首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Filopodia are long, slender, actin-rich cellular protrusions, which recently have become a focus of cell biology research because of their proposed roles as sensory and exploratory organelles that allow for “intelligent” cell behavior. Actin nucleation, elongation and bundling are believed to be essential for filopodia formation and functions. However, the identity of actin filament nucleators responsible for the initiation of filopodia remains controversial. Two alternative models, the convergent elongation and tip nucleation, emphasize two different actin filament nucleators, the Arp2/3 complex or formins, respectively, as key players during filopodia initiation. Although these two models in principle are not mutually exclusive, it is important to understand which of them is actually employed by cells. In this review, we discuss the existing evidence regarding the relative roles of the Arp2/3 complex and formins in filopodia initiation.  相似文献   

2.
Filopodia explore the environment, sensing soluble and mechanical cues during directional motility and tissue morphogenesis. How filopodia are initiated and spatially restricted to specific sites on the plasma membrane is still unclear. Here, we show that the membrane deforming and curvature sensing IRSp53 (Insulin Receptor Substrate of 53 kDa) protein slows down actin filament barbed end growth. This inhibition is relieved by CDC42 and counteracted by VASP, which also binds to IRSp53. The VASP:IRSp53 interaction is regulated by activated CDC42 and promotes high‐density clustering of VASP, which is required for processive actin filament elongation. The interaction also mediates VASP recruitment to liposomes. In cells, IRSp53 and VASP accumulate at discrete foci at the leading edge, where filopodia are initiated. Genetic removal of IRSp53 impairs the formation of VASP foci, filopodia and chemotactic motility, while IRSp53 null mice display defective wound healing. Thus, IRSp53 dampens barbed end growth. CDC42 activation inhibits this activity and promotes IRSp53‐dependent recruitment and clustering of VASP to drive actin assembly. These events result in spatial restriction of VASP filament elongation for initiation of filopodia during cell migration, invasion, and tissue repair.  相似文献   

3.
Filopodia are prominent cell surface projections filled with bundles of linear actin filaments that drive their protrusion. These structures are considered important sensory organelles, for instance in neuronal growth cones or during the fusion of sheets of epithelial tissues. In addition, they can serve a precursor function in adhesion site or stress fibre formation. Actin filament assembly is essential for filopodia formation and turnover, yet the precise molecular mechanisms of filament nucleation and/or elongation are controversial. Indeed, conflicting reports on the molecular requirements of filopodia initiation have prompted researchers to propose different types and/or alternative or redundant mechanisms mediating this process. However, recent data shed new light on these questions, and they indicate that the balance of a limited set of biochemical activities can determine the structural outcome of a given filopodium. Here we focus on discussing our current view of the relevance of these activities, and attempt to propose a molecular mechanism of filopodia assembly based on a single core machinery.  相似文献   

4.
Cell adhesion is an essential prerequisite for cell function and movement. It depends strongly on focal adhesion complexes connecting the extracellular matrix to the actin cytoskeleton. Especially in moving cells focal adhesions are highly dynamic and believed to be formed closely behind the leading edge. Filopodia were thought to act mainly as guiding cues using their tip complexes for elongation. Here we show for keratinocytes a strong dependence of lamellipodial adhesion sites on filopodia. Upon stable contact of the VASP-containing tip spot to the substrate, a filopodial focal complex (filopodial FX) is formed right behind along the filopodia axis. These filopodial FXs are fully assembled, yet small adhesions containing all adhesion markers tested. Filopodial FXs when reached by the lamellipodium are just increased in size resulting in classical focal adhesions. At the same time most filopodia regain their elongation ability. Blocking filopodia inhibits development of new focal adhesions in the lamellipodium, while focal adhesion maturation in terms of vinculin exchange dynamics remains active. Our data therefore argue for a strong spatial and temporal dependence of focal adhesions on filopodial focal complexes in keratinocytes with filopodia not permanently initiated via new clustering of actin filaments to induce elongation.  相似文献   

