首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of extracellular calcium concentration on the steroidogenic response to ACTH and to the angiotensin II analogue [Sar1-Val5]AII has been studied in the frog, using a perfusion system technique. The release of corticosterone and aldosterone in the effluent medium was measured by specific radioimmunoassays. In calcium-free medium the stimulatory effect of ACTH (10(-9) M) was completely abolished whereas the response to dbcAMP (5 mM) was unchanged indicating that the role of calcium takes place before the formation of cAMP. Conversely, in the absence of calcium, angiotensin II (10(-7) M) was still able to stimulate corticosterone and aldosterone production. Addition of Co2+ (4 mM), a calcium antagonist, to the perfusion medium, inhibited partially the response of adrenal tissue to ACTH, dbcAMP and angiotensin. The voltage-dependent calcium channel blocker verapamil (10(-6) induced a dose-related inhibition of the corticotropic effect of ACTH. At the higher dose (10(-4) M), verapamil totally inhibited the stimulation of corticosterone and aldosterone production induced by ACTH. By contrast, at the same dose it did not alter the stimulatory effect of forskolin (2.4 X 10(-7)M) on corticosterone output, but significantly diminished forskolin-induced aldosterone response. Similarly, angiotensin-stimulated corticosterone production was slightly inhibited by 10(-4) M verapamil, whereas aldosterone response to angiotensin was totally abolished, indicating that verapamil may act intracellularly to block the conversion of corticosterone to aldosterone. Taken together, these results indicate that, in amphibians extracellular calcium is essential for the action of ACTH, either for the binding of the hormone to its receptor and/or for the transduction of the information from hormone-receptor complex to the adenylate cyclase moiety and that the mechanism of action of angiotensin does not involve calcium uptake by adrenocortical cells.  相似文献   

2.
Steroid 21-hydroxylase activity has been identified in many tissues, including liver. But it is possible that the enzyme found in the liver is different from adrenal 21-hydroxylase. In the adrenal cortex, steroid 21-hydroxylase activity is increased by corticotropin (ACTH); the effect of ACTH is mediated by cyclic AMP (cAMP), and presumably involves a cAMP-dependent protein kinase (PKA). It is not yet clear, however, how extra-adrenal steroid 21-hydroxylase activity is regulated. In the present study, we examined the effect of N6, 2′-O-dibutyryl adenosine 3′,5′-cyclic monophosphate (dbcAMP), forskolin, N-[2-(methylamino)ethyl]5-isoquinolinesulfonamide (H-8) and 12-O-tetradecanoylphorbol-13-acetate (TPA) on steroid 21-hydroxylase activity in primary cultures of rat hepatocytes to determine the nature of regulation of extra-adrenal steroid 21-hydroxylase activity. Steroid 21-hydroxylase activity in hepatocytes incubated with 10−11M dbcAMP for 24 h was 1.6 times higher than that in control hepatocytes untreated with dbcAMP. On the other hand, steroid 21-hydroxylase activity decreased by 20 and 50% when the cells were incubated with 10−5 and 10−3 M dbcAMP, respectively. The stimulatory effect of 10−11 M dbcAMP was not blocked by 10−5 M H-8 (PKA inhibitor), but the inhibitory effect of 10−5 or 10−3 M cAMP was. TPA did not alter the activity of steroid 21-hydroxylase. These findings indicate that the steroid 21-hydroxylase in rat liver is regulated by mechanisms different from those in the adrenal glands.  相似文献   

3.
Pretreatment of bovine adrenocortical cells with increasing concentrations of insulin-like growth factor I (IGF-I) for 3 days resulted in a dose dependent (ED50 congruent to 5 ng/ml) increment in Corticotropin (ACTH) receptors. Moreover, IGF-I pretreatment potentiated the effects of maximal active concentration of ACTH (10(-9) M) on its own receptors. Whereas ACTH (10(-9) M) or IGF-I (50 ng/ml) alone induced a 3- and 2.5-fold increase respectively in ACTH receptors, there was a 7.5 fold increase in the presence of the two peptides. This synergism between ACTH and IGF-I was also observed for the ACTH-induced cortisol response with an increase of 9-, 3- and 20-fold for cells pretreated with ACTH, IGF-I and the two peptides, respectively. However, the effects of both peptides on ACTH-induced cAMP production was only additive. The present results show that ACTH and IGF-I are potent stimulating factors on bovine adrenal cell differentiated functions and that the effects of both peptides are synergistic.  相似文献   

