首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A series of alpha-alkyl-substituted phenylpropanoic acids was prepared as dual agonists of peroxisome proliferator-activated receptors alpha and delta (PPARalpha/delta). Structure-activity relationship studies indicated that the shape of the linking group and the shape of the substituent at the distal benzene ring play key roles in determining the potency and the selectivity of PPAR subtype transactivation. Structure-activity relationships among the amide series (10) and the reversed amide series (13) are similar, but not identical, especially in the case of the compounds bearing a bulky hydrophobic substituent at the distal benzene ring, indicating that the hydrophobic tail part of the molecules in these two series binds at somewhat different positions in the large binding pocket of PPAR. alpha-Alkyl-substituted phenylpropanoic acids of (S)-configuration were identified as potent human PPARalpha/delta dual agonists. Representative compounds exhibited marked nuclear receptor selectivity for PPARalpha and PPARdelta. Subtype-selective PPAR activation was also examined by analysis of the mRNA expression of PPAR-regulated genes.  相似文献   

2.
A novel series of 5-membered heterocycle-containing phenylpropanoic acid derivatives was discovered as potent GPR120 agonists with low clearance, high oral bioavailability and in vivo antidiabetic activity in rodents.  相似文献   

3.
To understand the species selectivity in a series of alpha-methyl-alpha-phenoxy carboxylic acid PPARalpha/gamma dual agonists (1-11), structure-based molecular modeling was carried out in the ligand binding pockets of both human and mouse PPARalpha. This study suggested that interaction of both 4-phenoxy and phenyloxazole substituents of these ligands with F272 and M279 in mouse PPARalpha leads to the species-specific divergence in ligand binding. Insights obtained in the molecular modeling studies of these key interactions resulted in the ability to convert a human-selective PPARalpha agonist to a human and mouse dual agonist within the same platform.  相似文献   

4.
The long chain free fatty acid receptor 4 (FFA4/GPR120) has recently been recognized as lipid sensor playing important roles in nutrient sensing and inflammation and thus holds potential as a therapeutic target for type 2 diabetes and metabolic syndrome. To explore the effects of stimulating this receptor in animal models of metabolic disease, we initiated work to identify agonists with appropriate pharmacokinetic properties to support progression into in vivo studies. Extensive SAR studies of a series of phenylpropanoic acids led to the identification of compound 29, a FFA4 agonist which lowers plasma glucose in two preclinical models of type 2 diabetes.  相似文献   

5.
A series of aminoindane derivatives were synthesized and shown to be potent PPARα agonists. The compounds were obtained as racemates in 12 steps, and tested for PPARα activation and PPARα mediated induction of the HD gene. SAR was developed by variation to the core structure as shown within. Oral bioavailability was demonstrated in a Sprague–Dawley rat, while efficacy to reduce plasma triglycerides and plasma glucose was demonstrated in db/db mice.  相似文献   

6.
GPR119 has emerged as an attractive target for anti-diabetic agents. We identified a structurally novel GPR119 agonist 22c that carries a 5-(methylsulfonyl)indoline motif as an early lead compound. To generate more potent compounds of this series, structural modifications were performed mainly to the central alkylene spacer. Installation of a carbonyl group and a methyl group on this spacer significantly enhanced agonistic activity, resulting in the identification of 2-[1-(5-ethylpyrimidin-2-yl)piperidin-4-yl]propyl 7-fluoro-5-(methylsulfonyl)-2,3-dihydro-1H-indole-1-carboxylate (20). To further expand the chemical series of indoline-based GPR119 agonists, several heterocyclic core systems were introduced as surrogates of the carbamate spacer that mimic the presumed active conformation. This approach successfully produced an indolinylpyrimidine derivative 37, 5-(methylsulfonyl)-1-[6-({1-[3-(propan-2-yl)-1,2,4-oxadiazol-5-yl]piperidin-4-yl}oxy)pyrimidin-4-yl]-2,3-dihydro-1H-indole, which has potent GPR119 agonist activity. In rat oral glucose tolerance tests, these two indoline-based compounds effectively lowered plasma glucose excursion and glucose-dependent insulin secretion after oral administration.  相似文献   

