首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Postnatal changes in liver corticosterone metabolism in vitro were investigated in male rats pretreated for three days twice daily by physiological saline i.p./stress/ or by phenobarbital /20 mg/kg/. Perinatally, both stress and phenobarbital decrease corticosterone side chain metabolism while no change was observed in A ring reduction rate. In older animals no effect of the stress on corticosterone metabolism was observed. The inhibitory influence of phenobarbital on the side chain metabolism was still apparent at age of 14 days, but not in adult animals. The A ring reduction rate was increased by phenobarbital at age of 14 days and in adult animals.Measurements of serum corticosterone and corticosterone production by adrenal glands in vitro confirmed earlier reports showing that during perinatal period increased level of circulating corticosterone can be associated with minor or transient changes in adrenal cortex activity.It is concluded that changes in liver corticosterone metabolism are likely to play an important role in regulation of glucocorticoid activity perinatally when the responsiveness of pituitary-adrenal system to environmental stimuli is decreased.  相似文献   

2.
Corticosterone metabolism by liver slices was investigated in suckling (10-day-old), weanling (21-day-old) and adult male rats. During the suckling period adrenalectomy as well as sham adrenalectomy increase the rate of steroid A ring reduction and also the rate of steroid side chain degradation by 20-40%. In older animals such changes were not detected. The results support an earlier assumption that liver steroid metabolism is regulated in an age specific manner.  相似文献   

3.
The ethylmorphine-N-demethylation by liver microsomes from control and phenobarbital-treated rats of different ages was investigated by means of adding NADPH in combination with NADH to the incubation medium. The rate of ethylmorphine-N-demethylation in the presence of NADPH without NADH is greater in adult than in young rats and greater in induced that in control rats. The higher the activity of ethylmorphine metabolism with NADPH alone the more it is abolsutely enhanced by NADH. The relative increase in ethylmorphine metabolism caused by NADH is equal in all groups of animals. It is concluded that there are no differences in the introduction of the second electron from NADH to the oxygenated cytochrome P-450 but there are differences in the concentration of cytochrome-substrate complex and, consequently, in the oxygenated cytochrome-substrate complex. The enhancing effect of NADH is higher at lower NADPH concentrations. In the presence of NADH, the NADPH concentrations necessary to obtain a msximum metabolic rate are lower than without NADH.  相似文献   

4.
As part of an ongoing study of the role of subcellular fractions on the metabolism of nitroxides, we studied the metabolism of a set of seven nitroxides in microsomes obtained from rat liver. The nitroxides were chosen to provide information on the effects of the type of charge, lipophilicity and the ring on which the nitroxide group is located. Important variables that were studied included adding NADH, adding NADPH, induction of enzymes by intake of phenobarbital and the effects of oxygen. Reduction to nonparamagnetic derivatives and oxidation back to paramagnetic derivatives were measured by electron-spin resonance spectroscopy. In general, the relative rates of reduction of nitroxides were similar to those observed with intact cells, but the effects of the various variables that were studied often differed from those observed in intact cells. The rates of reduction were very slow in the absence of added NADH or NADPH. The relative effect of these two nucleotides changed when animals were fed phenobarbital, and paralleled the levels of NADPH cytochrome c reductase, cytochrome P-450, cytochrome b5 and NADH cytochrome c reductase; results with purified NADPH-cytochrome c reductase were consistent with these results. In microsomes from uninduced animals the rate of reduction was about 10-fold higher in the absence of oxygen. The products of reduction of nitroxides by microsomes were the corresponding hydroxylamines. We conclude that there are significant NADH- and NADPH-dependent paths for reduction of nitroxides by hepatic microsomes, probably involving cytochrome c reductases and not directly involving cytochrome P-450. From this, and from parallel studies now in progress in our laboratory, it seems likely that metabolism by microsomes is an important site of reduction of nitroxides. However, mitochondrial metabolism seems to play an even more important role in intact cells.  相似文献   