4.
Previous studies indicated that acute exposure of adrenal cells to adrenocorticotropic hormone (ACTH) markedly stimulates steroidogenic capacity in vitro but also inhibits cell proliferation. However, in vivo, ACTH is known to stimulate adrenal cell growth. To address this discrepancy, we determined the effect of long-term (9-11 days) continuous or intermittent exposure to ACTH on human fetal adrenal cell proliferation and steroidogenesis. Adrenal glands from fetuses 18-22 wk gestation were studied. Fetal zone cells were plated either on plastic or on an extracellular matrix (ECM) in the presence and absence of basic fibroblast growth factor (bFGF) (0.5 ng/ml) and 1 or 10 nM ACTH. As determined by cell counting, bFGF stimulated cell proliferation during 9 days in culture. In the presence of bFGF, the average doubling time decreased from 44 to 30 h on plastic and from 37 to 26 h on ECM. Under these conditions, ACTH did not inhibit cell proliferation. Proliferation of fetal adrenal corticosteroid-producing cells in the ACTH-treated cultures also was assessed by histochemical staining for 3 beta-hydroxysteroid dehydrogenase (3 beta HSD). The number of positive cells increased more than 4-fold between Days 5 and 9 in culture. Continuous treatment with 1 nM ACTH increased dehydroepiandrosterone sulfate (DHAS) production 5- to 10-fold during the first 5 days in culture. Thereafter, the stimulated hormone production decreased over time, although there was still a difference of almost 100-fold between the control and ACTH-treated cultures at the end of 9 days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
GH(4)C(1) cells are a clonal strain of rat pituitary cells that synthesize and secrete prolactin and growth hormone. Chronic treatment (longer than 24 h) of GH(4)C(1) cells with epidermal growth factor (EGF) (10(-8) M) decreased by 30-40 percent both the rate of cell proliferation and the plateau density reached by cultures. Inhibition of cell proliferation was accompanied by a change in cellular morphology from a spherical appearance to an elongated flattened shape and by a 40-60 percent increase in cell volume. These actions of EGF were qualitatively similar to those of the hypothalamic tripeptide thyrotropin-releasing hormone (TRH) (10(-7) M) which decreased the rate of cell proliferation by 10-20 percent and caused a 15 percent increase in cell volume. The presence of supramaximal concentrations of both EGF (10(-8)M) and TRH (10(-7)M) resulted in greater effects on cell volume and cell multiplication than either peptide alone. EGF also altered hormone production by GH(4)C(1) cells in the same manner as TRH. Treatment of cultures with 10(-8) M EGF for 2-6 d increased prolactin synthesis five- to ninefold compared to a two- to threefold stimulation by 10(-7) M TRH. Growth hormone production by the same cultures was inhibited 40 percent by EGF and 15 percent by TRH. The half- maximal effect of EGF to increase prolactin synthesis, decrease growth hormone production, and inhibit cell proliferation occurred at a concentration of 5 x 10 (-11) M. Insulin and multiplication stimulating activity, two other growth factors tested, did not alter cell proliferation, cell morphology, or hormone production by GH(4)C(1) cells, indicating the specificity of the EGF effect. Fibroblast growth factor, however, had effects similar to those of EGF and TRH. Of five pituitary cell strains tested, all but one responded to chronic EGF treatment with specifically altered hormone production. Acute chronic EGF treatment with specifically altered hormone production. Acute treatment (30 min) of GH(4)C(1) cells with 10(-8) M EGF caused a 30 percent enhancement of prolactin release compared to a greater than twofold increase caused by 10(-7) M TRH. Therefore, although EGF and TRH have qualitatively similar effects on GH(4)C(1) cells, their powers to affect hormone release acutely or hormone synthesis and cell proliferation chronically are distinct.  相似文献   

