共查询到20条相似文献,搜索用时 15 毫秒
1.
C. Ferrier-Pagès F. Houlbrèque E. Wyse C. Richard D. Allemand F. Boisson 《Coral reefs (Online)》2005,24(4):636-645
The uptake kinetics of zinc (Zn), an essential nutrient for both photosynthesis and calcification, in the tissue of S. pistillata showed that the transport of Zn is composed of a linear component (diffusion) at high concentrations and an active carrier-mediated
component at low concentrations. The carrier affinity (K
m=28 pmol l−1) was very low, indicating a good adaptation of the corals to low levels of Zn in seawater. Zn accumulation in the skeleton
was linear; its level was dependent on the length of the incubation as well as on the external concentration of dissolved
Zn. There was also a light-stimulation of Zn uptake, suggesting that zooxanthellae, through photosynthesis, are involved in
this process. An enrichment of the incubation medium with 10 nM Zn significantly increased the photosynthetic efficiency of
S. pistillata. This result suggests that corals living in oligotrophic waters might be limited in essential metals, such as zinc. 相似文献
2.
The effect of prolonged (9 week) nutrient enrichment on the growth and photosynthetic rates of the zooxanthellate coral Stylophora pistillata was investigated. The main questions were: (1) what is the exposure time needed to induce measurable change in growth rate? (2) which are the concentrations of nitrogen and phosphorus required to cause changes in these rates? (3) what is the recovery potential of the corals after the nutrient stress? For this purpose, three tanks (N, P, NP) were enriched with ammonium (N), phosphorus (P) or both nutrients (NP), respectively. A fourth tank (C) served as a control. The growth of 40 nubbins (10 in each tank) was monitored during four periods: period 1 (nutrient-poor conditions), period 2 (10?μm NH4 and/or 2?μm PO4 enrichment), period 3 (20?μm NH4 and/or 2?μm PO4) and period 4 (nutrient-poor conditions). Period 4 was performed to study the recovery potential of corals after a nutrient stress. During period 1, growth rates remained constant in all tanks. In the P tank, growth rates declined during the two enrichment periods, with a total decrease of 60% by the end of period 3. In the N tank, growth rates remained nearly constant during period 2 but decreased in period 3 (60% decrease). In the NP tank, 50% and 25% decreases were observed during periods 2 and 3. At the end of the recovery period, a regain in growth rate was observed in the N and NP tanks (35 and 30% increase, respectively, compared with the rates measured at the end of period 3) and growth rates returned to 60% of the initial rates. By contrast, in the P tank, there was no regain in growth and a further decrease of 5% was observed. Rates of photosynthesis were often higher during the enriched than the nutrient-poor period (up to 150% increase). Corals with the highest percent increases in maximal gross photosynthetic rate (P g max ) had the smallest decreases in growth rate due to nutrient enrichment. In conclusion, high ammonium (20?μm) and relatively low phosphorus concentrations (2?μm) are required to induce a significant decrease in coral growth rate. The largest reduction was observed with both ammonium and phosphorus enrichment. The decrease in growth rate was rapid following nutrient enrichment, since a 10% decrease or more could be observed after the first week of treatment. 相似文献
3.
Kochman Na’ama-Rose Grover Renaud Rottier Cecile Ferrier-Pages Christine Fine Maoz 《Coral reefs (Online)》2021,40(5):1473-1485
Coral Reefs - Coral reefs are on the brink of collapse from global warming and associated coral bleaching. Coral bleaching is the loss of algal symbionts from the coral tissue. The reduction in... 相似文献
4.
Puverel S Houlbrèque F Tambutté E Zoccola D Payan P Caminiti N Tambutté S Allemand D 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2007,147(4):850-856
Biominerals contain both inorganic and organic components. Organic components are collectively termed the organic matrix, and this matrix has been reported to play a crucial role in mineralization. Several matrix proteins have been characterized in vertebrates, but only a few in invertebrates, primarily in Molluscs and Echinoderms. Methods classically used to extract organic matrix proteins eliminate potential low molecular weight matrix components, since cut-offs ranging from 3.5 to 10 kDa are used to desalt matrix extracts. Consequently, the presence of such components remains unknown and these are never subjected to further analyses. In the present study, we have used microcolonies from the Scleractinian coral Stylophora pistillata to study newly synthesized matrix components by labelling them with 14C-labelled amino acids. Radioactive matrix components were investigated by a method in which both total organic matrix and fractions of matrix below and above 5 kDa were analyzed. Using this method and SDS-PAGE analyses, we were able to detect the presence of low molecular mass matrix components (<3.5 kDa), but no free amino acids in the skeletal organic matrix. Since more than 98% of the 14C-labelled amino acids were incorporated into low molecular weight molecules, these probably form the bulk of newly synthesized organic matrix components. Our results suggest that these low molecular weight components may be peptides, which can be involved in the regulation of coral skeleton mineralization. 相似文献
5.