5.
Further study of the response to chronic stress stimulation in the early postnatal phase showed that the i.p. injection of physiological saline (stress stimulation) induced lymphopenia, a 50% decrease in the incorporation of 3H-leucine into isolated lymphocytes and a decrease in the weight of the thymus in 7-day-old male rats. No such changes were observed in adult animals. If repeated doses of phenobarbital were administered to stressed young rats, however, lymphopenia did not occur and the rate of the incorporation of 3H-leucine into isolated lymphocytes was not different from the control value; the protein content of the lymphocytes was significantly raised, however. In adult animals, phenobarbital increased the rate of incorporation of 3H-leucine into the lymphocytes. The repeated administration of phenobarbital reduced the weight of the thymus in both young and adult animals, but a decrease in spleen weight was recorded only in the young animals. A single i.p. injection of ACTH or dexamethasone caused lymphopenia and slowed down the incorporation of 3H-leucine into the lymphocytes of both young and adult animals. The results show that the striking decrease observed in the rate of the liver metabolism of corticosterone in suckling young rats not injured by repeated stress stimulation is accompanied by significant changes in the lymphoid tissue.  相似文献   

6.
The kinetics of chromate reduction by liver microsomes isolated from rats pretreated with phenobarbital or 3-methylcholanthrene with NADPH or NADH cofactor have been followed. Induction of cytochrome P-450 and NADPH-cytochrome P-450 reductase activity in microsomes by phenobarbital pretreatment caused a decrease in the apparent chromate-enzyme dissociation constant, Km, and an increase in the apparent second-order rate constant, kcat/Km, but did not affect the kcat of NADPH-mediated microsomal metabolism of chromate. Induction of cytochrome P-448 in microsomes by 3-methylcholanthrene pretreatment did not affect the kinetics of NADPH-mediated reduction of chromate by microsomes. The kinetics of NADH-mediated microsomal chromate reduction were unaffected by the drug treatments. The effects of specific enzyme inhibitors on the kinetics of microsomal chromate reduction have been determined. 2'-AMP and 3-pyridinealdehyde-NAD, inhibitors of NADPH-cytochrome P-450 reductase and NADH-cytochrome b5 reductase, inhibited the rate of microsomal reduction of chromate with NADPH and NADH. Metyrapone and carbon monoxide, specific inhibitors of cytochrome P-450, inhibited the rate of NADPH-mediated microsomal reduction of chromate, whereas high concentrations of dimethyl-sulfoxide (0.5 M) enhanced the rate. These results suggest that the electron-transport cytochrome P-450 system is involved in the reduction of chromate by microsomal systems. The NADPH and NADH cofactors supply reducing equivalents ultimately to cytochrome P-450 which functions as a reductase in chromate metabolism. The lower oxidation state(s) produced upon chromate reduction may represent the ultimate carcinogenic form(s) of chromium. These studies provide evidence for the role of cytochrome P-450 in the activation of inorganic carcinogens.  相似文献   

7.
The role of pyridine nucleotide synergism in CCl4 metabolism was evaluated for its potential contribution to enhanced lipid peroxidation. Male Sprague-Dawley rats receiving either no treatment (control) or treatment with phenobarbital (PB) were used to prepare hepatic microsomes. Metabolism was evaluated in the presence and absence of an NADPH generator system and in the presence and absence of NADH. The generator system produced a greater extent of metabolism for both control and PB microsomes. NADH-catalyzed CCl4 metabolism occurred to a similar extent in control and PB microsomes, amounting to 9-10% and 5-6% of the NADPH rate in control and PB microsomes, respectively. Synergism by NADH occurred at the lowest concentrations of NADPH, apparently decreasing the Km for NADPH and having little effect on the Vmax. Addition of NAD+ produced synergism, as did the addition of 5' AMP, an inhibitor of nucleotide pyrophosphatase. Thus, the synergistic increase in CCl4 metabolism produced by NADH may occur in part from an increased availability of NADPH, as a result of decreased degradation, rather than by electron donation from NADH.  相似文献   

