首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antimicrobial peptides are present in all walks of life, from plants to animals, and they are considered to be endogenous antibiotics. In general, antimicrobial peptides are determinants of the composition of the microbiota and they function to fend off microbes and prevent infections. Antimicrobial peptides eliminate micro-organisms through disruption of their cell membranes. Their importance in human immunity, and in health as well as disease, has only recently been appreciated. The present review provides an introduction to the field of antimicrobial peptides in general and discusses two of the major classes of mammalian antimicrobial peptides: the defensins and the cathelicidins. The review focuses on their structures, their main modes of action and their regulation.  相似文献   

2.
Lipopolysaccharide-activated human monocytes produceprointerleukin (pro-IL)-1 but release little of this inflammatorycytokine as the biologically active species. Efficient externalization of mature 17-kDa cytokine requires that the activated monocytes encounter a secondary stimulus such as ATP. To identify cation requirements of the ATP-induced process, lipopolysaccharide-activated monocytes were treated with ATP in media containing different Cl salts or sucrose. Mediadevoid of Na+ did not supportIL-1 processing. Titration of NaCl into choline chloride- orsucrose-based media restored 17-kDa IL-1 production. Na+ replacement, however, was notsufficient to support ATP-induced production of 17-kDa IL-1 in thepresence of 37 mM extracellular K+ orLi+. Inhibition byK+ suggests that efflux of thiscation is a necessary component of the stimulus-coupled response. Theinhibitory effect achieved by Na+depletion is not due to inactivation of the ATP receptor and isdistinct from a caspase-1 inhibitor. Stimulus-coupled IL-1 posttranslational processing, therefore, requires extracellular Na+ for a step downstream of theinitiating stimulus but preceding caspase-1 activation.

  相似文献   

3.
Antimicrobial peptides and proteins, exercise and innate mucosal immunity   总被引:1,自引:0,他引:1  
This review examines the question of whether exercise can be used as an experimental model to further our understanding of innate antimicrobial peptides and proteins (AMPs) and their role in susceptibility to infection at mucosal surfaces. There is strong evidence to suggest that AMPs, in combination with cellular and physical factors, play an important role in preventing infection. Although AMPs act directly on microorganisms, there is increasing recognition that they also exert their protective effect via immunomodulatory mechanisms, especially in noninflammatory conditions. Further studies that manipulate physiologically relevant concentrations of AMPs are required to shed light on the role they play in reducing susceptibility to infection. Evidence shows that in various form prolonged and/or exhaustive exercise is a potent modulator of the immune system, which can either sharpen or blunt the immune response to pathogens. The intensity and duration of exercise can be readily controlled in experimental settings to manipulate the degree of physical stress. This would allow for an investigation into a potential dose-response effect between exercise and AMPs. In addition, the use of controlled exercise could provide an experimental model by which to examine whether changes in the concentration of AMPs alters susceptibility to illness.  相似文献   

4.
The role of antimicrobial peptides in innate immunity   总被引:2,自引:1,他引:1  
Production of antimicrobial peptides and proteins is an importantmeans of host defense in eukaryotes. The larger antimicrobialproteins, containing more than 100 amino acids, are often lyticenzymes, nutrient-binding proteins or contain sites that targetspecific microbial macromolecules. The smaller antimicrobialpeptides act largely by disrupting the structure or functionof microbial cell membranes. Hundreds of antimicrobial peptideshave been found in the epithelial layers, phagocytic cells andbody fluids of multicellular animals, from mollusks to humans.Some antimicrobial peptides are produced constitutively, othersare induced in response to infection or inflammation. Studiesof the regulation of antimicrobial peptide synthesis in Drosophilahave been particularly fruitful, and have provided a new paradigmfor the analysis of mammalian host defense responses. It nowappears that the general patterns of antimicrobial responsesof invertebrates have been preserved in vertebrates ("innateimmunity") where they contribute to host defense both independentlyand in complex interplay with adaptive immunity.  相似文献   

