首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental and computational studies of the G[UUCG]C RNA tetraloop   总被引:7,自引:0,他引:7  
In prokaryotic ribosomal RNAs, most UUCG tetraloops are closed by a C-G base-pair. However, this preference is greatly reduced in eukaryotic rRNA species where many UUCG tetraloops are closed by G-C base-pairs. Here, biophysical properties of the C[UUCG]G and G[UUCG]C tetraloops are compared, using experimental and computational methods. Thermal denaturation experiments are used to derive thermodynamic parameters for the wild-type G[UUCG]C tetraloop and variants containing single deoxy substitutions in the loop. A comparison with analogous experiments on the C[UUCG]G motif shows that the two RNA species exhibit similar patterns in response to the substitutions, suggesting that their loop structures are similar. This conclusion is supported by NMR data that suggest that the essential UUCG loop structure is maintained in both tetraloops. However, NMR results show that the G[UUCG]C loop structure is disrupted prior to melting of the stem; this behavior is in contrast to the two-state behavior of the C[UUCG]G molecule. Stochastic dynamics simulations using the GB/SA continuum solvation model, run as a function of temperature, show rare conformational transitions in several G[UUCG]C simulations. These results lead to the conclusion that substitution of a G-C for a C-G closing base-pair increases the intrinsic flexibility of the UUCG loop.  相似文献   

2.
Binding of Escherichia coli signal recognition particle (SRP) to its receptor, FtsY, requires the presence of 4.5S RNA, although FtsY alone does not interact with 4.5S RNA. In this study, we report that the exchange of the GGAA tetraloop sequence in domain IV of 4.5S RNA for UUCG abolishes SRP-FtsY interaction, as determined by gel retardation and membrane targeting experiments, whereas replacements with other GNRA-type tetraloops have no effect. A number of other base exchanges in the tetraloop sequence have minor or intermediate inhibitory effects. Base pair disruptions in the stem adjacent to the tetraloop or replacement of the closing C-G base pair with G-C partially restored function of the otherwise inactive UUCG mutant. Chemical probing by hydroxyl radical cleavage of 4.5S RNA variants show that replacing GGAA with UUCG in the tetraloop sequence leads to structural changes both within the tetraloop and in the adjacent stem; the latter change is reversed upon reverting the C-G closing base pair to G-C. These results show that the SRP-FtsY interaction is strongly influenced by the structure of the tetraloop region of SRP RNA, in particular the tetraloop stem, and suggest that both SRP RNA and Ffh undergo mutual structural adaptation to form SRP that is functional in the interaction with the receptor, FtsY.  相似文献   

3.
Thermodynamics of 2'-ribose substitutions in UUCG tetraloops   总被引:1,自引:0,他引:1       下载免费PDF全文
The ribose 2'-hydroxyl group confers upon RNA many unique molecular properties. To better appreciate its contribution to structure and stability and to monitor how substitutions of the 2' hydroxyl can alter an RNA molecule, each loop pyrimidine ribonucleotide in the UUCG tetraloop was substituted with a nucleotide containing either a fluorine (2'-F), hydrogen (2'-H), amino (2'-NH2), or methoxy (2'-OCH3) group, in the context of both the C:G and G:C loop-closing base pair. The thermodynamic parameters of these tetraloop variants have been determined and NMR experiments used to monitor the structural changes resulting from the substitutions. The modified riboses are better tolerated in the G[UUCG]C tetraloop, which may be due to its increased loop flexibility relative to the C[UUCG]G loop. Even for these simple substitutions, the free-energy change reflects a complex interplay of hydrogen bonding, solvation effects, and intrinsic pucker preferences of the nucleotides.  相似文献   