7.
A class of novel pyrimidine derivatives bearing diverse conformationally restricted azabicyclic ether/amine were designed, synthesized and evaluated for their GPR119 agonist activities against type 2 diabetes. Most compounds exhibited superior hEC50 values to endogenous lipid oleoylethanolamide (OEA). Analogs with 2-fluoro substitution in the aryl ring showed more potent GPR119 activation than those without fluorine. Especially compound 27m synthesized from endo-azabicyclic alcohol was observed to have the best EC50 value (1.2 nM) and quite good agonistic activity (112.2% max) as a full agonist.  相似文献   

8.
The G-protein-coupled receptor 40 (GPR40) is an attractive molecular target for the treatment of type 2 diabetes mellitus. Previously, based on the natural oleic acid substrate, an exogenous ligand for this receptor, named AV1, was synthesized. In this context, here we validated the activity of AV1 as a full agonist, while the corresponding catechol analogue, named AV2, was investigated for the first time. The ligand-protein interaction between this new molecule and the receptor was highlighted in the lower portion of the GPR40 groove that generally accommodates DC260126. The functional assays performed have demonstrated that AV2 is a suitable GPR40 partial agonist, showing a therapeutic potential and representing a useful tool in the management of type 2 diabetes.  相似文献   

9.
FFA1 (free fatty acid receptor 1) has emerged as an attractive antidiabetic target due to its role in mediating the enhancement of glucose-stimulated insulin secretion in pancreatic β cells with a low risk of hypoglycemia. Many reported FFA1 agonists possessed somewhat pharmacokinetic and/or safety issues. Herein, we describe the identification of 2,3-dihydrobenzo[b][1,4]dioxine as a novel scaffold for FFA1 agonists. Comprehensive structure-activity relationship study based on this scaffold led to the discovery of (S)-3-(4-(((S)-7-(4-methoxyphenyl)-2,3-dihydrobenzo [b][1,4]dioxin-2-yl)methoxy) phenyl)hex-4-ynoic acid (26k), which displayed a potent FFA1 agonistic activity and good pharmacokinetic profiles. Subsequent in vivo studies demonstrated that compound 26k significantly improved the glucose tolerance in ICR mice. In summary, compound 26k is a promising drug candidate for further investigation.  相似文献   

10.
Different oleanolic acid (OA) oxime ester derivatives (3a-3t) were designed and synthesised to develop inhibitors against α-glucosidase and α-amylase. All the synthesised OA derivatives were evaluated against α-glucosidase and α-amylase in vitro. Among them, compound 3a showed the highest α-glucosidase inhibition with an IC50 of 0.35 µM, which was ∼1900 times stronger than that of acarbose, meanwhile compound 3f exhibited the highest α-amylase inhibitory with an IC50 of 3.80 µM that was ∼26 times higher than that of acarbose. The inhibition kinetic studies showed that the inhibitory mechanism of compounds 3a and 3f were reversible and mixed types towards α-glucosidase and α-amylase, respectively. Molecular docking studies analysed the interaction between compound and two enzymes, respectively. Furthermore, cytotoxicity evaluation assay demonstrated a high level of safety profile of compounds 3a and 3f against 3T3-L1 and HepG2 cells.

Highlights

  1. Oleanolic acid oxime ester derivatives (3a–3t) were synthesised and screened against α-glucosidase and α-amylase.
  2. Compound 3a showed the highest α-glucosidase inhibitory with IC50 of 0.35 µM.
  3. Compound 3f presented the highest α-amylase inhibitory with IC50 of 3.80 µM.
  4. Kinetic studies and in silico studies analysed the binding between compounds and α-glucosidase or α-amylase.
  相似文献   

11.
  1. Download : Download high-res image (117KB)
  2. Download : Download full-size image
The free fatty acid receptor 1 (FFA1) has gained significant interest as a novel antidiabetic target. Most of FFA1 agonists reported in the literature bearing a common biphenyl scaffold, which was crucial for toxicity verified by the researchers of Daiichi Sankyo. Herein, we describe the systematic exploration of non-biphenyl scaffold and further chemical modification of the optimal pyrrole scaffold. All of these efforts led to the identification of compound 11 as a potent and orally bioavailable FFA1 agonist without the risk of hypoglycemia. Further molecular modeling studies promoted the understanding of ligand-binding pocket and might help to design more promising FFA1 agonists.  相似文献   

