首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have examined the expression of the petunia (Petunia hybrida) glycine-rich protein-1 (ptGRP1) gene product using an antibody raised against a synthetic peptide comprising amino acids 22 through 36 of the mature ptGRP1 protein. This antibody recognizes a single protein of 23 kilodaltons. Cell fractionation studies showed that, as predicted (CM Condit, RB Meagher [1986] Nature 323: 178-181), ptGRP1 is most likely localized in the cell wall. In addition, it was found that (extractable) ptGRP1 is present in much higher abundance in unexpanded than in fully expanded tissue, with highest levels of accumulation in the bud. This same developmentally regulated pattern of protein expression was found in all varieties of petunia tested. In addition, tissue blots of petunia stem sections showed that ptGRP1 is localized to within the vascular tissue (to at least the phloem or cambium) and to either the epidermal cells or to a layer of collenchyma cells directly below the epidermis. Localization of ptGRP1 antigen in these cell types is shown to occur at different times in the overall development of the plant and at different quantitative levels.  相似文献   

2.
C M Condit 《The Plant cell》1993,5(3):277-288
An anti-petunia glycine-rich protein 1 (ptGRP1) antibody was used for biotin-streptavidin-alkaline phosphatase localization of this protein. In petunia stem and leaves grown under different light conditions, these studies revealed a complex pattern of cell localization for this protein. Levels of ptGRP1 were shown to decrease with developmental age of the tissue, appearing to correlate directly with expansive growth and inversely with lignification. Significantly, plants grown under low light (approximately 32 mumol m-2 sec-1 at noon) showed at least an eightfold increased level of ptGRP1 protein throughout ptGRP1's expression period when compared to plants grown under higher light (approximately 80 mumol m-2 sec-1 at noon). Evidence also indicated that for one cell type in which ptGRP1 is localized, this protein is imported rather than synthesized. In addition, confocal microscopy studies suggested that ptGRP1 is deposited at the cell wall/membrane interface rather than within the cell wall.  相似文献   

3.
A Phytophthora megasperma f.sp. glycinea cell wall glucan preparation was previously shown to protect tobacco plants against viral infection. Eleven plant defense-related genes were assayed for elevated mRNA accumulation levels in response to glucan treatment of tobacco plants. The expression of only one of these genes, a glycine-rich protein (GRP) gene, was induced by glucan application. Elevated GRP gene mRNA levels could be detected within 15 min of glucan treatment and reached maximum levels at 4 h post-treatment followed by a slow decline to 8 h. The maximum induction of the GRP gene was approximately ninefold above H2O-treated control plants. Northern blot analysis showed that a single mRNA species of 1.4 kb was responding to the glucan treatment. GRP genes occur in tobacco as members of a multigene family, but only one specific GRP gene was induced by the glucan treatment. A genomic copy of this responding GRP gene was cloned and sequenced. This tobacco GRP gene is homologous to the petunia ptGRP1 gene and the French bean GRP1.8 gene, but is not closely related to the French bean GRP1.0 gene. GRP gene expression has previously been associated with disease resistance in plants, but it remains to be determined whether β-glucan activation of the tobacco GRP gene results in the observed resistance to virus.  相似文献   