8.
As part of an ongoing study of the role of subcellular fractions on the metabolism of nitroxides, we studied the metabolism of a set of seven nitroxides in microsomes obtained from rat liver. The nitroxides were chosen to provide information on the effects of the type of charge, lipophilicity and the ring on which the nitroxide group is locted Important variables that were studied included adding NADH, adding, induction of enzymed by intake of phenobarbital and the effects of oxygen. Reduction of nonparamagnetic derivatives and oxidation to paramagnetic derivatives were measured by electron-spin resonance spectroscopy. In general, the relative rates of reduction of nitroxides were similar to those observed with intact cells, but the effects of the various variables that were studied often differed from those observed in intact cells. The rates of reduction were very slow in the absence of added NADh or NADPH. The relative effect of these two nucleotides changed when animals were fed phenobarbital and paralleled the levels of NADPH cytochrome c reductase, cytochrome P-450, cytochrome b5 and NADH cytochrome c reductase; results with purified NADPH-cytochrome c reductase were consistent with these results. In microsomes from uninduced animals the rate of reduction was about 10-fold higher in the absence of oxygen. The products of reduction of nitroxides by microsomes were the corresponding hydroxylmines. We conclude that there are significant NADH- and NADPH-dependent paths for reduction of nitroxides by hepatic microsomes, probably involving cytochrome c reductases and not directly involving cytochrome P-450. From this, and from parallel studies now in progress in our laboratory, it seems likely that metabolism by microsomes is an important site of reduction of nitroxides. However, mitochondrial metabolism seems to play an even more important role in intact cells.  相似文献   

9.
A study was made of the effect of a highly purified preparation of an unusual estrogen-binding protein (UEBP) of rat liver on 3H-estradiol (3H-E2) and 3H-testosterone (3H-T) metabolism by female rat liver homogenates. The UEBP decreased the rate of metabolic conversions of 3H-E2 and 3H-T in a dose-dependent and specific manner. The effectiveness of the inhibitory action of the UEBP declined with increase of metabolic activities of homogenate enzymes. The effects of the UEBP were reduced fully or partly by the ligands specifically binding to the UEBP, estrone (E1), and estriol (E3) respectively. The latter fact was used to demonstrate the effectiveness of the endogenous male rat liver homogenate UEBP in the control of 3H-E2 metabolism. The UEBP did not exhibit any oxidoreductase activity on the use of 3H-E1, 3H-E2, 3H-E2, 3H-T and 3H-androstenedione with NAD+, NADH, NADP+, and NADPH as cofactors. These data present the first direct experimental evidence of the regulatory function of the UEBP in the time course of changes in sex steroids.  相似文献   

10.
The metabolism of the lipid peroxidation product 4-hydroxynonenal and of several other related aldehydes by isolated hepatocytes and rat liver subcellular fractions has been investigated. Hepatocytes rapidly metabolize 4-hydroxynonenal in an oxygen-independent process with a maximum rate (depending on cell preparation) ranging from 130 to 230 nmol/min per 10(6) cells (average 193 +/- 50). The aldehyde is also rapidly utilized by whole rat liver homogenate and the cytosolic fraction (140 000 g supernatant) supplemented with NADH, whereas purified nuclei, mitochondria and microsomes supplemented with NADH show no noteworthy consumption of the aldehyde. In cytosol, the NADH-mediated metabolism of the aldehyde exhibits a 1:1 stoichiometry, i.e. 1 mol of NADH oxidized/mol of hydroxynonenal consumed, and the apparent Km value for the aldehyde is 0.1 mM. Addition of pyrazole (10 mM) or heat inactivation of the cytosol completely abolishes aldehyde metabolism. The various findings strongly suggest that hepatocytes and rat liver cytosol respectively convert 4-hydroxynonenal enzymically is the corresponding alcohol, non-2-ene-1,4-diol, according to the equation: CH3-[CH2]4-CH(OH)-CH = CH-CHO + NADH + H+----CH3-[CH2]4-CH(OH)-CH = CH-CH2OH + NAD+. The alcohol non-2-ene-1,4-diol has not yet been isolated from incubations with hepatocytes and liver cytosolic fractions, but was isolated in pure form from an incubation mixture containing 4-hydroxynonenal, isolated liver alcohol dehydrogenase and NADH and its chemical structure was confirmed by mass spectroscopy. Compared with liver, all other tissues possess only little ability to metabolize 4-hydroxynonenal, ranging from 0% (fat pads) to a maximal 10% (kidney) of the activity present in liver. The structure of the aldehyde has a strong influence on the rate and extent of its enzymic NADH-dependent reduction to the alcohol. The saturated analogue nonanal is a poor substrate and only a small proportion of it is converted to the alcohol. Similarly, nonenal is much less readily utilized as compared with 4-hydroxynonenal. The effective conversion of the cytotoxic 4-hydroxynonenal and other reactive aldehydes to alcohols, which are probably less toxic, could play a role in the general defence system of the liver against toxic products arising from radical-induced lipid peroxidation.  相似文献   