Zoccola D Tambutté E Kulhanek E Puverel S Scimeca JC Allemand D Tambutté S 《Biochimica et biophysica acta》2004,1663(1-2):117-126
Plasma-membrane calcium pumps (PMCAs) are responsible for the expulsion of Ca(2+) from the cytosol of all eukaryotic cells and are one of the major transport systems involved in long-term regulation of resting intracellular Ca(2+) concentration. An important feature of stony corals, one of the major groups of calcifying animals, is the continuous export of large quantities of Ca(2+) for skeletogenesis. Here, we report the cloning and functional expression of the stpPMCA gene from the coral Stylophora pistillata, and whose features resemble those of the plasma-membrane Ca(2+)-ATPase family of mammalian cells. This is the first known example of a Ca(2+)-ATPase from the phylum Cnidaria, and thus, the most phylogenetically distant PMCA sequence in the animal kingdom described to date. We demonstrate that the localization of stpPMCA within calicoblastic cells is fully coherent with its role in calcification. We also show that the coral Ca(2+) pump is more closely related to vertebrate PMCAs than to Caenorhabditis elegans PMCAs. The cloning of evolutionarily conserved genes from cnidarian species repeatedly shows that these genes encode similar functional domains. Moreover, this high level of gene conservation further validates the use of cnidarian model systems for studying processes shared by Eumetazoans. 相似文献
6.
Zoccola D Tambutté E Sénégas-Balas F Michiels JF Failla JP Jaubert J Allemand D 《Gene》1999,227(2):157-167
While the mechanisms of cellular Ca2+ entry associated with cell activation are well characterized, the pathway of continuous uptake of the large amount of Ca2+ needed in the biomineralization process remains largely unknown. Scleractinian corals are one of the major calcifying groups of organisms. Recent studies have suggested that a voltage-dependent Ca2+ channel is involved in the transepithelial transport of Ca2+ used for coral calcification. We report here the cloning and sequencing of a cDNA coding a coral alpha1 subunit Ca2+ channel. This channel is closely related to the L-type family found in vertebrates and invertebrates. Immunohistochemical analysis shows that this channel is present within the calicoblastic ectoderm, the site involved in calcium carbonate precipitation. These data and previous results provide molecular evidence that voltage-dependent Ca2+ channels are involved in calcification. Cnidarians are the most primitive organisms in which a Ca2+ channel has been cloned up to now; evolutionary perspectives on Ca2+ channel diversity are discussed. 相似文献
7.
Fel Jean-Pierre Lacherez Catherine Bensetra Alaa Mezzache Sakina Béraud Eric Léonard Marc Allemand Denis Ferrier-Pagès Christine 《Coral reefs (Online)》2019,38(1):109-122
Coral Reefs - Ultraviolet (UV) filters and preservatives, which are common constituents of sunscreens and other cosmetics, are reported as a threat for coastal coral reef ecosystems; however, few... 相似文献
8.
We are interested in deciphering the mechanisms for morphogenesis in the Red Sea scleractinian coral Stylophora pistillata with the help of mathematical models. Previous mathematical models for coral morphogenesis assume that skeletal growth is proportional to the amount of locally available energetic resources like diffusible nutrients and photosynthetic products. We introduce a new model which includes factors like dissolved nutrients and photosynthates, but these resources do not serve as building blocks for growth but rather provide some kind of positional information for coral morphogenesis. Depending on this positional information side branches are generated, splittings of branches take place and branch growth direction is determined. The model results are supported by quantitative comparisons with experimental data obtained from young coral colonies. 相似文献
9.
10.
Coral Reefs - Corals in the Gulf of Aqaba (GoA) in the northern Red Sea show high thermal tolerance. The GoA has therefore been suggested as a coral reef refuge from climate change. However, as a... 相似文献
11.