4.
A plant gene up-regulated at rust infection sites   总被引:8,自引:0,他引:8       下载免费PDF全文
Expression of the fis1 gene from flax (Linum usitatissimum) is induced by a compatible rust (Melampsora lini) infection. Infection of transgenic plants containing a beta-glucuronidase (GUS) reporter gene under the control of the fis1 promoter showed that induction is highly localized to those leaf mesophyll cells within and immediately surrounding rust infection sites. The level of induction reflects the extent of fungal growth. In a strong resistance reaction, such as the hypersensitive fleck mediated by the L6 resistance gene, there is very little fungal growth and a microscopic level of GUS expression. Partially resistant flax leaves show levels of GUS expression that were intermediate to the level observed in the fully susceptible infection. Sequence and deletion analysis using both transient Agrobacterium tumefaciens expression and stable transformation assays have shown that the rust-inducible fis1 promoter is contained within a 580-bp fragment. Homologs of fis1 were identified in expressed sequence tag databases of a range of plant species including dicots, monocots, and a gymnosperm. Homologous genes isolated from maize (Zea mays; mis1), barley (Hordeum vulgare; bis1), wheat (Triticum aestivum; wis1), and Arabidopsis encode proteins that are highly similar (76%-82%) to the FIS1 protein. The Arabidopsis homologue has been reported to encode a delta1-pyrroline-5-carboxylate dehydrogenase that is involved in the catabolism of proline to glutamate. RNA-blot analysis showed that mis1 in maize and the bis1 homolog in barley are both up-regulated by a compatible infection with the corresponding species-specific rust. The rust-induced genes homologous to fis1 are present in many plants. The promoters of these genes have potential roles for the engineering of synthetic rust resistance genes by targeting transgene expression to the sites of rust infection.  相似文献   

5.
Substantial changes in the composition of crops in Central Europe during the last two decades (increasing areas of maize, rape and sunflower fields) have significantly influenced the structure and dynamics of animal communities, though there is a lack of data available for small rodents. In this study, we assessed the importance of these three crops for rodents and compared it with traditional crops (alfalfa, barley, wheat). We observed that herbivorous species (especially the common vole) do not live in crops which do not have green leaves near the ground (e.g. sunflower, maize), while mobile granivorous species can inhabit all types of crop. We confirmed the presumed differences in habitat preferences; however we rejected the hypothesis of a general increase of rodent abundance during the vegetative season in managed fields. We found that (1) maize and sunflower had no importance for common voles, but they were favored habitats for wood mice; (2) numbers of wood mice in rape decreased during the season, while abundances of common voles increased; (3) common vole populations tended to increase during the season in all suitable crops (alfalfa, barley, wheat, tendency in maize and rape); (4) wood mice populations seemed stable in all crops; i.e. without a seasonal increase. It can be concluded that even if the new crop fields are an important part of the agricultural landscape, they are only a temporal habitat for small mammals, especially granivorous species.  相似文献   

6.
7.
Soils from two long-term crop rotation experiments were examined for incidence of root pathogens with a test tube method, where a great number (hundreds) of small portions (15–68g) of soil were biotested. There was a 4–5 times higher frequency of a root-infecting Pythium sp. In barley monoculture soil when compared to crop rotation soil, where winter turnip rape was the preceding crop. In pathogenicity tests the isolated pathogen caused severe root rot on barley, wheat and rye, but did not affect growth of oats, maize, peas and winter rape. In all essential morphological characters it resembles P. arrhenomanes and we classify it as belonging to this species.  相似文献   

8.
Two putative promoters from Australian banana streak badnavirus (BSV) isolates were analysed for activity in different plant species. In transient expression systems the My (2105 bp) and Cv (1322 bp) fragments were both shown to have promoter activity in a wide range of plant species including monocots (maize, barley, banana, millet, wheat, sorghum), dicots (tobacco, canola, sunflower, Nicotiana benthamiana, tipu tree), gymnosperm (Pinus radiata) and fern (Nephrolepis cordifolia). Evaluation of the My and Cv promoters in transgenic sugarcane, banana and tobacco plants demonstrated that these promoters could drive high-level expression of either the green fluorescent protein (GFP) or the -glucuronidase (GUS) reporter gene (uidA) in vegetative plant cells. In transgenic sugarcane plants harbouring the Cv promoter, GFP expression levels were comparable or higher (up to 1.06% of total soluble leaf protein as GFP) than those of plants containing the maize ubiquitin promoter (up to 0.34% of total soluble leaf protein). GUS activities in transgenic in vitro-grown banana plants containing the My promoter were up to seven-fold stronger in leaf tissue and up to four-fold stronger in root and corm tissue than in plants harbouring the maize ubiquitin promoter. The Cv promoter showed activities that were similar to the maize ubiquitin promoter in in vitro-grown banana plants, but was significantly reduced in larger glasshouse-grown plants. In transgenic in vitro-grown tobacco plants, the My promoter reached activities close to those of the 35S promoter of cauliflower mosaic virus (CaMV), while the Cv promoter was about half as active as the CaMV 35S promoter. The BSV promoters for pregenomic RNA represent useful tools for the high-level expression of foreign genes in transgenic monocots.  相似文献   