11.
Optimum incubation conditions for determination of ethylmorphine-N-demethylation with newborn and adult rat liver homogenate have been determined: 1 ml 1:20 liver homogenate in 1.15% KCl, 1 ml 0.1 M phosphate buffer with ethylmorphine, NADP, and glucose-6-P, final concentrations 10, 0.33 and 5 mM, respectively, no nicotinamide, no MgCl2, 1 ml 0.5 M phosphate buffer; 3 ml final volume, 20 min incubation time. With both age groups NADH increases the activity to the same extent. With NADPH, saturation could be achieved only with newborn liver, but not with adult liver homogenate. Postnatally, the activity increases about fivefold, with a break at the 10th day of life. The Lineweaver-Burk plot was linear with newborn liver homogenate, whereas for all other age groups the graphs showed an angle. Statistical analysis pointed out that a two-enzyme model fits the experimental data only insignificantly better than a one-enzyme model. From other experimental evidence and manifold reproduction without any exception of these results, however, it may be concluded that there are different monooxygenases which show different affinities towards one substrate (ethylmorphine) and which show different developmental patterns.  相似文献   

12.
cAMP-dependent protein kinase was found in the sediment obtained by centrifuging a homogenate of sea urchin embryos at 10,000g for 20 min, and was solubilized with 1% Triton X-100. This enzyme was eluted at 0.16 M NaCl in a linear concentration gradient on a DEAE-cellulose column, at which cAMP-dependent protein kinase found in the supernatant was also eluted. The enzyme activity was enhanced about 1.5-fold in the presence of 1 μM cAMP, and increased somewhat by adding cGMP or cIMP. The activation by cAMP of protein kinase in the sedimentable fraction was lower than in the supernatant fraction. The properties of the enzyme found in the 10,000g sediment and in the supernatant differ somewhat. The activity of the cAMP-dependent protein kinase in the 10,000g sediment was high in the embryos at the blastula, the swimming blastula, and the mesenchyme blastula stages. On the other hand, the activity was undetectable in unfertilized eggs and in embryos at the morula, the gastrula, and the pluteus stages.  相似文献   

13.
Corticosterone formation was determined in the reconstructed rat adrenal system which consisted of the mitochondria and post-mitochondrial supernatant fraction (PM-fraction) supported by l-malate, and effect of ACTH and cycloheximide in vivo and cycloheximide, Ca++ and sterol carrier protein (SCP) in vitro were examined. Mitochondria isolated from adrenals of rats which received ACTH 15 min before sacrifice showed an elevated corticosterone formation. Cycloheximide administration 15 min prior to ACTH injection completely blocked the effect of ACTH but in vitro addition of this drug to the incubation mixture did not modify the rate of corticosterone production even at higher concentrations. Since the PM-fraction isolated from adrenals of rats received ACTH or cycloheximide or both did not change the mitochondrial capacity for corticosterone formation, factor(s) which influenced by ACTH administration seemed to be localized in mitochondria. The SCP-bound cholesterol was utilized for corticosterone formation more efficiently than the free cholesterol when added to the incubation mixture, and this might be due to, at least in part, higher rate of binding to the mitochondrial inner membrane of the SCP-bound cholesterol.  相似文献   

14.
Aspartate and alanine aminotransferase (AsT, AlT) activities were studied in tissues of adrenalectomized rabbits which were treated with a single and multiple administrations of hydrocortisone (5 mg/kg) or a single administration of corticotropine (ACTH, 10 units/kg). It is shown that adrenalectomy decreases the AsT activity in homogenate of femoral muscle tissue and decreases the AlT activity in homogenate and supernatant of the liver, spleen and muscle tissue and in blood plasma. A single administration of hydrocortisone increases the AsT activity in supernatant of femoral muscle tissue and in blood plasma and increases AIT activity in the brain, liver, muscle and blood plasma. Parallel with that AsT and AlT activities are decreased in the spleen tissue. Multiple administration of hydrocortisone induces analogous changes in the AsT activity in the muscle and in the AlT activity in the liver, muscle and blood plasma. A single administration of ACTH induces an increase of the AsT activity in the muscle supernatant and in blood plasma. It also causes a rise of the AlT activity in the liver, muscle supernatant and blood plasma. The AlT activity is decreased in the brain supernatant. A question about stability of free amino acids metabolism (especially of alanine and aspartic acid) in the rabbit brain with changes in corticosteroid levels of organism is under discussion.  相似文献   