6.
Adrenal glands from Rhesus monkeys (Macaca mulatta) of 160 days gestation, newborn, 2 months-old infants or 6 months-old infants were excised and prepared, by a collagenase digestion, as a cell suspension. The cells were incubated with 10 pg/ml, 100 pg/ml or 1 ng/ml of a peptide of the ACTH/pro-opiomelanocortin 'family', 57K, 31K, 20K, alpha MSH, ovine-CLIP or gamma LPH either in the presence or absence of 166 pg/ml ACTH1-39. The production by cortisol and androstenedione was measured by radioimmunoassay. Using the steroid production by aliquots of the cell suspension with either no stimulating agent or ACTH1-39 alone as controls, the net influence of these different peptides on basal or ACTH1-39-stimulated production was observed. alpha MSH, ovine-CLIP and gamma LPH had no influence on either basal or stimulated cortisol or androstenedione production. Corticotrophic peptides of 57K, and 20K and pro-opiomelanocortin each had a steroidogenic activity alone, in all age groups. In the fetal and newborn monkeys' adrenal cells, peptides of 57K and 20K at 1 ng/ml had an inhibitory influence on ACTH1-39 stimulated cortisol and androstenedione production. The influence of the 20K peptide is partially inhibitory as the steroidogenic potential of this peptide is not additive with that of ACTH1-39. These results show that, as observed in other species, that the ACTH/pro-opiomelanocortin range of peptides are inhibitory to the action of ACTH1-39 in the developing adrenal.  相似文献   

7.
ACTH increases the basal steroidogenic activity of cultured adrenocortical tumor cells, whereas moderate-high doses of cytochalasin B (CB) inhibit both basal and ACTH-induced steroidogenesis. Previous ultrastructural studies have revealed that ACTH rearranges microfilaments in these adrenal cells, whereas CB causes microfilaments to aggregate into felt-like masses. It has been postulated that the ACTH effects may facilitate organelle motility and increase organelle interactions that are required for steroid biosynthesis, and that the CB-created "foci" may impede or prevent the organelle meetings. To shed light on these possibilities, we have employed 16 mm cinemicrography of unstimulated adrenal tumor cells and cells incubated for 1-2 h with ACTH (10 mU/ml), or low (10 micrograms/ml), or high (50 micrograms/ml) doses of CB. ACTH caused initial increases in membrane ruffling and a "flurry" of particle (organelle) activity above that seen in unstimulated cells. The stimulated cells then retracted from each other and began their characteristic "rounding up" in response to the hormone. Particles appeared to move towards the nucleus, and in fully-rounded cells were extremely congested. Steroid production rose several fold above basal levels. CB10 produced slight-marked cell convexities, nearly stopped particle motility and inhibited steroid production moderately. CB50 produced an asymmetrical, spidery cell form, stopped membrane ruffling and particle motility and abolished steroidogenesis. After a washout of CB50, particle motility resumed nearly immediately. Our CB data indicate that associations between particles, presumably between mitochondria and various sources of cholesterol, are prerequisite for basal steroidogenesis in the adrenal tumor cells. In ACTH-stimulated cells, increases in steroid output correspond with increased opportunities for particle associations. These opportunities appear to arise directly or indirectly from ACTH effects on microfilaments. The responses of microfilaments to the hormone may be particularly intense in tumorous forms. By these means, the cells may express their differentiated function, although their cytoplasm has a distinctly unspecialized appearance.  相似文献   

8.
The respective roles of sex steroids and hormones related to growth and metabolism, on SBP regulation have been studied in rainbow trout. In vivo, oestradiol (E2) supplementation induces a slow but significant increase of plasma SBP concentration. Testosterone or cortisol injections have no effect. In vitro, the steroid binding protein that accumulates in incubation medium of hepatic cell primary cultures has been characterized and found to be similar to blood SBP. Its production is increased by addition of E2 (maximum: + 300%). This effect develops slowly over several days of culture and is dose dependent; as little as 1–10 nM E2 is effective.

Recombinant rainbow trout GH (rtGH)—0.01 to 1 μg/ml—also increases SBB accumulation as compared to control cells and seems to maintain SBP production over culture duration. In preliminary experiments, (1) insulin-like growth factor (IGF) and SBP concentrations were found to change inversely after a 4 days stimulation with increasing concentrations of GH; (2) recombinant human IGF1 (250 ng/ml) tended to be inhibitory when SBP production was expressed per mg of total cellular protein, and a micromolar concentration of bovine insulin was clearly inhibitory.