9.
We report here results which indicate (i) that the nuclear genomes of angiosperms is characterized by a compositional compartmentalization and an isochore structure; and (ii) that the nuclear genomes of some Gramineae exhibit strikingly different compositional patterns compared to those of many dicots. Indeed, the compositional distribution of nuclear DNA molecules (in the 50-100 Kb size range) from three dicots (pea, sunflower and tobacco) and three monocots (maize, rice and wheat) were found to be centered around lower (41%) and higher (45% for rice, 48% for maize and wheat) GC levels, respectively (and to trail towards even higher GC values in maize and wheat). Experiments on gene localization in density gradient fractions showed a remarkable compositional homogeneity in vast (greater than 100-200 Kb) regions surrounding the genes. On the other hand, the compositional distribution of coding sequences (GenBank and literature data) from dicots (several orders) was found to be narrow, symmetrical and centered around 46% GC, that from monocots (essentially barley, maize and wheat) to be broad, asymmetrical and characterized by an upward trend towards high GC values, with the majority of sequences between 60 and 70% GC. Introns exhibited a similar compositional distribution, but lower GC levels, compared to exons from the same genes.  相似文献   

10.
Transgenic maize (Zea mays) plants were generated with a construct harboring a maize caffeic acid O-methyltransferase (COMT) cDNA in the antisense (AS) orientation under the control of the maize Adh1 (alcohol dehydrogenase) promoter. Adh1-driven beta-glucuronidase expression was localized in vascular tissues and lignifying sclerenchyma, indicating its suitability in transgenic experiments aimed at modifying lignin content and composition. One line of AS plants, COMT-AS, displayed a significant reduction in COMT activity (15%-30% residual activity) and barely detectable amounts of COMT protein as determined by western-blot analysis. In this line, transgenes were shown to be stably integrated in the genome and transmitted to the progeny. Biochemical analysis of COMT-AS showed: (a) a strong decrease in Klason lignin content at the flowering stage, (b) a decrease in syringyl units, (c) a lower p-coumaric acid content, and (d) the occurrence of unusual 5-OH guaiacyl units. These results are reminiscent of some characteristics already observed for the maize bm3 (brown-midrib3) mutant, as well as for COMT down-regulated dicots. However, as compared with bm3, COMT down-regulation in the COMT-AS line is less severe in that it is restricted to sclerenchyma cells. To our knowledge, this is the first time that an AS strategy has been applied to modify lignin biosynthesis in a grass species.  相似文献   