4.
The NMR structure of the 3' stem-loop (3'SL) from human U4 snRNA was determined to gain insight into the structural basis for conservation of this stem-loop sequence from vertebrates. 3'SL sequences from human, rat, mouse and chicken U4 snRNA each consist of a 7 bp stem capped by a UACG tetraloop. No high resolution structure has previously been reported for a UACG tetraloop. The UACG tetraloop portion of the 3'SL was especially well defined by the NMR data, with a total of 92 NOE-derived restraints (about 15 per residue), including 48 inter-residue restraints (about 8 per residue) for the tetraloop and closing C-G base pair. Distance restraints were derived from NOESY spectra using MARDIGRAS with random error analysis. Refinement of the 20mer RNA hairpin structure was carried out using the programs DYANA and miniCarlo. In the UACG tetraloop, U and G formed a base pair stabilized by two hydrogen bonds, one between the 2'-hydroxyl proton of U and carbonyl oxygen of G, another between the imino proton of G and carbonyl oxygen O2 of U. In addition, the amino group of C formed a hydrogen bond with the phosphate oxygen of A. G adopted a syn orientation about the glycosidic bond, while the sugar puckers of A and C were either C2'-endo or flexible. The conformation of the UACG tetraloop was, overall, similar to that previously reported for UUCG tetraloops, another member of the UNCG class of tetraloops. The presence of an A, rather than a U, at the variable position, however, presents a distinct surface for interaction of the 3'SL tetraloop with either RNA or protein residues that may stabilize interactions important for active spliceosome formation. Such tertiary interactions may explain the conservation of the UACG tetraloop motif in 3'SL sequences from U4 snRNA in vertebrates.  相似文献   

5.
Recent modifications and improvements to standard nucleic acid force fields have attempted to fix problems and issues that have been observed as longer timescale simulations have become routine. Although previous work has shown the ability to fold the UUCG stem–loop structure, until now no group has attempted to quantify the performance of current force fields using highly converged structural populations of the tetraloop conformational ensemble. In this study, we report the use of multiple independent sets of multidimensional replica exchange molecular dynamics (M-REMD) simulations with different initial conditions to generate well-converged conformational ensembles for the tetranucleotides r(GACC) and r(CCCC), as well as the larger UUCG tetraloop motif. By generating what is to our knowledge the most complete RNA structure ensembles reported to date for these systems, we remove the coupling between force field errors and errors due to incomplete sampling, providing a comprehensive comparison between current top-performing MD force fields for RNA. Of the RNA force fields tested in this study, none demonstrate the ability to correctly identify the most thermodynamically stable structure for all three systems. We discuss the deficiencies present in each potential function and suggest areas where improvements can be made. The results imply that although “short” (nsec-μsec timescale) simulations may stay close to their respective experimental structures and may well reproduce experimental observables, inevitably the current force fields will populate alternative incorrect structures that are more stable than those observed via experiment.  相似文献   

6.
Assembly of the human signal recognition particle (SRP) requires SRP19 protein to bind to helices 6 and 8 of SRP RNA. In the present study, structure of a 29-mer RNA composing the SRP19 binding site in helix 6 was determined by NMR spectroscopy. The two A:C mismatches were continuously stacked to each other and formed wobble type A:C base pairs. The GGAG tetraloop in helix 6 was found to adopt a similar conformation to that of GNRA tetraloop, suggesting that these tetraloops are included in an extensive new motif GNRR. Compared with the crystal structure of helix 6 in complex with SRP19 determined previously, the GGAG tetraloop in the complex was found to adopt a similar conformation to the free form, although the loop structure becomes more open upon SRP19 binding. Thus, SRP19 is thought to recognize the overall fold of the GGAG loop.  相似文献   

7.
8.
Osmolytes have the potential to affect the stability of secondary structure motifs and alter preferences for conserved nucleic acid sequences in the cell. To contribute to the understanding of the in vivo function of RNA we observed the effects of different classes of osmolytes on the UNCG tetraloop motif. UNCG tetraloops are the most common and stable of the RNA tetraloops and are nucleation sites for RNA folding. They also have a significant thermodynamic preference for a CG closing base pair. The thermal denaturation of model hairpins containing UUCG loops was monitored using UV-Vis spectroscopy in the presence of osmolytes with different chemical properties. Interestingly, all of the osmolytes tested destabilized the hairpins, but all had little effect on the thermodynamic preference for a CG base pair, except for polyethylene glycol (PEG) 200. PEG 200 destabilized the loop with the CG closing base pair relative to the loop with a GC closing base pair. The destabilization was linear with increasing concentrations of PEG 200, and the slope of this relationship was not perturbed by changes in the hairpin stem outside of the closing pair. This result suggests that in the presence of PEG 200, the UUCG loop with a GC closing base pair may retain some preferential interactions with the cosolute that are lost in the presence of the CG closing base pair. These results reveal that relatively small structural changes may influence how osmolytes tune the stability, and thus the function of a secondary structure motif in vivo.  相似文献   