5.
Afilopodium protrudes by elongation of bundled actin filaments in its core. However, the mechanism of filopodia initiation remains unknown. Using live-cell imaging with GFP-tagged proteins and correlative electron microscopy, we performed a kinetic-structural analysis of filopodial initiation in B16F1 melanoma cells. Filopodial bundles arose not by a specific nucleation event, but by reorganization of the lamellipodial dendritic network analogous to fusion of established filopodia but occurring at the level of individual filaments. Subsets of independently nucleated lamellipodial filaments elongated and gradually associated with each other at their barbed ends, leading to formation of cone-shaped structures that we term Lambda-precursors. An early marker of initiation was the gradual coalescence of GFP-vasodilator-stimulated phosphoprotein (GFP-VASP) fluorescence at the leading edge into discrete foci. The GFP-VASP foci were associated with Lambda-precursors, whereas Arp2/3 was not. Subsequent recruitment of fascin to the clustered barbed ends of Lambda-precursors initiated filament bundling and completed formation of the nascent filopodium. We propose a convergent elongation model of filopodia initiation, stipulating that filaments within the lamellipodial dendritic network acquire privileged status by binding a set of molecules (including VASP) to their barbed ends, which protect them from capping and mediate association of barbed ends with each other.  相似文献   

6.
Neurite outgrowth is a morphological marker of neuronal differentiation and neuroregeneration, and the process includes four essential phases, namely initiation, elongation, guidance and cessation. Intrinsic and extrinsic signaling molecules seem to involve morphological changes of neurite outgrowth via various cellular signaling cascades phase transition. Although mechanisms associated with neurite outgrowth have been studied extensively, little is known about how phase transition is regulated during neurite outgrowth. 5-HT has long been studied with regard to its relationship to neurite outgrowth in invertebrate and vertebrate culture systems, and many studies have suggested 5-HT inhibits neurite elongation and growth cone motility, in particular, at the growing parts of neurite such as growth cones and filopodia. However, the underlying mechanisms need to be investigated. In this study, we investigated roles of 5-HT on neurite outgrowth using single serotonergic neurons C1 isolated from Helisoma trivolvis. We observed that 5-HT delayed phase transitions from initiation to elongation of neurite outgrowth. This study for the first time demonstrated that 5-HT has a critical role in phase-controlling mechanisms of neurite outgrowth in neuronal cell cultures.  相似文献   

7.
Slender bundled actin containing plasma membrane protrusions, called filopodia, are important for many essential cellular processes like cell adhesion, migration, angiogenesis and the formation of cell-cell contacts. In migrating cells, filopodia are the pioneers at the leading edge which probe the environment for cues. Integrins are cell surface adhesion receptors critically implicated in cell migration and they are transported actively to filopodia tips by an unconventional myosin, myosin-X. Integrin mediated adhesion stabilizes filopodia and promotes cell migration even though integrins are not essential for filopodia initiation. Myosin-X binds also PIP3 and this regulates its activation and localization to filopodia. Filopodia stimulate cell migration in many cell types and increased filopodia density has been described in cancer. Furthermore, several proteins implicated in filopodia formation, like fascin, are also relevant for cancer progression. To investigate this further, we performed a meta-analysis of the expression profiles of 10 filopodia-linked genes in human breast cancer. These data implicated that several different filopodia inducing genes may contribute in a collective manner to cancer progression and the high metastasis rates associated with basal-type breast carcinomas.  相似文献   

8.
There is a body of literature that describes the geometry and the physics of filopodia using either stochastic models or partial differential equations and elasticity and coarse-grained theory. Comparatively, there is a paucity of models focusing on the regulation of the network of proteins that control the formation of different actin structures. Using a combination of in-vivo and in-vitro experiments together with a system of ordinary differential equations, we focused on a small number of well-characterized, interacting molecules involved in actin-dependent filopodia formation: the actin remodeler Eps8, whose capping and bundling activities are a function of its ligands, Abi-1 and IRSp53, respectively; VASP and Capping Protein (CP), which exert antagonistic functions in controlling filament elongation. The model emphasizes the essential role of complexes that contain the membrane deforming protein IRSp53, in the process of filopodia initiation. This model accurately accounted for all observations, including a seemingly paradoxical result whereby genetic removal of Eps8 reduced filopodia in HeLa, but increased them in hippocampal neurons, and generated quantitative predictions, which were experimentally verified. The model further permitted us to explain how filopodia are generated in different cellular contexts, depending on the dynamic interaction established by Eps8, IRSp53 and VASP with actin filaments, thus revealing an unexpected plasticity of the signaling network that governs the multifunctional activities of its components in the formation of filopodia.  相似文献   