11.
Xu Y  Yu H  Hall TC 《Plant physiology》1994,106(2):459-467
In rice (Oryza sativa L.), cytosolic triosephosphate isomerase (TPI) is encoded by a single gene. TPI catalyzes a vital step in glycolysis, and RNA blots showed that the tpi gene is expressed in all vegetative tissues (root, culm, and leaves) and in rice suspension cells. No effect of light on expression was detected, but submergence of rice seedlings resulted in elevated levels of TPI mRNA in roots and culms. The 2767-bp 5[prime] upstream sequence of the tpi gene was fused translationally with the [beta]-glucuronidase (gusA) gene, and the resulting construct, TPI-GUS, was found to express constitutive, high levels of GUS activity in transgenic tobacco (Nicotiana tabacum) plants. However, the same construct yielded no GUS activity in stably transformed rice plants, and RNA blots showed that no GUS mRNA could be detected even though stable integration of functional copies of the construct was confirmed by Southern blot and genomic polymerase chain reaction analyses. Transient assays using particle bombardment yielded high levels of GUS expression from the TPI-GUS construct in tobacco leaves, but essentially no expression in rice, barley, or maize leaves. When the first intron of the tpi gene was included in the construct (TPI-int1-GUS), transient GUS activity was routinely obtained in rice leaves, revealing that the first intron of the rice tpi gene is crucial for its expression in rice. TPI-int1-GUS also directed transient GUS expression in maize and barley leaves, but little or no activity was obtained from this construct in tobacco, tomato, or soybean leaves. These results with the rice tpi promoter are in accordance with mounting evidence that differences in gene expression exist between monocots and dicots.  相似文献   

12.
13.
Two classes of genes in plants   总被引:19,自引:0,他引:19  
Carels N  Bernardi G 《Genetics》2000,154(4):1819-1825
Two classes of genes were identified in three Gramineae (maize, rice, barley) and six dicots (Arabidopsis, soybean, pea, tobacco, tomato, potato). One class, the GC-rich class, contained genes with no, or few, short introns. In contrast, the GC-poor class contained genes with numerous, long introns. The similarity of the properties of each class, as present in the genomes of maize and Arabidopsis, is particularly remarkable in view of the fact that these plants exhibit large differences in genome size, average intron size, and DNA base composition. The functional relevance of the two classes of genes is stressed by (1) the conservation in homologous genes from maize and Arabidopsis not only of the number of introns and of their positions, but also of the relative size of concatenated introns; and (2) the existence of two similar classes of genes in vertebrates; interestingly, the differences in intron sizes and numbers in genes from the GC-poor and GC-rich classes are much more striking in plants than in vertebrates.  相似文献   

14.
15.
Silicon (Si) uptake has been extensively examined in rice (Oryza sativa), but it is poorly understood in other gramineous crops. We identified Low Silicon Rice 2 (Lsi2)-like Si efflux transporters from two important gramineous crops: maize (Zea mays) and barley (Hordeum vulgare). Both maize and barley Lsi2 expressed in Xenopus laevis oocytes showed Si efflux transport activity. Furthermore, barley Lsi2 was able to recover Si uptake in a rice mutant defective in Si efflux. Maize and barley Lsi2 were only expressed in the roots. Expression of maize and barley Lsi2 was downregulated in response to exogenously applied Si. Moreover, there was a significant positive correlation between the ability of roots to absorb Si and the expression levels of Lsi2 in eight barley cultivars, suggesting that Lsi2 is a key Si transporter in barley. Immunostaining showed that maize and barley Lsi2 localized only at the endodermis, with no polarity. Protein gel blot analysis indicated that maize and barley Lsi2 localized on the plasma membrane. The unique features of maize and barley Si influx and efflux transporters, including their cell-type specificity and the lack of polarity of their localization in Lsi2, indicate that these crops have a different Si uptake system from that in rice.  相似文献   