9.
M Akke  R Fiala  F Jiang  D Patel    A G Palmer  rd 《RNA (New York, N.Y.)》1997,3(7):702-709
Intramolecular dynamics of guanine and uracil bases in a 14-nt RNA hairpin including the extraordinarily stable UUCG tetraloop were studied by 15N spin relaxation experiments that are sensitive to structural fluctuations occurring on a time scale of picoseconds to nanoseconds. The relaxation data were interpreted in the framework of the anisotropic model-free formalism, using assumed values for the chemical shift anisotropies of the 15N spins. The rotational diffusion tensor was determined to be symmetric with an axial ratio of 1.34 +/- 0.12, in agreement with estimates based on the ratio of the principal moments of the inertia tensor. The model-free results indicate that the bases of the G x U pair in the tetraloop are at least as rigid as the interior base pairs in the stem, whereas the 5'-terminal guanine is more flexible. The observed range of order parameters corresponds to base fluctuations of 19-22 degrees about the chi torsion angle. The results reveal dynamical consequences of the unusual structural features in the UUCG tetraloop and offer insights into the configurational entropy of hairpin formation.  相似文献   

10.
GNRA tetraloops (N is A, C, G, or U; R is A or G) are basic building blocks of RNA structure that often interact with proteins or other RNA structural elements. Understanding sequence-dependent structural variation among different GNRA tetraloops is an important step toward elucidating the molecular basis of specific GNRA tetraloop recognition by proteins and RNAs. Details of the geometry and hydration of this motif have been based on high-resolution crystallographic structures of the GRRA subset of tetraloops; less is known about the GYRA subset (Y is C or U). We report here the structure of a GUAA tetraloop determined to 1.4 A resolution to better define these details and any distinctive features of GYRA tetraloops. The tetraloop is part of a 27-nt structure that mimics the universal sarcin/ricin loop from Escherichia coli 23S ribosomal RNA in which a GUAA tetraloop replaces the conserved GAGA tetraloop. The adenosines of the GUAA tetraloop form an intermolecular contact that is a commonplace RNA tertiary interaction called an A-minor motif. This is the first structure to reveal in great detail the geometry and hydration of a GUAA tetraloop and an A-minor motif. Comparison of tetraloop structures shows a common backbone geometry for each of the eight possible tetraloop sequences and suggests a common hydration. After backbone atom superposition, equivalent bases from different tetraloops unexpectedly depart from coplanarity by as much as 48 degrees. This variation displaces the functional groups of tetraloops implicated in protein and RNA binding, providing a recognition feature.  相似文献   

11.
Structure prediction of non-canonical motifs such as mismatches, extra unmatched nucleotides or internal and hairpin loop structures in nucleic acids is of great importance for understanding the function and design of nucleic acid structures. Systematic conformational analysis of such motifs typically involves the generation of many possible combinations of backbone dihedral torsion angles for a given motif and subsequent energy minimization (EM) and evaluation. Such approach is limited due to the number of dihedral angle combinations that grows very rapidly with the size of the motif. Two conformational search approaches have been developed that allow both an effective crossing of barriers during conformational searches and the computational demand grows much less with system size then search methods that explore all combinations of backbone dihedral torsion angles. In the first search protocol single torsion angles are flipped into favorable states using constraint EM and subsequent relaxation without constraints. The approach is repeated in an iterative manner along the backbone of the structural motif until no further energy improvement is obtained. In case of two test systems, a DNA-trinucleotide loop (sequence: GCA) and a RNA tetraloop (sequence: UUCG), the approach successfully identified low energy states close to experiment for two out of five start structures. In the second method randomly selected combinations of up to six backbone torsion angles are simultaneously flipped into preset ranges by a short constraint EM followed by unconstraint EM and acceptance according to a Metropolis acceptance criterion. This combined stochastic/EM search was even more effective than the single torsion flip approach and selected low energy states for the two test cases in between two and four cases out of five start structures.  相似文献   