Other hormones tested in vitro: triiodothyronine (10–1000 nM), thyroxine (100 nM), 17,20β-dihydroprogesterone (10–2000 nM), and testosterone (1–1000 nM) did not influence SBP concentration in hepatic cells culture media.  相似文献   


9.
Bovine adrenal cortex cells maintained on extracellular matrix (ECM)-coated dishes will proliferate actively when serum is replaced by HDL (25 micrograms protein/ml), insulin (10 ng/ml), and FGF (100 ng/ml). The cells have an absolute requirement for HDL in order to survive and grow. The omission of insulin, FGF, or both results in a slower growth rate and lower final cell density of the cultures. A requirement for transferrin (1 microgram/ml) becomes apparent only when cells have been grown for at least four generations in the absence of serum. Early passage (P1-P3) bovine adrenal cortex cells cultured in serum-free medium responded to ACTH (10(-8)M) with increased 11-deoxycortisol production; this effect was not observed in later passage cells (P7-P15). The cells' ability to utilize LDL-derived cholesterol and to respond to db cAMP (1mM) by increased steroid release was preserved in cells cultured for over 60 generations in the serum-free medium. HDL, although also able to increase steroid production in early-passage cultures exposed to ACTH or to ACTH and dibutyryl cyclic AMP (db cAMP), was 10 fold less potent than LDL. It did not support steroidogenesis in cultures not exposed to these trophic agents. The life span of bovine adrenal cortex cells grown in the serum-free medium on fibronectin (FN)- versus ECM-coated dishes was compared. Cells seeded in serum-containing medium and grown in serum-free medium had a life span of 34 versus 60 generations when maintained on fibronectin- or ECM-coated dishes, respectively. Cells seeded in the complete absence of serum in the serum-free medium on ECM- or fibronectin-coated dishes could be passaged for 26 or 13 generations, respectively. While FGF was an absolute requirement for cells cultured on fibronectin-coated dishes, it was not required when cells were maintained on ECM. These observations demonstrate the influence of the ECM not only in promoting cell growth and differentiation but also on the life span of cultured cells.  相似文献   

10.
The surface topologies of mouse adrenal cortex tumor cells of primary or clonal origin grown as monolayer cell cultures were observed by scanning electron microscopy following their exposure to substances that effect steroid release and/or cell rounding. ACTH induced cell rounding with a concomitant profuse development of fine microvilli in a non-synchronously dividing cell population. This was less pronounced with other steroidogenic substances and absent in EGTA or trypsin-treated cells. Morphological alterations occurred most rapidly with cAMP and least rapidly with dbcAMP. The rapid development of fine microvilli with ACTH is proposed to be a specific hormone mediated response.  相似文献   

11.
Liu MY  Lai HY  Yang BC  Tsai ML  Yang HY  Huang BM 《Life sciences》2001,68(8):849-859
Lead is an environmental and occupational pollutant. It has been reported that lead affects the male reproductive system in humans and animals. However, the cellular mechanism of the adverse effect of lead on Leydig cell steroidogenesis remains unknown. To clarify whether lead has a direct effect on Leydig cells and how lead affects Leydig cells, MA-10 cells, a mouse Leydig tumor cell line, were exploited in this study. Lead acetate significantly inhibited hCG- and dbcAMP-stimulated progesterone production in MA-10 cells at 2 h. Steroid production stimulated by hCG or dbcAMP were reduced by lead. The mechanism of lead in reducing MA-10 cell steroidogenesis was further investigated. The expression of Steroidogenic Acute Regulatory (StAR) protein and the activities of P450 side-chain cleavage (P450scc) and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) enzymes were detected. Cells were treated with dbcAMP, 22R-hydroxycholesterol or pregnenolone alone or in combination with lead acetate ranging from 10(-8) to 10(-5) M for 2 h. The expression of StAR protein stimulated by dbcAMP was suppressed by lead at about 50%. Progesterone productions treated with 22R-hydroxycholesterol or pregnenolone were reduced 30-40% in lead-treated MA-10 cells. These data suggest that lead directly inhibited steroidogenesis by decreasing StAR protein expression and the activities of P450scc and 3beta-HSD enzymes with a dose-response trend in MA-10 cells. Moreover, cadmium, a calcium channel blocker, abolished inhibitory effect of lead on MA-10 cell steroid production. This indicates that lead might act on calcium channel to regulate MA-10 cell steroidogenesis.  相似文献   