9.
Fibroblasts in situ reside within a collagenous stroma and are elongate and bipolar in shape. If isolated and grown on glass, they change from elongate to flat shape, lose filopodia, and acquire ruffles. This shape change can be reversed to resemble that in situ by suspending the cells in hydrated collagen gels. In this study of embryonic avian corneal fibroblasts grown in collagen gels, we describe for the first time the steps in the acquisition of the elongate shape and analyze the effect of cytoskeleton-disrupting drugs on filopodial activity, assumption of bipolarity, and cell elongation within extracellular matrix. We have previously shown by immunofluorescence that filopodia contain actin but not myosin and are free of organelles. The cell cortex is rich in actin and the cytosol, in myosin. By using antitubulin, we show in the present study that microtubules are aligned along the long axis of the bipolar cell body. The first step in assumption of the elongate shape is extension of filopodia by the round cells suspended in collagen, and this is not significantly affected by the drugs we used: taxol to stabilize microtubules; nocodazole to disassemble microtubules; and cytochalasin D to disrupt microfilaments. The second step, movement of filopodia to opposite ends of the cell, is disrupted by cytochalasin, but not by taxol or nocodazole. The third step, extension of pseudopodia and acquisition of bipolarity similarly requires intact actin, but not microtubules. If fibroblasts are allowed to become bipolar before drug treatment, moreover, they remain so in the presence of the drugs. To complete the fourth step, extensive elongation of the cell, both intact actin and microtubules are required. Retraction of the already elongated cell occurs on microtubule disruption, but retraction requires an intact actin cytoskeleton. We suggest that the cell interacts with surrounding collagen fibrils via its actin cytoskeleton to become bipolar in shape, and that microtubules interact with the actin cortex to bring about the final elongation of the fibroblast.  相似文献   

10.
During the early stages of embryogenesis of the ascidian Halocynthia roretzi the test cells creep exclusively on the inner surface of the chorion. Concomitant with elongation of the embryonic tail, however, the test cells begin to gather around the embryo and finally cover the whole embryo. The time at which the test cells surround the embryo almost coincides with that of initiation of larval tunic formation. Scanning electron microscope observations revealed that the test cells extend numerous cytoplasmic processes or pseudopodia. During larval tunic formation, the test cells compose a net by intertwining their filopodia, and the cell net covers the whole embryo.  相似文献   

11.
Slender bundled actin containing plasma membrane protrusions, called filopodia, are important for many essential cellular processes like cell adhesion, migration, angiogenesis and the formation of cell-cell contacts. In migrating cells, filopodia are the pioneers at the leading edge which probe the environment for cues. Integrins are cell surface adhesion receptors critically implicated in cell migration and they are transported actively to filopodia tips by an unconventional myosin, myosin-X. Integrin mediated adhesion stabilizes filopodia and promotes cell migration even though integrins are not essential for filopodia initiation. Myosin-X binds also PtdIns(3,4,5)P3 and this regulates its activation and localization to filopodia. Filopodia stimulate cell migration in many cell types and increased filopodia density has been described in cancer. Furthermore, several proteins implicated in filopodia formation, like fascin, are also relevant for cancer progression. To investigate this further, we performed a meta-analysis of the expression profiles of 10 filopodia-linked genes in human breast cancer. These data implicated that several different filopodia-inducing genes may contribute in a collective manner to cancer progression and the high metastasis rates associated with basal-type breast carcinomas.Key words: filopodia, integrins, migration, cancer  相似文献   