15.
Corticosterone is synthesized in the adrenal glands and is circulated throughout the body to perform regulatory functions in various tissues. The testis is known to synthesize and secrete testosterone and other androgens. We developed an accurate method to measure steroid content using liquid chromatography-mass spectrometry analysis. In the present study, significant levels of the precursor compounds of testosterone and corticosterone synthesis could be detected in rat testis using this method. After adrenalectomy, corticosterone remained in the blood and testicular tissue at approximately 1% of the amount present in the control testis. When the excised testicular tissue was washed and incubated with NADH, NADPH and progesterone, not only testosterone and its precursors but also 11-deoxycorticosterone and corticosterone were produced; the levels of 11-deoxycorticosterone and corticosterone increased with incubation time. The production rate of 11-deoxycorticosterone from progesterone was estimated to be approximately 1/20 that of 17-hydroxyprogesterone, and the corticosterone level was approximately 1/10 that of testosterone. These ratios coincided with those in the testicular tissue of the adrenalectomized rats, indicating that corticosterone was synthesized in the testis and not in the blood. A primary finding of this study was that corticosterone and testosterone were synthesized in a 1/10-20 ratio in the testis. It is concluded that corticosterone, which has various functions, such as the regulation of glycolysis and mediating spermatogenesis, is produced locally in the testis and that this the local production is convenient and functional to respond to local needs.  相似文献   

16.
We examined the paraquat detoxicative system in mouse livers. The survival rate of mice receiving 50 mg/kg paraquat was 41% at 7 days and significantly rose to 88, 64, 69% with pretreatment with phenytoin, phenobarbital, and rifampicin, respectively. Phenytoin induced activity in NADPH-cytochrome P450 reductase, CYP3A, CYP2B, and CYP2C that was 3 to 4 times higher than that of the controls. Phenobarbital induced CYP2B and rifampicin induced CYP3A, respectively, in addition to NADPH-cytochrome P450 reductase. 3-Methylcholanthrene did not induce these enzymes and did not alter the survival rate. All the mice pretreated with CoCl(2) (a CYP synthesis inhibitor) or SKF 525-A (a CYP inhibitor) were dead after 5 days, and troleandomycin (a CYP3A-specific inhibitor) also reduced the survival rate. When cell homogenates were incubated with paraquat and NADPH, paraquat decreased and its metabolic intermediate paraquat-monopyridone was formed. Troleandomycin inhibited the decrease in paraquat and increased the monopyridone. After making a subfraction of the homogenate, monopyridone was produced in the postmicrosomal 105,000g supernatant, but not in the microsomes. The pretreatment of mice with phenytoin decreased the monopyridone in the postmitochondrial fraction, but did not affect the supernatant. These results indicated that paraquat was first metabolized in the postmicrosomal supernatant into monopyridone, and that may have been subsequently hydroxylated by the microsomes. Repeated intravenous injections of alpha-tocopherol to paraquat-loaded mice significantly reduced the paraquat mortality and when these mice were pretreated with rifampicin, 100% of them survived. These studies demonstrate that postmitochondrial fractions play an important role in paraquat detoxication metabolism, and that the combination of CYP induction and alpha-tocopherol administration is highly useful for the survival of paraquat-exposed mice.  相似文献   

17.
Summary Male rats were given 100mg phenobarbital for three days intraperitoneally. Biochemically an increase was found in activity of nitro-anisole demethylation and in the content of cytochrome P-450. Enzymhistochemically an increase in activity was noted for NADPH tetr. red., G6PD, ICD, and Naftol AS-D-esterase; a decrease was seen in G6Pase and glycogen, but no difference was found in NADH tetr. red. From these results it has been suggested that NADPH tetr. red. is directly involved in the hydroxylation chain, while G6PD and ICD are more indirectly involved.List of Abbreviations NADH nicotinamide adenine dinucleotide - NADPH nicotinamide adenine dinucleotide phosphate - NADPH tetr. red. NADPH tetrazolium reductase - G6PD glucose-6-phosphate dehydrogenase - ICD iso-citric acid dehydrogenase - G6Pase glucose-6-phosphatase - PAS periodic acid-Schiff method  相似文献   