12.
Factors other than adrenocorticotropic hormone (ACTH) are thought to influence fetal adrenal steroidogenesis during primate pregnancy. Therefore, we determined the effects of prolactin (Prl), growth hormone (GH), and human chorionic gonadotropin (hCG) as well as ACTH on steroid secretion by collagenase-dispersed baboon fetal adrenal cells. Adrenal glands were obtained from seven baboon (Papio anubis) fetuses following cesarean section at Day 100-107 of gestation (term = Day 184). Tissue was minced with a fine scissors and cells were dispersed with 0.2% collagenase, then washed with Medium 199 containing penicillin/streptomycin. Cells (0.5 X 10(4)) were placed in 4 ml Medium 199 with or without 10 nmol ovine Prl, ovine GH, or ACTH, or 50 nmol hCG. After 18 h incubation (37 degrees C), cells were separated by centrifugation and the quantities of cortisol (F), dehydroepiandrosterone (DHA), and DHA-sulfate (DHAS) secreted into the medium were determined. In controls, DHA secretion [224 +/- 96 ng/(24 h X 10(5) cells] was greater (P less than 0.05) than that of DHAS (20 +/- 12) and F (14 +/- 12). Adrenocorticotropic hormone, Prl, and GH stimulated (P less than 0.05) DHA secretion by 370% +/- 71%, 215% +/- 61%, and 292% +/- 73%, respectively; hCG was not effective. Due primarily to the relatively low secretion rates, DHAS and F secretion were not altered by hormonal treatment. Moreover, addition of 20 nmol progesterone to the medium in the presence or absence of ACTH did not influence F production. These findings indicate that the baboon fetal adrenal at midgestation does not utilize placental progesterone for F synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The involvement of cyclic AMP in corticosteroidogenesis was investigated by using isolated adrenal cell column perfusion. Steroids were produced in response to 0.5, 1.0 and 5.0 mg of cyclic AMP/ml. Analysis of the shape of the response curves indicated an inverse relationship between rate of onset of steroid production and dose. A further increase in steroid production during the washout period after the 5 mg/ml dose was considered to indicate an intracellular inhibitory effect of cyclic AMP. Release of cyclic AMP into the perfusate only occurred in response to supramaximal steroidogenic doses of ACTH (adrenocorticotrophin). A connexion between dose and response was demonstrated over a narrow concentration range. Variation in the time-lag before cyclic AMP production and in the duration of the response was marked; further, no reproducible ratio of steroid output to cyclic AMP output was shown at any level of stimulation. These results are discussed together with those of other recent investigations. It is considered that these findings do not support an obligatory role for cyclic AMP as mediator of ACTH action in the adrenal.  相似文献   

14.
The present study examined the effects of both insulin and insulin-like growth factor-I (IGF-I) on cell division and specific functions of cultured adrenocortical cells from 100- to 122-day-old ovine fetuses. When culture was performed in a serum-free medium containing transferrin and ascorbic acid, the number of cells increased only slightly (1.2-fold) over a 4-day period. Addition of insulin or IGF-I in the culture medium enhanced the number of cells counted on Day 5. The effect of both peptides was dose-dependent, but 10 ng/ml IGF-I was as potent as 10 micrograms/ml insulin. The acute cyclic adenosine 3',5'-monophosphate (cAMP) and steroidogenic responses to adrenocorticotropin (ACTH1-24) decreased in fetal cells cultured in the absence of insulin or ACTH. Insulin at micromolar concentrations not only prevented this decrease but enhanced the acute ACTH1-24-induced cAMP output on Day 5 over that observed on Day 2. Treatment of fetal cells for 4 days with increasing concentrations of insulin or IGF-I enhanced the acute cAMP and steroidogenic responses (3- to 4-fold) to ACTH1-24 over that of control cells. The ED50 of IGF-I was about 3 ng/ml (congruent to 0.4 nM) whereas that of insulin was about 10 ng/ml (1.7 nM). However, a second plateau was apparent at concentrations of insulin above 1 microgram/ml. The acute cholera toxin stimulation of cAMP production of cells cultured in the absence of insulin or ACTH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A perifusion system using a plastic column into which isolated rat adrenal cells had been installed was attempted. After ACTH or cAMP was administered to the column, the corticosterone concentration in the eluate was determined. ACTH in 10(-13) and 10(-12) M did not promote corticosterone production, whereas 10(-11) and 10(-10) M showed a dose dependent production of corticosterone. By iterative infusion of 10(-11) or 10(-9) M of ACTH, very clear responses to restimulation of ACTH were noted. Following the administrations of 10(-3) or 10(-2) M of dibutyryl adenosine 3',5'-cyclic monophosphate (dbcAMP), the production of corticosterone increased dose-dependently. These results suggest that this perifusion system is effective for examining the effects of ACTH or cAMP on steroidogenesis of cells.  相似文献   