F. Houlbrèque R. Rodolfo-Metalpa R. Jeffree F. Oberh?nsli J.-L. Teyssié F. Boisson K. Al-Trabeen C. Ferrier-Pagès 《Coral reefs (Online)》2012,31(1):101-109
Zinc (Zn) is an essential element for corals. We investigated the effects of ocean acidification on zinc incorporation, photosynthesis,
and gross calcification in the scleractinian coral Stylophora pistillata. Colonies were maintained at normal pHT (8.1) and at two low-pH conditions (7.8 and 7.5) for 5 weeks. Corals were exposed to 65Zn dissolved in seawater to assess uptake rates. After 5 weeks, corals raised at pHT (8.1) exhibited higher 65Zn activity in the coral tissue and skeleton, compared with corals raised at a lower pH. Photosynthesis, photosynthetic efficiency,
and gross calcification, measured by 45Ca incorporation, were however unchanged even at the lowest pH. 相似文献
12.
Skeletogenesis in the hermatypic coral Stylophora pistillata was studied by using the lateral skeleton preparative (LSP) assay, viz., a coral nubbin attached to a glass coverslip glued to the bottom of a Petri dish. Observations on tissue and skeletal growth were made by polarized microscopy and by using vital staining. The horizontal distal tissue edges developed thin transparent extensions of ectodermal and calicoblastic layers only. Four stages (I-IV) of skeletogenesis were observed at these edges, underneath the newly developed tissue. In stage I, a thin clear layer of coral tissue advanced 3–40 μm beyond the existing LSP peripheral zone, revealing no sign of spiculae deposition. At stage II, primary fusiform crystals (1 μm each) were deposited, forming a primary discontinuous skeletal front 5–30 μm away from the previously deposited skeleton. During stage III, needle-like crystals appeared, covering the primary fusiform crystals. Stage IV involved further lengthening of the needle-like crystals, a process that resulted in occlusion of the spaces between adjacent crystals. Calcification stages I-III developed within hours, whereas stage IV was completed in several days to weeks. Two basic skeletal structures, “scattered” and “laminar” skeletons, were formed, integrating the growth patterns of the needle-like crystals. High variation was recorded in the expression of the four calcification stages, either between different locations along a single LSP or between different preparations observed at the same diurnal time. All four skeletogenesis stages took place during both day and night periods, indicating that an intrinsic process controls S. pistillata calcification. This study was supported by the Israel Science Foundation (206/01 to J.E.), by the BARD, US-Israel Bi-National Agricultural Research and Development, by INCO-DEV project (REEFRES), and by CORALZOO, EC Collective Research project. 相似文献
13.
P. Tremblay R. Grover J. F. Maguer M. Hoogenboom C. Ferrier-Pagès 《Coral reefs (Online)》2014,33(1):1-13
Reef-building corals live in symbiosis with dinoflagellates that translocate a large proportion of their photosynthetically fixed carbon compounds to their coral host for its own metabolism. The carbon budget and translocation rate, however, vary depending on environmental conditions, coral host species, and symbiont clade. To quantify variability in carbon translocation in response to environmental conditions, this study assessed the effect of two different irradiance levels (120 and 250 μmol photons m?2 s?1) and feeding regimes (fed with Artemia salina nauplii and unfed) on the carbon budget of the tropical coral Stylophora pistillata. For this purpose, H13CO3 ?-enriched seawater was used to trace the conversion of photosynthetic carbon into symbiont and coral biomass and excrete particulate organic carbon. Results showed that carbon translocation (ca. 78 %) and utilization were similar under both irradiance levels for unfed colonies. In contrast, carbon utilization by fed colonies was dependent on the growth irradiance. Under low irradiance, heterotrophy was accompanied by lower carbon translocation (71 %), higher host and symbiont biomass, and higher calcification rates. Under high irradiance, heterotrophy was accompanied by higher rates of photosynthesis, respiration, and carbon translocation (90 %) as well as higher host biomass. Hence, levels of resource sharing within coral–dinoflagellate symbioses depend critically on environmental conditions. 相似文献
14.