18.
Evidence for the existence of a previously unknown rat hepatic microsomal reductase, short chain trans-2-enoyl-CoA reductase (SC reductase) is presented. This reductase has a specific requirement for NADPH, is unable to utilize NADH, and catalyzes the conversion of crotonyl-CoA and trans-2-hexenoyl-CoA to butyric acid and hexenoic acid at a rate of 5 and 65 nmol per min per mg of microsomal protein, respectively. Highly purified NADPH cytochrome P-450 reductase incorporated into liposomes prepared from dilauroyl phosphatidylcholine in the presence or absence of cytochrome P-450 possesses no SC reductase activity. These liposomal preparations did, however, catalyze mixed function oxidations of benzphetamine and testosterone. Rabbit antibody to rat liver NADPH cytochrome P-450 reductase had little to no effect on the conversion of crotonyl-CoA and trans-2-hexenoyl-CoA, suggesting that the SC reductase accepts reducing equivalents directly from NADPH. When acetoacetyl-CoA was incubated with hepatic microsomes and either NADH or NADPH, no formation of butyrate was detected; however, when both cofactors were present, a rate of formation of 3 nmol of butyrate was determined per min per mg of microsomal protein. These results suggest the presence of a previously unknown short chain beta-ketoreductase which catalyzes the reduction of short chain beta-keto acids, only in the presence of NADH. Our results also indicate that the electrons from NADH to the beta-ketoreductase bypass cytochrome b5. The physiological significance is discussed in terms of lipogenesis and ketone body utilization by the liver.  相似文献   

19.
Addition of beta-lapachone, an o-naphthoquinone endowed with trypanocidal properties to respiring Trypanosoma cruzi epimastigotes induced the release of O2- and H2O2 from the whole cells to the suspending medium. The same beta-lapachone concentration (4 micron) that released H2O2 at maximal rate completely inhibited T. cruzi growth in a liquid medium. The position isomer, alpha-lapachone, did not stimulate O2- and H2O2 release, and did not inhibit epimastigote growth. beta-Lapachone was able to stimulate H2O2 production by the epimastigote homogenate in the presence of NADH as reductant. The same effect was observed with the mitochondrial fraction supplemented with NADH, where beta-lapachone enhanced the generation of O2- and H2O2 4.5- and 2.5-fold respectively. beta-Lapachone also increased O2- and H2O2 production (2.5 and 2-fold respectively) by the microsomal fraction with NADPH as reductant. Cyanide-insensitive NADH and NADPH oxidation by the mitochondrial and microsomal fractions (quinone reductase activity) was stimulated to about the same extent by beta-lapachone. alpha-Lapachone was unable to increase O2- and H2O2 production and quinone reductase activity of the mitochondrial and microsomal fractions.  相似文献   

20.
1. The concentrations of the nicotinamide-adenine dinucleotides in rat liver have been determined at intervals during the period 1-24hr. after feeding adult female rats with dimethylnitrosamine or thioacetamide. 2. The administration of dimethylnitrosamine resulted in a rapid decrease in the sum of NAD+NADH(2). This sum was decreased by 40% 3hr. after dosing. 3. Dimethylnitrosamine administration also produced an overall decrease in the NADP+NADPH(2) but this decrease was not so early nor as marked as that found for NAD+NADH(2). 4. The changes produced by thioacetamide were quite different from those obtained with dimethylnitrosamine. Thioacetamide produced a temporary rise in the NAD+NADH(2) followed by a small fall. The NADP+NADPH(2) was little changed in the early hours after dosing with thioacetamide but had decreased by approx. 15% 18hr. after administration. 5. These changes are discussed in terms of the known hepatotoxic actions of dimethylnitrosamine and thioacetamide, and are compared with previously reported changes found after the administration of carbon tetrachloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号