12.
Delayed Retraction of Filopodia in Gelsolin Null Mice   总被引:3,自引:0,他引:3       下载免费PDF全文
Growth cones extend dynamic protrusions called filopodia and lamellipodia as exploratory probes that signal the direction of neurite growth. Gelsolin, as an actin filament-severing protein, may serve an important role in the rapid shape changes associated with growth cone structures. In wild-type (wt) hippocampal neurons, antibodies against gelsolin labeled the neurite shaft and growth cone. The behavior of filopodia in cultured hippocampal neurons from embryonic day 17 wt and gelsolin null (Gsn) mice (Witke, W., A.H. Sharpe, J.H. Hartwig, T. Azuma, T.P. Stossel, and D.J. Kwiatkowski. 1995. Cell. 81:41–51.) was recorded with time-lapse video microscopy. The number of filopodia along the neurites was significantly greater in Gsn mice and gave the neurites a studded appearance. Dynamic studies suggested that most of these filopodia were formed from the region of the growth cone and remained as protrusions from the newly consolidated shaft after the growth cone advanced. Histories of individual filopodia in Gsn mice revealed elongation rates that did not differ from controls but an impaired retraction phase that probably accounted for the increased number of filopodia long the neutrite shaft. Gelsolin appears to function in the initiation of filopodial retraction and in its smooth progression.  相似文献   

13.
Capping protein (CP) binds to barbed ends of growing actin filaments and inhibits elongation. CP is essential for actin-based motility in cell-free systems and in Dictyostelium. Even though CP is believed to be critical for creating the lamellipodial actin structure necessary for protrusion and migration, CP''s role in mammalian cell migration has not been directly tested. Moreover, recent studies have suggested that structures besides lamellipodia, including lamella and filopodia, may have unappreciated roles in cell migration. CP has been postulated to be absent from filopodia, and thus its role in filopodial activity has remained unexplored. We report that silencing CP in both cultured mammalian B16F10 cells and in neurons of developing neocortex impaired cell migration. Moreover, we unexpectedly observed that low levels of CP were detectable in the majority of filopodia. CP depletion decreased filopodial length, altered filopodial shape, and reduced filopodial dynamics. Our results support an expansion of the potential roles that CP plays in cell motility by implicating CP in filopodia as well as in lamellipodia, both of which are important for locomotion in many types of migrating cells.  相似文献   

14.
It has long been thought that traction exerted by filopodia of secondary mesenchyme cells (SMCs) is a sufficient mechanism to account for elongation of the archenteron during sea urchin gastrulation. The filopodial traction hypothesis has been directly tested here by laser ablation of SMCs in gastrulae of the sea urchin, Lytechinus pictus. When SMCs are ablated at the onset of secondary invagination, the archenteron doubles in length at the normal rate of elongation, but advance of the tip of the archenteron stops at the 2/3 gastrula stage. In contrast, when all SMCs are ablated at or following the 2/3 gastrula stage, further elongation does not occur. However, if a few SMCs are allowed to remain in 2/3-3/4 gastrulae, elongation continues, although more slowly than in controls. The final length of archenterons in embryos ablated at the 1/3-1/2 gastrula stage is virtually identical to the final length of everted archenterons in LiCl-induced exogastrulae; since filopodial traction is not exerted in either case, an alternate, common mechanism of elongation probably operates in both cases. These results suggest that archenteron elongation involves two processes: (1) active, filopodia-independent elongation, which depends on active cell rearrangement and (2) filopodia-dependent elongation, which depends on mechanical tension exerted by the filopodia.  相似文献   

15.
Filopodia are rod-like cell surface projections filled with bundles of parallel actin filaments. They are found on a variety of cell types and have been ascribed sensory or exploratory functions. Filopodium formation is frequently associated with protrusion of sheet-like actin filament arrays called lamellipodia and membrane ruffles, but, in comparison to these structures, the molecular details underpinning the initiation and maintenance of filopodia are only just beginning to emerge. Recent advances have improved our understanding of the molecular requirements for filopodium protrusion and have yielded insights into the inter-relationships between lamellipodia and filopodia, the two 'sub-compartments' of the protrusive actin cytoskeleton.  相似文献   

16.
The direction of neurite elongation is controlled by various environmental cues. However, it has been reported that even in the absence of any extrinsic directional signals, neurites turn clockwise on two-dimensional substrates. In this study, we have discovered autonomous rotational motility of the growth cone, which provides a cellular basis for inherent neurite turning. We have developed a technique for monitoring three-dimensional motility of growth cone filopodia and demonstrate that an individual filopodium rotates on its own longitudinal axis in the right-screw direction from the viewpoint of the growth cone body. We also show that the filopodial rotation involves myosins Va and Vb and may be driven by their spiral interactions with filamentous actin. Furthermore, we provide evidence that the unidirectional rotation of filopodia causes deflected neurite elongation, most likely via asymmetric positioning of the filopodia onto the substrate. Although the growth cone itself has been regarded as functionally symmetric, our study reveals the asymmetric nature of growth cone motility.  相似文献   