16.
The initiation of DNA synthesis and secretion of Interleukin 2 (IL-2) was measured in isolated rat splenic lymphocytes following activation with Concanavalin A (ConA). The extent of 3H-thymidine incorporation into activated cells was tested when cultured with various concentrations of Adrenocorticotropic hormone (ACTH). A paradoxical dose-response curve resulted when ACTH caused a biphasic response of augmenting and inhibiting 3H-thymidine uptake in lymphocytes depending on the hormone concentration. Low levels of ACTH (0.001-1-nM) augmented 3H-thymidine uptake and high levels (10-1000 nM) reversed the effect. The optimal ACTH concentration was 10 pM ACTH in the presence of 5 ug/ml ConA and there was no ACTH effect on quiescent cells (no ConA). Conditioned media from splenic lymphocytes treated with various concentrations of ConA or ACTH was tested for increased uptake of 3H-thymidine by the IL-2 growth dependent Cytotoxic T Lymphocyte Leukemia (CTLL-2) cells. ConA conditioned medium could sustain the CTLL-2 cells indicating the presence of IL-2. Conditioned medium from splenic lymphocytes treated with both ConA and 100 pM ACTH further increased CTLL-2 cell proliferation indicating an additional increase of IL-2 secretion. The identity of IL-2 was confirmed by using an anti-rat IL-2 antibody to neutralize the growth potential of the conditioned medium. ACTH alone had no effect on the CTLL-2 cell proliferation indicating the effect is due solely to induced IL-2 found in the conditioned medium. IL-2 levels in the conditioned media were quantitated by ELISA assay; splenic lymphocytes produced 4.2 ng/ml to ConA only, 19.2 ng/ml in ConA plus 10 nM ACTH, and no detectable IL-2 at ConA plus 10 uM ACTH. These results demonstrated that ACTH modulates IL-2 secretion from activated lymphocytes, which is both biphasic and concentration dependent.  相似文献   

17.
Steroidogenesis was studied in guinea-pig glomerulosa-fasciculata cells maintained in primary culture for up to 7 days. The basal secretion which remained stable for the first 2 days in culture rapidly rose to reach a plateau on day 4 at levels 6-7-fold higher than those observed during the first 2 days of culture while the maximal response to ACTH in terms of cortisol and androstenedione secretion was fairly stable throughout the 7-day period. Exposure of glomerulosa-fasciculata cells to ACTH caused a stimulation of pregnenolone, 17-hydroxypregnenolone, progesterone, 17-hydroxyprogesterone, corticosterone, 11-deoxy-corticosterone, 11-deoxycortisol, cortisol, dehydroepiandrosterone, androstenedione, 11 beta-hydroxyandrostenedione and aldosterone while, after 48 h of incubation, a marked accumulation of end-products, namely cortisol and 11 beta-hydroxyandrostenedione, was observed. The half-maximal steroidogenic response to ACTH occurred at concentrations varying between 1.7 x 10(-11) and 1.1 x 10(-10) mol/l for the 12 steroids examined. Addition of 8-bromoadenosine 3', 5'-cyclic monophosphate stimulated steroid secretion in a dose-dependent manner. Maximal response to 8-bromoadenosine 3', 5'-cyclic monophosphate was obtained at 1 mmol/l, and no further rise of steroid secretion was observed after addition of ACTH. Incubation of glomerulosa-fasciculata cells with labeled corticosterone, cortisol and androstenedione indicates that only androstenedione can be converted into 11 beta-hydroxyandrostenedione, thus suggesting that this end-product is a good parameter of the C-19 steroid production by guinea-pig glomerulosa-fasciculata cells in primary culture. The present data confirm that guinea-pig glomerulosa-fasciculata cells in primary culture provide an interesting model for the study of the regulation of C-19 steroid formation by the adrenals.  相似文献   