16.
Glucose-related proteins (GRPs) are ubiquitously expressed in the endoplasmic reticulum and assist in protein folding and assembly, consequently considered to be molecular chaperones. GRP78 and GRP94 expression was induced by glucose starvation and up-regulated in samples taken from several different malignant tissues. To clarify the roles of both molecules in tumorigenesis and progression of colorectal carcinomas, immunohistochemistry (IHC) was performed on tissue microarrays containing colorectal carcinomas, adenomas and the non-neoplastic mucosa (NNM) using antibodies against GRP78 and GRP94. Their expression was correlated with the clinicopathological parameters of carcinomas. Both proteins were also studied in colorectal carcinoma cell lines (DLD-1, HCT-15, SW480 and WiDr) by IHC and Western blot. There was a gradually increased GRP78 expression from colorectal NNMs, carcinomas, to low-grade and high-grade adenomas (P<0.05), while up-regulated GRP94 expression from NNM, low-grade adenoma, high-grade adenoma, to carcinoma (P<0.05). The expression was similar in all the carcinoma cell lines. GRP78 expression was negatively correlated with lymphatic invasion or low GRP94 expression of the carcinomas (P<0.05), while there was no correlation of GRP94 expression with other parameters of carcinomas (P>0.05). Multivariate analysis showed that venous invasion, lymph node metastasis and UICC staging (P<0.05), but not age, sex, tumor size, differentiation, depth of invasion, lymphatic invasion, GRP78 and GRP94 expression (P>0.05), were independent prognostic factors for carcinomas. It is suggested that up-regulated expression of GRP78 and GRP94 could possibly be involved in the pathogenesis of colorectal carcinomas.  相似文献   

17.
18.
19.
Investigating the impact of plant species on sulphur (S) availability in the rhizosphere soil is agronomically important to optimize S fertilization. Bulk, rhizosphere soils and the roots of field-grown rape and barley were sampled 7 times (every fortnight), from March to June, at plant maturity. Root carbon (C) and nitrogen (N) in water extract, along with soil SO42−-S, labile soil organic-C (HWC) and -N (HWN) in hot water extract, as well as soil arylsulphatase activity were then monitored. The average concentrations of both HWC and HWN were observed in the following decreasing order: rape rhizosphere soil >barley rhizosphere soil >bulk soil. In parallel, the average contents of water extractable-C and -N in rape roots were higher than those in barley roots. These results suggest that soil C and N contents in hot water extract (including rhizodeposition) were correlated with C and N released by roots. Great ARS activities found in rape rhizosphere soil were accompanied by great SO42−-S mineralization over time. Finally, bulk and rhizosphere soils of rape and barley were pooled from the seven samplings and incubated with the corresponding pooled root water-soluble C of both plant species and glucose-C. After 1 and 9 weeks, a greater net S mineralization (gross mineralization - immobilization) was observed with rape root water-soluble C than with barley root water-soluble C and glucose-C. Conjointly, we found a higher average value of ARS activity in rape rhizosphere than in barley rhizosphere soil. Our findings suggest that plant species, via their rhizodeposition, determine the dynamic of S in soil.  相似文献   

20.
Vaccinations are widely credited with reducing death rates from COVID-19, but the underlying host-viral mechanisms/interactions for morbidity and mortality of SARS-CoV-2 infection remain poorly understood. Acute respiratory distress syndrome (ARDS) describes the severe lung injury, which is pathologically associated with alveolar damage, inflammation, non-cardiogenic edema, and hyaline membrane formation. Because proteostatic pathways play central roles in cellular protection, immune modulation, protein degradation, and tissue repair, we examined the pathological features for the unfolded protein response (UPR) using the surrogate biomarker glucose-regulated protein 78 (GRP78) and co-receptor for SARS-CoV-2. At autopsy, immunostaining of COVID-19 lungs showed highly elevated expression of GRP78 in both pneumocytes and macrophages compared with that of non-COVID control lungs. GRP78 expression was detected in both SARS-CoV-2-infected and un-infected pneumocytes as determined by multiplexed immunostaining for nucleocapsid protein. In macrophages, immunohistochemical staining for GRP78 from deceased COVID-19 patients was increased but overlapped with GRP78 expression taken from surgical resections of non-COVID-19 controls. In contrast, the robust in situ GRP78 immunostaining of pneumocytes from COVID-19 autopsies exhibited no overlap and was independent of age, race/ethnicity, and gender compared with that from non-COVID-19 controls. Our findings bring new insights for stress-response pathways involving the proteostatic network implicated for host resilience and suggest that targeting of GRP78 expression with existing therapeutics might afford an alternative therapeutic strategy to modulate host-viral interactions during SARS-CoV-2 infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号