5.
Although some functional activities of interleukin (IL)-15 on NK and T cells overlap with those of IL-2, recent findings obtained from gene-targeted mice deficient in components of IL-2/IL-15 system demonstrate distinct roles of IL-15 for the activation of innate immune system. IL-15 is a pivotal cytokine for the development and survival of NK cells, NKT cells, TCRydelta+ intestinal intraepithelial lymphocytes (ilEL), and for the functional maturation of dendritic cells and macrophages. IL-15 is also important for memory T cell maintenance in vivo. In this review, I summarize recent progress of studies in the IL-15/IL-15R system.  相似文献   

6.
Appropriate control of leukocyte recruitment and activation is a fundamental requirement for competent host defense and resolving inflammation. A pivotal event that defines the successful outcome of any inflammatory event is the transition from innate to acquired immunity. In IL-6 deficiency, this process appears defective, and a series of in vivo studies have documented important roles for IL-6 in both the resolution of innate immunity and the development of acquired immune responses. Within this review, particular attention will be given to the regulatory properties of the soluble IL-6 receptor and how its activity may affect chronic disease progression.  相似文献   

7.
Defensins: antimicrobial peptides of innate immunity   总被引:4,自引:0,他引:4  
The production of natural antibiotic peptides has emerged as an important mechanism of innate immunity in plants and animals. Defensins are diverse members of a large family of antimicrobial peptides, contributing to the antimicrobial action of granulocytes, mucosal host defence in the small intestine and epithelial host defence in the skin and elsewhere. This review, inspired by a spate of recent studies of defensins in human diseases and animal models, focuses on the biological function of defensins.  相似文献   

8.
9.
微RNA(microRNA,miRNA)是多种生物学过程的有效调节子,并表现为基因的定量调节。新出现的证据表明miRNA与天然免疫反应的调节有关。这种调节作用有助于维持宿主免疫反应和保护感染组织间的平衡。深入理解miRNA对天然免疫反应的调节有助于鉴定免疫调节的新靶标和建立基于miRNA的有效疗法。本综述重点总结miRNA在调节免疫细胞发育、Toll样受体和炎症细胞因子信号中的作用。  相似文献   

10.
Activation of the contact system has two classical consequences: initiation of the intrinsic pathway of coagulation, and cleavage of high molecular weight kininogen (HK) leading to the release of bradykinin, a potent proinflammatory peptide. In human plasma, activation of the contact system at the surface of significant bacterial pathogens was found to result in further HK processing and bacterial killing. A fragment comprising the D3 domain of HK is generated, and within this fragment a sequence of 26 amino acids is mainly responsible for the antibacterial activity. A synthetic peptide covering this sequence kills several bacterial species, also at physiological salt concentration, as effectively as the classical human antibacterial peptide LL-37. Moreover, in an animal model of infection, inhibition of the contact system promotes bacterial dissemination and growth. These data identify a novel and important role for the contact system in the defence against invasive bacterial infection.  相似文献   

11.
12.
Plants utilize tightly regulated mechanisms to defend themselves against pathogens. Initial recognition results in activation of specific Resistance (R) proteins that trigger downstream immune responses, in which the signaling networks remain largely unknown. A point mutation in SUPPRESSOR OF NPR1 CONSTITUTIVE1 (SNC1), a RESISTANCE TO PERONOSPORA PARASITICA4 R gene homolog, renders plants constitutively resistant to virulent pathogens. Genetic suppressors of snc1 may carry mutations in genes encoding novel signaling components downstream of activated R proteins. One such suppressor was identified as a novel loss-of-function allele of ENHANCED RESPONSE TO ABSCISIC ACID1 (ERA1), which encodes the beta-subunit of protein farnesyltransferase. Protein farnesylation involves attachment of C15-prenyl residues to the carboxyl termini of specific target proteins. Mutant era1 plants display enhanced susceptibility to virulent bacterial and oomycete pathogens, implying a role for farnesylation in basal defense. In addition to its role in snc1-mediated resistance, era1 affects several other R-protein-mediated resistance responses against bacteria and oomycetes. ERA1 acts partly independent of abscisic acid and additively with the resistance regulator NON-EXPRESSOR OF PR GENES1 in the signaling network. Defects in geranylgeranyl transferase I, a protein modification similar to farnesylation, do not affect resistance responses, indicating that farnesylation is most likely specifically required in plant defense signaling. Taken together, we present a novel role for farnesyltransferase in plant-pathogen interactions, suggesting the importance of protein farnesylation, which contributes to the specificity and efficacy of signal transduction events.  相似文献   

