describe the gut microbial communities within Cornitermes cumulans, a South American litter-feeding termite. Our data reveal extensive bacterial diversity, mainly composed of organisms from the phyla Spirochaetes, Bacteroidetes, Firmicutes, Actinobacteria, and Fibrobacteres. In contrast, a low diversity of archaeal 16S rRNA sequences was found, comprising mainly members of the Crenarchaeota phylum. The diversity of archaeal methanogens was further analyzed by sequencing clones from a library for the mcrA gene, which encodes the enzyme methyl coenzyme reductase, responsible for catalyzing the last step in methane production, methane being an important greenhouse gas. The mcrA sequences were diverse and divided phylogenetically into three clades related to uncultured environmental archaea and methanogens found in different termite species. C. cumulans is a litter-feeding, mound-building termite considered a keystone species in natural ecosystems and also a pest in agriculture. Here, we describe the archaeal and bacterial communities within this termite, revealing for the first time its intriguing microbiota.  相似文献   

15.
Performance of biological wastewater treatment systems may be related to the composition and activity of microbial populations they contain. However, little information is known regarding microbial community inhabiting these ecosystems. The purpose of this study was to investigate archaeal and bacterial diversity, using cultivation-independent molecular techniques, in a constructed wetland receiving domestic wastewater. Two 16S rRNA gene libraries were constructed using total genomic DNA and amplified by PCR using primers specific for archaeal and bacterial domains. A high microbial diversity was detected. The Proteobacteria phylum is the most abundant and diversified phylogenetic group representing 31.3 % of the OTUs, followed by the Bacteroidetes (14.8 %), Planctomycetales (13.8 %), Actinobacteria (12 %), and Chloroflexi (8.2 %). Sequences affiliated with minor phylogenetic divisions such as the TM7, Nitrospira, OP10, and BRC1 are represented by <6 % of total OTUs. The Archaea domain was represented by the Thaumarchaeota phylum dominated by the Candidatus Nitrososphaera genus.  相似文献   

16.
17.
Kinorhyncha is a group of benthic, microscopic animals distributed worldwide in marine sediments. The phylum is divided into two classes, Cyclorhagida and Allomalorhagida, congruent with the two major clades recovered in recent phylogenetic analyses. Allomalorhagida accommodates more than one‐third of the described species, most of them assigned to the family Pycnophyidae. All previous phylogenetic analyses of the phylum recovered the two genera within Pycnophyidae, Pycnophyes and Kinorhynchus, as paraphyletic and polyphyletic. A major problem in these studies was the lack of molecular data of most pycnophyids, due to the limited and highly localized distribution of most species, often in the Arctic and the deep‐sea. We here overcame the problem by adding a morphological partition with data for 79 Pycnophyidae species, 15 of them also represented by molecular data. Model‐based analyses yielded seven clades, which each was supported by several morphological apomorphies. Accordingly, Kinorhynchus is synonymized with Pycnophyes and six new genera are described for the remaining recovered clades: Leiocanthus gen. nov., Cristaphyes gen. nov., Higginsium gen. nov., Krakenella gen. nov., Setaphyes gen. nov. and Fujuriphyes gen. nov.  相似文献   

18.
A molecular biological analysis of Icelandic volcanic rocks of different compositions and glassiness revealed the presence of Actinobacteria as an abundant phylum. In outcrops of basaltic glass they were the dominant bacterial phylum. A diversity of Actinobacteria were cultured from the rocks on rock-agar plates showing that they are capable of growing on rock-derived nutrient sources and that many of the taxa identified by molecular methods are viable, potentially active members of the community. Laboratory batch-culture experiments using a Streptomyces isolate showed that it was capable of enhancing the release of major elements from volcanic rocks, including weathered basaltic glass, crystalline basalt and komatiite, when provided with a carbon source. Actinobacteria of a variety of other sub-orders were also capable of enhancing volcanic rock weathering, measured as Si release. However, most strains did not significantly increase the weathering of the silica-rich rock, obsidian. These data show that Actinobacteria can contribute to volcanic rock weathering and, therefore, the carbonate-silicate cycle. Given their ancient lineage, it is likely they have played a role in rock weathering for over two billion years.  相似文献   

19.

Background

The Campanuloideae (Campanulaceae) are a highly diverse clade of angiosperms found mostly in the Northern Hemisphere, with the highest diversity in temperate areas of the Old World. Chloroplast markers have greatly improved our understanding of this clade but many relationships remain unclear primarily due to low levels of molecular evolution and recent and rapid divergence. Furthermore, focusing solely on maternally inherited markers such as those from the chloroplast genome may obscure processes such as hybridization. In this study we explore the phylogenetic utility of two low-copy nuclear loci from the pentatricopeptide repeat gene family (PPR). Rapidly evolving nuclear loci may provide increased phylogenetic resolution in clades containing recently diverged or closely related taxa. We present results based on both chloroplast and low-copy nuclear loci and discuss the utility of such markers to resolve evolutionary relationships and infer hybridization events within the Campanuloideae clade.

Results

The inclusion of low-copy nuclear genes into the analyses provides increased phylogenetic resolution in two species-rich clades containing recently diverged taxa. We also obtain support for the placement of two early diverging lineages (Jasione and Musschia-Gadellia clades) that have previously been unresolved. Furthermore, phylogenetic analyses of PPR loci revealed potential hybridization events for a number of taxa (e.g., Campanula pelviformis and Legousia species). These loci offer greater overall topological support than obtained with plastid DNA alone.

Conclusion

This study represents the first inclusion of low-copy nuclear genes for phylogenetic reconstruction in Campanuloideae. The two PPR loci were easy to sequence, required no cloning, and the sequence alignments were straightforward across the entire Campanuloideae clade. Although potentially complicated by incomplete lineage sorting, these markers proved useful for understanding the processes of reticulate evolution and resolving relationships at a wide range of phylogenetic levels. Our results stress the importance of including multiple, independent loci in phylogenetic analyses.  相似文献   

20.
Species definitions for plant pathogens have considerable practical impact for measures such as plant protection or biological control, and are also important for comparative studies involving model organisms. However, in many groups, the delimitation of species is a notoriously difficult taxonomic problem. This is particularly evident in the obligate biotrophic downy mildew genera (Peronosporaceae, Peronosporales, Oomycetes), which display a considerable diversity with respect to genetic distances and host plants, but are, for the most part, morphologically rather uniform. The recently established genus Hyaloperonospora is of particular biological interest because it shows an impressive radiation on virtually a single host family, Brassicaceae, and it contains the downy mildew parasite, Arabidopsis thaliana, of importance as a model organism. Based on the most comprehensive molecular sampling of specimens from a downy mildew genus to date, including various collections from different host species and geographic locations, we investigate the phylogenetic relationships of Hyaloperonospora by molecular analysis of the nuclear ribosomal ITS and LSU sequences. Phylogenetic trees were inferred with ML and MP from the combined dataset; partitioned Bremer support (PBrS) was used to assess potential conflict between data partitions. As in other downy mildew groups, the molecular data clearly corroborate earlier results that supported the use of narrow species delimitations and host ranges as taxonomic markers. With few exceptions, suggested species boundaries are supported without conflict between different data partitions. The results indicate that a combination of molecular and host features is a reliable means to discriminate downy mildew species for which morphological differences are unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号