18.
This study investigated the combined effect of resistance exercise and arginine ingestion on spontaneous growth hormone (GH) release. Eight healthy male subjects were studied randomly on four separate occasions [placebo, arginine (Arg), placebo + exercise (Ex), arginine + exercise (Arg+Ex)]. Subjects had blood sampled every 10 min for 3.5 h. After baseline sampling (30 min), subjects ingested a 7-g dose of arginine or placebo (blinded, randomly assigned). On the exercise days, the subject performed 3 sets of 9 exercises, 10 repetitions at 80% one repetition maximum. Resting GH concentrations were similar on each study day. Integrated GH area under the curve was significantly higher on the Ex day (508.7 +/- 169.6 min.ng/ml; P < 0.05) than on any of the other study days. Arg+Ex (260.5 +/- 76.8 min.ng/ml) resulted in a greater response than the placebo day but not significantly greater than the Arg day. The GH half-life and half duration were not influenced by the stimulus administered. The GH secretory burst mass was larger, but not significantly, on the Arg, Ex, and Arg+Ex day than the placebo day. Endogenous GH production rate (Ex > Arg+Ex > Arg > placebo) was greater on the Ex and Arg+Ex day than on the placebo day (P < 0.05) but there were no differences between the Ex and Arg+Ex day. Oral arginine alone (7 g) stimulated GH release, but a greater GH response was seen with exercise alone. The combined effect of arginine before exercise attenuates the GH response. Autonegative feedback possibly causes a refractory period such that when the two stimuli are presented there will be suppression of the somatotrope.  相似文献   

19.
Exogenous corticoids are known to be potent inhibitors of linear growth in children. We investigated the mechanisms underlying growth failure by evaluating growth hormone (GH) release during short-term high-dose prednisone treatment (40 mg/m2/day given orally in 3 divided doses) and 7 days after steroid withdrawal in 7 prepubertal children (4 males, 3 females, age range 3-12 years), affected by acute lymphoblastic leukemia. Patients also received weekly administrations of vincristine (1.5 mg/m2 i.v.), daunomycin (20 mg/m2 i.v.) and L-asparaginase (6,000 IU/m2 i.m.). Corticoid therapy suppressed GH secretion during deep sleep as well as in response to arginine, insulin and GH-releasing hormone (GHRH) administration. A significant recovery of GH responsiveness after drug discontinuation was observed during deep sleep (14.03 +/- 3.47 vs. 1.49 +/- 0.43 ng/ml, p less than 0.025) as well as in response to arginine (13.63 +/- 2.73 vs. 4.95 +/- 1.54 ng/ml, p less than 0.025) and GHRH (32.62 +/- 4.59 vs. 7.27 +/- 3.52 ng/ml, p less than 0.005) but not to insulin (7.12 +/- 0.88 vs. 4.47 +/- 0.96 ng/ml, p = NS). Insulin-like growth factor 1 levels during deep sleep (0.61 +/- 0.13 IU/ml/min) were found to be low in the course of steroid therapy and did not increase after drug withdrawal (0.41 +/- 0.07 IU/ml/min). Our preliminary data suggest that recovery of adrenergic response to insulin does not immediately follow corticosteroid discontinuation.  相似文献   

20.
The influence of dexamethasone treatment on the basal values of corticosterone, GH, prolactin (PRL), LH and FSH, as well as on the adenohypophyseal hormone response to chronic stress was studied in female rats. Dexamethasone acetate (25 micrograms/100 b.w.), given by gavage twice daily for 10 days, decreased the resting plasma levels of corticosterone, GH, LH and PRL, whereas the FSH titers remained normal. The secretion of ACTH (evaluated indirectly through corticosterone concentrations) and of GH appeared to be most sensitive to the suppressive effect of dexamethasone. The same hormonal response pattern was induced by 8 h of daily immobilization for 10 days, except that ACTH release was enhanced and the plasma LH titers dropped more drastically. Dexamethasone administration in combination with restraint did not alter the characteristic hormonal profile of chronic stress, despite the fact that ACTH secretion was completely blocked. These data suggest that the inhibition of PRL, LH and GH secretion following severe, chronic stress is not causally related to the sustained elevation of plasma ACTH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号