13.
Dungan LS  Mills KH 《Cytokine》2011,56(1):126-132
The interleukin (IL)-1 cyokine family plays a vital role in inflammatory responses during infection and in autoimmune diseases. The pro-inflammatory cytokines, IL-1β and IL-18 are members of the IL-1 family that require cleavage by caspase-1 in the inflammasome to generate the mature active cytokines. Cells of the innate immune system, including γδ T cells and invariant natural killer T (iNKT) cells respond rapidly to invading pathogens by producing inflammatory cytokines, such as IFN-γ and IL-17. IL-1β or IL-18 in combination with IL-23 can induce IL-17 production by γδ T cells without T cell receptor (TCR) engagement. IL-1β and IL-23 can also synergize to induce IL-17 production by iNKT cells. Furthermore, CD4+ αβ effector memory T cells secrete IL-17 in response to IL-23 in combination with either IL-1β or IL-18, in the absence of any TCR stimulation. The early IL-17 produced by innate cells induces recruitment of neutrophils to the site of infection, stimulates local epithelial cells to secrete anti-microbial proteins, such as lipocalins and calgranulins, induces production of structural proteins important in tight junction stability, and promotes production of matrix metalloproteinases. Caspase-1 processed IL-1 family cytokines therefore play a vital role in the innate immune response and induction of IL-17 from innate immune cells which functions to fight infections and promote autoimmunity.  相似文献   

14.
Antimicrobial peptides: key components of the innate immune system   总被引:1,自引:0,他引:1  
Life-threatening infectious diseases are on their way to cause a worldwide crisis, as treating them effectively is becoming increasingly difficult due to the emergence of antibiotic resistant strains. Antimicrobial peptides (AMPs) form an ancient type of innate immunity found universally in all living organisms, providing a principal first-line of defense against the invading pathogens. The unique diverse function and architecture of AMPs has attracted considerable attention by scientists, both in terms of understanding the basic biology of the innate immune system, and as a tool in the design of molecular templates for new anti-infective drugs. AMPs are gene-encoded short (<100 amino acids), amphipathic molecules with hydrophobic and cationic amino acids arranged spatially, which exhibit broad spectrum antimicrobial activity. AMPs have been the subject of natural evolution, as have the microbes, for hundreds of millions of years. Despite this long history of co-evolution, AMPs have not lost their ability to kill or inhibit the microbes totally, nor have the microbes learnt to avoid the lethal punch of AMPs. AMPs therefore have potential to provide an important breakthrough and form the basis for a new class of antibiotics. In this review, we would like to give an overview of cationic antimicrobial peptides, origin, structure, functions, and mode of action of AMPs, which are highly expressed and found in humans, as well as a brief discussion about widely abundant, well characterized AMPs in mammals, in addition to pharmaceutical aspects and the additional functions of AMPs.  相似文献   

15.
Life-threatening infectious diseases are on their way to cause a worldwide crisis, as treating them effectively is becoming increasingly difficult due to the emergence of antibiotic resistant strains. Antimicrobial peptides (AMPs) form an ancient type of innate immunity found universally in all living organisms, providing a principal first-line of defense against the invading pathogens. The unique diverse function and architecture of AMPs has attracted considerable attention by scientists, both in terms of understanding the basic biology of the innate immune system, and as a tool in the design of molecular templates for new anti-infective drugs. AMPs are gene-encoded short (<100 amino acids), amphipathic molecules with hydrophobic and cationic amino acids arranged spatially, which exhibit broad spectrum antimicrobial activity. AMPs have been the subject of natural evolution, as have the microbes, for hundreds of millions of years. Despite this long history of co-evolution, AMPs have not lost their ability to kill or inhibit the microbes totally, nor have the microbes learnt to avoid the lethal punch of AMPs. AMPs therefore have potential to provide an important breakthrough and form the basis for a new class of antibiotics. In this review, we would like to give an overview of cationic antimicrobial peptides, origin, structure, functions, and mode of action of AMPs, which are highly expressed and found in humans, as well as a brief discussion about widely abundant, well characterized AMPs in mammals, in addition to pharmaceutical aspects and the additional functions of AMPs.  相似文献   