12.
Novel 2-imidazoles have been identified as potent partial agonists of the α1A adrenergic receptor, with good selectivity over the α1B, α1D and α2A receptor sub-types. Sulfonamide 23 possessed attractive drug-like properties with respect to physicochemical and ADME properties and wide ligand selectivity.  相似文献   

13.
The anti‐inflammatory effect of sinapic acid (SA) has been reported in several studies. However, whether SA has the same effect on osteoarthritis (OA) has yet to be clearly elucidated. We designed a series of in vitro and in vivo procedures to verify the above conjecture. Compared with controls, SA‐pretreated human chondrocytes showed lower levels of interleukin (IL)‐1β‐induced IL‐6, prostaglandin E2 (PGE2), nitric oxide (NO) and tumour necrosis factor‐α (TNF‐α) in vitro. Meanwhile, SA could also reverse the degradation of type II collage and aggrecan, as well as the overproduction of matrix metalloproteinase‐9 (MMP‐9) and matrix metalloproteinase‐13 (MMP‐13), inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)‐2 and a disintegrin and metalloproteinase thrombospondin motifs (ADAMTS)‐5. Furthermore, activation of nuclear factor κB (NF‐κB), which was induced by IL‐1β, was also inhibited by SA through the pathway of nuclear factor‐erythroid 2‐related factor‐2 (Nrf2)/heme oxygenase 1. In vivo, SA could delay the progress of mice OA models. We propose that SA may be applied as a potential therapeutic drug in OA treatment.  相似文献   

14.
Crystals have been obtained of a ternary complex containing the yeast a1/α2 homeodomain heterodimer bound to a 21-base pair DNA site containing two 5′ overhanging bases at each end. The crystals are grown from cobaltic hexamine and form in space group P61 or P65 with a = b = 133 Å, c = 45.4 Å. Crystals that are flash-frozen at ?179°C diffract to 2.7 Å along the c-axis and to 2.4 Å in perpendicular directions. The crystals contain one protein–DNA complex in the crystallographic asymmetric unit. © 1995 Wiley-Liss, Inc.  相似文献   

15.
A series of trisubstituted imidazole derivatives containing a 4-fluorophenyl group, a pyrimidine ring, and a CN- or CONH2-substituted benzyl moiety have been synthesized and evaluated for p38α MAP kinase inhibitory activity. Among them, compounds 22c, 27b, and 28b inhibited p38α MAP kinase with IC50 values 27.6, 28, and 31 nM, respectively.  相似文献   

16.
A series of (S)-2-ethoxy-3-phenylpropanoic acid derivatives were synthesized and their insulin-sensitizing activities were evaluated in 3T3-L1 cells. Compounds 1b and 1d exhibited more potent insulin-sensitizing activity than rosiglitazone.  相似文献   

17.
The serine/threonine protein kinases CDK2 and GSK-3β are key oncotargets in breast cancer cell lines, therefore, in the present study three series of oxindole-benzofuran hybrids were designed and synthesised as dual CDK2/GSK-3β inhibitors targeting breast cancer (5a–g, 7a–h, and 13a–b). The N1-unsubstituted oxindole derivatives, series 5, showed moderate to potent activity on both MCF-7 and T-47D breast cancer cell lines. Compounds 5d–f showed the most potent cytotoxic activity with IC50 of 3.41, 3.45 and 2.27 μM, respectively, on MCF-7 and of 3.82, 4.53 and 7.80 μM, respectively, on T-47D cell lines, in comparison to the used reference standard (staurosporine) IC50 of 4.81 and 4.34 μM, respectively. On the other hand, the N1-substituted oxindole derivatives, series 7 and 13, showed moderate to weak cytotoxic activity on both breast cancer cell lines. CDK2 and GSK-3β enzyme inhibition assay of series 5 revealed that compounds 5d and 5f are showing potent dual CDK2/GSK-3β inhibitory activity with IC50 of 37.77 and 52.75 nM, respectively, on CDK2 and 32.09 and 40.13 nM, respectively, on GSK-3β. The most potent compounds 5d–f caused cell cycle arrest in the G2/M phase in MCF-7 cells inducing cell apoptosis because of the CDK2/GSK-3β inhibition. Molecular docking studies showed that the newly synthesised N1-unsubstituted oxindole hybrids have comparable binding patterns in both CDK2 and GSK-3β. The oxindole ring is accommodated in the hinge region interacting through hydrogen bonding with the backbone CO and NH of the key amino acids Glu81 and Leu83, respectively, in CDK2 and Asp133 and Val135, respectively, in GSK-3β. Whereas, in series 7 and 13, the N1-substitutions on the oxindole nucleus hinder the compounds from achieving these key interactions with hinge region amino acids what rationalises their moderate to low anti-proliferative activity.  相似文献   