The faviid corals, Favites chinensis and Goniastrea aspera are widely distributed in the Indo-Pacific region. Both corals are hermaphroditic broadcast spawners, but G. aspera is also known to brood planula larvae in Okinawa. This study investigated the temporal settlement patterns of planula larvae of the scleractinian corals F. chinensis and G. aspera that developed from spawned gametes, and planula release and settlement of brooded larvae of G. aspera from Okinawa, Japan. Some of the broadcast-spawned larvae of F. chinensis and G. aspera had very short pre-competency periods of 1–2 and 2–3 days after spawning, and relatively long maximum settlement-competency periods of 56–63 and 63–70 days after spawning, respectively. These pre-competency periods are among the shortest reported for larvae of broadcast spawning coral species, and appear to be negatively correlated with seawater temperature. F. chinensis larvae tended to settle rapidly with 34–39% of larvae settling in the first week after spawning, while broadcast-spawned G. aspera larvae had a slower settlement pattern with 11–15% of larvae settling in the first week after spawning. Brooded larvae of G. aspera settled more rapidly, with settlement rates of 27–31% within the first 24 h and 45–65% within the first week after the start of the experiment. The production of planula larvae with rapid settlement capabilities may enable F. chinensis and G. aspera to establish and maintain populations in shallow reef sites at Okinawa. The release of the brooded planulae for up to 2 months may explain why G. aspera is locally more dominant on shallow reefs in Okinawa than F. chinensis. On a broader scale, the longer settlement competency periods of some of the broadcast-spawned larvae of these species increase their potential for longer-distance dispersal and may partly explain the wide biogeographic distribution of these species in the Indo-Pacific region. 相似文献
15.
Moya A Ferrier-Pagès C Furla P Richier S Tambutté E Allemand D Tambutté S 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2008,151(1):29-36
High calcification rates observed in reef coral organisms are due to the symbiotic relationship established between scleractinian corals and their photosynthetic dinoflagellates, commonly called zooxanthellae. Zooxanthellae are known to enhance calcification in the light, a process referred as "light-enhanced calcification". The disruption of the relationship between corals and their zooxanthellae leads to bleaching. Bleaching is one of the major causes of the present decline of coral reefs related to climate change and anthropogenic activities. In our aquaria, corals experienced a chemical pollution leading to bleaching and ending with the death of corals. During the time course of this bleaching event, we measured multiple parameters and could evidence four major consecutive steps: 1) at month 1 (January 2005), the stress affected primarily the photosystem II machinery of zooxanthellae resulting in an immediate decrease of photosystem II efficiency, 2) at month 2, the stress affected the photosynthetic production of O2 by zooxanthellae and the rate of light calcification, 3) at month 3, there was a decrease in both light and dark calcification rates, the appearance of the first oxidative damage in the zooxanthellae, the disruption of symbiosis, 4) and finally the death of corals at month 6. 相似文献
16.
Titlyanov EA Titlyanova TV Yamazato K van Woesik R 《Journal of experimental marine biology and ecology》2001,257(2):163-181
This study investigated the photo-acclimation capacity of the coral Stylophora pistillata (Esper). Outer branches of coral colonies, taken from 2 m, were subjected to 90, 20, or 3% of incident surface photosynthetic active radiation (PAR(0)), or kept in total darkness. The corals were maintained either in filtered seawater (i.e., under starvation), or in seawater that had daily additions of zooplankton (rotifers). The experiments were maintained for 31 days. Zooxanthellae population densities and chlorophyll concentrations increased in S. pistillata fragments subjected to 20 and 3% PAR(0). The zooxanthellae densities decreased after 6 days in corals kept in total darkness, although chlorophyll concentrations remained higher. Corals that were fed and subjected to 90% PAR(0) showed lower degrading zooxanthellae frequencies, higher photosynthetic and respiration rates, and higher chlorophyll concentrations than corals in the same light regime under starvation. Complete acclimation to dim (20% PAR(0)) and low (3% PAR(0)) light was only apparent for corals fed with zooplankton. Changes in zooxanthellae population densities occurred through differential rates of zooxanthellae division and degradation. 相似文献
17.
Ferrier-Pagès C Schoelzke V Jaubert J Muscatine L Hoegh-Guldberg O 《Journal of experimental marine biology and ecology》2001,259(2):249-261
The purpose of this study was to determine whether the addition of iron alone or in combination with nitrate affects growth and photosynthesis of the scleractinian coral, Stylophora pistillata, and its symbiotic dinoflagellates. For this purpose, we used three series of two tanks for a 3-week enrichment with iron (Fe), nitrate (N) and nitrate+iron (NFe). Two other tanks were kept as a control (C). Stock solutions of FeCl(3) and NaNO(3) were diluted to final concentrations of 6 nM Fe and 2 &mgr;M N and continuously pumped from batch tanks into the experimental tanks with a peristaltic pump. Results obtained showed that iron addition induced a significant increase in the areal density of zooxanthellae (ANOVA, p=0.0013; change from 6.3+/-0.7x10(5) in the control to 8.5+/-0.6x10(5) with iron). Maximal gross photosynthetic rates normalized per surface area also significantly increased following iron enrichment (ANOVA, p=0.02; change from 1.23+/-0.08 for the control colonies to 1.81+/-0.24 &mgr;mol O(2) cm(-2) h(-1) for the iron-enriched colonies). There was, however, no significant difference in the photosynthesis normalized on a per cell basis. Nitrate enrichment alone (2 &mgr;M) did not significantly change the zooxanthellae density or the rates of photosynthesis. Nutrient addition (both iron and nitrogen) increased the cell-specific density of the algae (CSD) compared to the control (G-test, p=0.3x10(-9)), with an increase in the number of doublets and triplets. CSD was equal to 1.70+/-0.04 in the Fe-enriched colonies, 1.54+/-0.12 in the N- and NFe-enriched colonies and 1.37+/-0.02 in the control. Growth rates measured after 3 weeks in colonies enriched with Fe, N and NFe were 23%, 34% and 40% lower than those obtained in control colonies (ANOVA, p=0.011). 相似文献
18.