17.
We tested the contribution of the small GTPase Rho and its downstream target p160ROCK during the early stages of axon formation in cultured cerebellar granule neurons. p160ROCK inhibition, presumably by reducing the stability of the cortical actin network, triggered immediate outgrowth of membrane ruffles and filopodia, followed by the generation of initial growth cone-ike membrane domains from which axonal processes arose. Furthermore, a potentiation in both the size and the motility of growth cones was evident, though the overall axon elongation rate remained stable. Conversely, overexpression of dominant active forms of Rho or ROCK was suggested to prevent initiation of axon outgrowth. Taken together, our data indicate a novel role for the Rho/ROCK pathway as a gate critical for the initiation of axon outgrowth and the control of growth cone dynamics.  相似文献   

18.
The ability of mammalian cells to adhere and to migrate is an essential prerequisite to form higher organisms. Early migratory events include substrate sensing, adhesion formation, actin bundle assembly and force generation. Latest research revealed that filopodia are important not only for sensing the substrate but for all of the aforementioned highly regulated processes. However, the exact regulatory mechanisms are still barely understood. Here, we demonstrate that filopodia of human keratinocytes exhibit distinct cycles of repetitive elongation and persistence. A single filopodium thereby is able to initiate the formation of several stable adhesions. Every single filopodial cycle is characterized by an elongation phase, followed by a stabilization time and in many cases a persistence phase. The whole process is strongly connected to the velocity of the lamellipodial leading edge, characterized by a similar phase behavior with a slight time shift compared with filopodia and a different velocity. Most importantly, re-growth of existing filopodia is induced at a sharply defined distance between the filopodial tip and the lamellipodial leading edge. On the molecular level this regrowth is preceded by a strong filopodial reduction of the actin bundling protein fascin. This reduction is achieved by a switch to actin polymerization without fascin incorporation at the filopodial tip and therefore subsequent out-transport of the cross-linker by actin retrograde flow.Key words: filopodia, lamellipodia, cell migration, fascin, adhesion, retrograde flow, actin polymerization  相似文献   

19.
Filopodia are key structures within many cells that serve as sensors constantly probing the local environment. Although filopodia are involved in a number of different cellular processes, their function in migration is often analyzed with special focus on early processes of filopodia formation and the elucidation of filopodia molecular architecture. An increasing number of publications now describe the entire life cycle of filopodia, with analyses from the initial establishment of stable filopodium-substrate adhesion to their final integration into the approaching lamellipodium. We and others can now show the structural and functional dependence of lamellipodial focal adhesions as well as of force generation and transmission on filopodial focal complexes and filopodial actin bundles. These results were made possible by new high resolution imaging techniques as well as by recently developed elastomeric substrates and theoretical models. The data additionally provide strong evidence that formation of new filopodia depends on previously existing filopodia through a repetitive filopodial elongation of the stably adhered filopodial tips. In this commentary we therefore hypothesize a highly coordinated mechanism that regulates filopodia formation, adhesion, protein composition and force generation in a filopodia dependent step by step process.  相似文献   

20.
Unconventional myosins are actin-based motors with a growing number of attributed functions. Interestingly, it has been proposed that integrins are transported by unidentified myosins to facilitate cellular remodelling. Here we present an interaction between the unconventional myosin-X (Myo10) FERM (band 4.1/ezrin/radixin/moesin) domain and an NPXY motif within beta-integrin cytoplasmic domains. Importantly, knock-down of Myo10 by short interfering RNA impaired integrin function in cell adhesion, whereas overexpression of Myo10 stimulated the formation and elongation of filopodia in an integrin-dependent manner and relocalized integrins together with Myo10 to the tips of filopodia. This integrin relocalization and filopodia elongation did not occur with Myo10 mutants deficient in integrin binding or with a beta(1)-integrin point mutant deficient in Myo10 binding. Taken together, these results indicate that Myo10-mediated relocalization of integrins might serve to form adhesive structures and thereby promote filopodial extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号