12.
Tetraloops are very abundant structural elements of RNA that are formed by four nucleotides in a hairpin loop which is closed by a double stranded helical stem with some Watson-Crick base pairs. A tetraloop r(GCGAAGGC) was identified from the crystal structure of the central domain of 16S rRNA (727-730) in the Thermus thermophilus 30S ribosomal complex. The crystal structure of the 30S complex includes a total of 104 nucleotides from the central domain of the 16S rRNA and three ribosomal proteins S6, S15 and S18. Independent biochemical experiments have demonstrated that protein S15 plays the role in initiating the formation of the central domain of this complex. In the crystal, the tetraloop interacts with the protein S15 at two sites: one of them is associated with hydrogen bond interactions between residue His50 and nucleotide G730, and the other is associated with the occurrence of residue Arg53 beside A728. This paper uses molecular dynamics (MD) simulations to investigate the protein-dependent structural stability of the tetraloop and demonstrates the folding pathway of this tetraloop via melting denaturation and its subsequent refolding. Three important results are derived from these simulations: (i) The stability of nucleotide A728 appears to be protein dependent. Without the interaction with S15, A728 flips away from stacking with A729. (ii) The melting temperature demonstrated by the simulations is analogous to the results of thermodynamic experiments. In addition, the simulated folding of the tetraloop is stepwise: the native shape of the backbone is formed first; this is then followed by the formation of the Watson- Crick base pairs in the stem; and finally the hydrogen bonds and base stacking in the loop are formed. (iii) The tetraloop structure is similar to the crystal structure at salt concentrations of 0.1 M and 1.0 M used for the simulations, but the refolded structure at 0.1 M salt is more comparable to the crystal structure than at 1.0 M. The results from the simulations using both the Generalized Born continuum model and explicit solvent model (Particle Mesh Ewald) generate a similar pathway for unfolding/refolding of the tetraloop.  相似文献   

13.
Abstract

Structure prediction of non-canonical motifs such as mismatches, extra unmatched nucleotides or internal and hairpin loop structures in nucleic acids is of great importance for understanding the function and design of nucleic acid structures. Systematic conformational analysis of such motifs typically involves the generation of many possible combinations of backbone dihedral torsion angles for a given motif and subsequent energy minimization (EM) and evaluation. Such approach is limited due to the number of dihedral angle combinations that grows very rapidly with the size of the motif. Two conformational search approaches have been developed that allow both an effective crossing of barriers during con-formational searches and the computational demand grows much less with system size then search methods that explore all combinations of backbone dihedral torsion angles. In the first search protocol single torsion angles are flipped into favorable states using constraint EM and subsequent relaxation without constraints. The approach is repeated in an iterative manner along the backbone of the structural motif until no further energy improvement is obtained. In case of two test systems, a DNA-trinucleotide loop (sequence: GCA) and a RNA tetraloop (sequence: UUCG), the approach successfully identified low energy states close to experiment for two out of five start structures. In the second method randomly selected combinations of up to six backbone torsion angles are simultaneously flipped into preset ranges by a short constraint EM followed by unconstraint EM and acceptance according to a Metropolis acceptance criterion. This combined stochastic/EM search was even more effective than the single torsion flip approach and selected low energy states for the two test cases in between two and four cases out of five start structures.  相似文献   

14.
CUUG loop is one of the most frequently occurring tetraloops in bacterial 16S rRNA. This tetraloop has a high thermodynamic stability as proved by previous UV absorption and NMR experiments. Here, we present our results concerning the thermodynamic and structural features of the 10mer 5′-r(GCG-CUUG-CGC)-3′, forming a highly stable CUUG tetraloop hairpin in aqueous solution, by means of several optical techniques (UV and FT-IR absorption, Raman scattering). UV melting profile of this decamer provides a high melting temperature (60.7°C). A set of Raman spectra recorded at different temperatures allowed us to analyze the order-to-disorder (hairpin-to-random coil) transition. Assignment of vibrational markers led us to confirm the particular nucleoside conformation, and to get information on the base stacking and base pairing in the hairpin structure. Moreover, comparison of the data obtained from two highly stable CUUG and UUCG tetraloops containing the same nucleotides but in a different order permitted an overall discussion of their structural features on the basis of Raman marker evidences.  相似文献   