18.
Purpose: Recently sodium alginate (SA)‐poly‐l‐ornithine (PLO) microcapsules containing pancreatic β‐cells that showed good morphology but low cell viability (<27%) was designed. In this study, two new polyelectrolytes, polystyrenic sulfonate (PSS; at 1%) and polyallylamine (PAA; at 2%) were incorporated into a microencapsulated‐formulation, with the aim of enhancing the physical properties of the microcapsules. Following incorporation, the structural characteristics and cell viability were investigated. The effects of the anti‐inflammatory bile acid, ursodeoxycholic acid (UDCA), on microcapsule morphology, size, and stability as well as β‐cell biological functionality was also examined. Methods: Microcapsules were prepared using PLO‐PSS‐PAA‐SA mixture and two types of microcapsules were produced: without UDCA (control) and with UDCA (test). Microcapsule morphology, stability, and size were examined. Cell count, microencapsulation efficiency, cell bioenergetics, and activity were also examined. Results: The new microcapsules showed good morphology but cell viability remained low (29% ± 3%). UDCA addition improved cell viability post‐microencapsulation (42 ± 5, P < 0.01), reduced swelling (P < 0.01), improved mechanical strength (P < 0.01), increased Zeta‐potential (P < 0.01), and improved stability. UDCA addition also increased insulin production (P < 0.01), bioenergetics (P < 0.01), and decreased β‐cell TNF‐α (P < 0.01), IFN‐gamma (P < 0.01), and IL‐6 (P < 0.01) secretions. Conclusions: Addition of 4% UDCA to a formulation system consisting of 1.8% SA, 1% PLO, 1% PSS, and 2% PAA enhanced cell viability post‐microencapsulation and resulted in a more stable formulation with enhanced encapsulated β‐cell metabolism, bioenergetics, and biological activity with reduced inflammation. This suggests potential application of UDCA, when combined with SA, PLO, PSS, and PAA, in β‐cell microencapsulation and diabetes treatment. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:501–509, 2016  相似文献   

19.
A series of 2-methyl-5-nitrobenzenesulfonohydrazides were prepared and evaluated as inhibitors of PI3K. An isoquinoline derivative shows good selectivity for the p110α isoform over p110β and p110δ, and also demonstrates good in vitro activity in a cell proliferation assay. Molecular modelling provides a rationalisation for the observed SAR.  相似文献   

20.
The taurine (Tau) containing tripeptide derivative Z-Tau-Pro-Phe-NHiPr (1) has been synthesized as suitable sulfonamido-pseudopeptide model to investigate formation and conformational properties of folded secondary structures stabilized by intramolecular H bonds directly involving the sulfonamide junction. In the crystal the pseudopeptide 1 adopts a type I β-turn with the Pro and Phe residues located at the (i + 1) and (i + 2) corner positions, respectively. The turn is stabilized by a 4 → 1 H bond engaging one of the SO2 oxygen atoms and the isopropylamide NH. In CDCl3 solution the β-turn folding is accompanied by a γ-turn centered at the Pro and involving a 3 → 1 H bond between the SO2 and the Phe NH. A comparison of the structural and conformational properties found in 1 with those of the already known sulfonamido-pseudopeptides, with particular reference to the models containing the Tau-Pro junction, is also reported. © 1997 John Wiley & Sons, Inc. Biopoly 41: 555–567, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号