16.
Impaired expression of alpha-defensin antimicrobial peptides and overproduction of the proinflammatory cytokine IL-1beta have been associated with inflammatory bowel disease. In this study, we examine the interactions between alpha-defensins and IL-1beta and the role of defensin deficiency in the pathogenesis of inflammatory bowel disease. It was found that matrix metalloproteinase-7-deficient (MMP-7(-/-)) mice, which produce procryptdins but not mature cryptdins (alpha-defensins) in the intestine, were more susceptible to dextran sulfate sodium-induced colitis. Furthermore, both baseline and dextran sulfate sodium-induced IL-1beta production in the intestine were significantly up-regulated in MMP-7(-/-) mice compared with that in control C57BL/6 mice. To elucidate the molecular mechanism for the increased IL-1beta production in defensin deficiency in vivo, we evaluated the effect of defensins on IL-1beta posttranslational processing and release. It was found that alpha-defensins, including mouse Paneth cell defensins cryptdin-3 and cryptdin-4, human neutrophil defensin HNP-1, and human Paneth cell defensin HD-5, blocked the release of IL-1beta from LPS-activated monocytes, whereas TNF-alpha expression and release were not affected. Unlike alpha-defensins, human beta-defensins and mouse procryptdins do not have any effect on IL-1beta processing and release. Thus, alpha-defensins may play an important role in intestinal homeostasis by controlling the production of IL-1beta.  相似文献   

17.
18.
The early host response during pulmonary nocardiosis is highly dependent on neutrophils and the successful clearance of bacteria in tissue. The data presented in this study showed that IL-17 mediated the neutrophil response following intranasal inoculation with Nocardia asteroides strain GUH-2. Flow cytometry revealed that neutrophil levels in C57BL/6 mice were increased by day 1 post inoculation and remained elevated until day 3, during which time the majority of bacterial clearance occurred. Intracellular cytokine staining for IL-17 showed a 3.5- to 5-fold increase in IL-17 producing T-lymphocytes that were predominately comprised by CD4?CD8? γδ T-lymphocytes. The importance of IL-17 and γδ T-cells was determined by the in vivo administration of antibody, capable of blocking IL-17 binding or TCR δ, respectively. Neutralization of either IL-17 or γδ T-cells in Nocardia treated mice resulted in attenuated neutrophil infiltration. Paralleling this impaired neutrophil recruitment, nearly a 10-fold increase in bacterial burden was observed in both anti-IL-17 and anti-TCR δ treated animals. Together, these data indicate a protective role for IL-17 and suggest that IL-17 producing γδ T-lymphocytes contribute to neutrophil infiltration during pulmonary nocardiosis.  相似文献   

19.
IRAK1: a critical signaling mediator of innate immunity   总被引:1,自引:0,他引:1  
The innate immune system is equipped with sensitive and efficient machineries to provide an immediate, first line defense against infections. Toll-like receptors (TLRs) detect pathogens and the IL-1 receptor (IL-1R) family enables cells to quickly respond to inflammatory cytokines by mounting an efficient protective response. Interleukin-1 receptor activated kinases (IRAKs) are key mediators in the signaling pathways of TLRs/IL-1Rs. By means of their kinase and adaptor functions, IRAKs initiate a cascade of signaling events eventually leading to induction of inflammatory target gene expression. Due to this pivotal role, IRAK function is also highly regulated via multiple mechanisms. In this review, we focus on IRAK1, the earliest known and yet the most interesting member of this family. An overview on its structure, function and biology is given, with emphasis on the different novel mechanisms that regulate IRAK1 function. We also highlight several unresolved questions in this field and evaluate the potential of IRAK1 as a target for therapeutic intervention.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号