Dixson DL Jones GP Munday PL Pratchett MS Srinivasan M Planes S Thorrold SR 《Ecology and evolution》2011,1(4):586-595
Understanding the degree of connectivity between coastal and island landscapes and nearby coral reefs is vital to the integrated management of terrestrial and marine environments in the tropics. Coral reef fish are capable of navigating appropriate settlement habitats following their pelagic larval phase, but the mechanisms by which they do this are unclear. The importance of olfactory cues in settlement site selection has been demonstrated, and there is increasing evidence that chemical cues from terrestrial sources may be important for some species. Here, we test the olfactory preferences of eight island-associated coral reef fish recruits and one generalist species to discern the capacity for terrestrial cue recognition that may aid in settlement site selection. A series of pairwise choice experiments were used to evaluate the potential role that terrestrial, water-borne olfactory cues play in island-reef recognition. Olfactory stimuli tested included near-shore water, terrestrial rainforest leaf litter, and olfactory cues collected from different reef types (reefs surrounding vegetated islands, and reefs with no islands present). All eight island-associated species demonstrated high levels of olfactory discrimination and responded positively toward olfactory cues indicating the presence of a vegetated island. We hypothesize that although these fish use a suite of cues for settlement site recognition, one mechanism in locating their island/reef habitat is through the olfactory cues produced by vegetated islands. This research highlights the role terrestrial olfactory cues play in large-scale settlement site selection and suggests a high degree of ecosystem connectivity. 相似文献
19.
The swimming behaviour of 534 coral reef fish larvae from 27 species was explored at Moorea Island (French Polynesia) while they searched for a suitable settlement habitat, on the first night of their lagoon life. Most larvae swam actively (74%) and avoided the bottom (77%). A significant relationship was highlighted between the vertical position of larvae in the water column and the distance they travelled from lagoon entrance to settlement habitat: larvae swimming close to the surface settled farther away on the reef than bottom-dwelling larvae. 相似文献
20.
Weston AJ Dunlap WC Shick JM Klueter A Iglic K Vukelic A Starcevic A Ward M Wells ML Trick CG Long PF 《Molecular & cellular proteomics : MCP》2012,11(6):M111.015487
This study examines the response of Symbiodinium sp. endosymbionts from the coral Stylophora pistillata to moderate levels of thermal "bleaching" stress, with and without trace metal limitation. Using quantitative high throughput proteomics, we identified 8098 MS/MS events relating to individual peptides from the endosymbiont-enriched fraction, including 109 peptides meeting stringent criteria for quantification, of which only 26 showed significant change in our experimental treatments; 12 of 26 increased expression in response to thermal stress with little difference affected by iron limitation. Surprisingly, there were no significant increases in antioxidant or heat stress proteins; those induced to higher expression were generally involved in protein biosynthesis. An outstanding exception was a massive 114-fold increase of a viral replication protein indicating that thermal stress may substantially increase viral load and thereby contribute to the etiology of coral bleaching and disease. In the absence of a sequenced genome for Symbiodinium or other photosymbiotic dinoflagellate, this proteome reveals a plethora of proteins potentially involved in microbial-host interactions. This includes photosystem proteins, DNA repair enzymes, antioxidant enzymes, metabolic redox enzymes, heat shock proteins, globin hemoproteins, proteins of nitrogen metabolism, and a wide range of viral proteins associated with these endosymbiont-enriched samples. Also present were 21 unusual peptide/protein toxins thought to originate from either microbial consorts or from contamination by coral nematocysts. Of particular interest are the proteins of apoptosis, vesicular transport, and endo/exocytosis, which are discussed in context of the cellular processes of coral bleaching. Notably, the protein complement provides evidence that, rather than being expelled by the host, stressed endosymbionts may mediate their own departure. 相似文献