15.
Experimental and theoretical thermodynamic studies of the consequences of 2'-hydroxyl substitution in the RNA UUCG tetraloop show distinct position dependence consistent with the diverse structural contexts of the four-loop ribose hydroxyls in this motif. The results suggest that even for simple substitutions, such as the replacement of the ribose hydroxyl (2'-OH) with hydrogen (2'-H), the free energy change reflects a complex interplay of hydrogen bonding and solvation effects and is influenced by the intrinsic pucker preferences of the nucleotides. Furthermore, theoretical studies suggest that the effect of these mutations in the single-strand state is sequence dependent, in contrast to what is commonly assumed. Free energy perturbation simulations of ribose-deoxyribose mutations in a single-strand dodecamer and in trinucleotide models suggest that in the denatured state, the magnitude of the free energy change for deoxyribose substitutions is determined to a larger extent by the identity of the nucleotide (A, C, G or U) rather than its structural context. Single-strand mutational effects must be considered when interpreting mutational studies in molecular terms.  相似文献   

16.
-1 Programmed ribosomal frameshifting (PRF) in synthesizing the gag-pro precursor polyprotein of Simian retrovirus type-1 (SRV-1) is stimulated by a classical H-type pseudoknot which forms an extended triple helix involving base-base and base-sugar interactions between loop and stem nucleotides. Recently, we showed that mutation of bases involved in triple helix formation affected frameshifting, again emphasizing the role of the triple helix in -1 PRF. Here, we investigated the efficiency of hairpins of similar base pair composition as the SRV-1 gag-pro pseudoknot. Although not capable of triple helix formation they proved worthy stimulators of frameshifting. Subsequent investigation of ~30 different hairpin constructs revealed that next to thermodynamic stability, loop size and composition and stem irregularities can influence frameshifting. Interestingly, hairpins carrying the stable GAAA tetraloop were significantly less shifty than other hairpins, including those with a UUCG motif. The data are discussed in relation to natural shifty hairpins.  相似文献   

17.
18.
High resolution NMR data on UNCG and GNRA tetraloops (where N is any of the four nucleotides and R is a purine) have shown that they contain ribonucleosides with unusual 2'-endo/anti and 3'-endo/syn conformations, in addition to the 3'-endo/anti ones which are regularly encountered in RNA chains. In the current study, Raman spectroscopy has been used to probe these nucleoside conformations and follow the order (hairpin) to disorder (random chain) structural transitions in aqueous phase in the 5-80 degreesC temperature range. Spectral evolution of GCAA and GAAA tetraloops, as formed in very short hairpins with only three G.C base pairs in their stems (T m >60 degreesC), are reported and compared with those previously published on UUCG and UACG tetraloops, for which the syn orientation of the terminal guanine as well as the 2'-endo/anti conformation of the third rC residue have been confirmed by means of vibrational marker bands. Raman data obtained as a function of temperature show that the first uracil in the UUCG tetraloop is stacked and the two middle residues (rU and rC) are in the 2'-endo/anti conformation, in agreement with the previously published NMR results. As far as the new data concerning the GNRA type tetraloops are concerned, they lead us to conclude that: (i) in both cases (GCAA and GAAA tetraloops) the adenine bases are stacked; (ii) the second rC residue in the GCAA tetraloop has a 3'-endo/anti conformation; (iii) the sugar pucker associated with the third rA residue in both tetraloops possibly undergoes a 3'-endo/2'-endo interconversion as predicted by NMR results; (iv) the stem adopts a regular A-form structure; (v) all other nucleosides of these two GNRA tetraloops possess the usual 3'-endo/anti conformation.  相似文献   

19.
Conformational equilibrium within the ubiquitous GNRA tetraloop motif was simulated at the ensemble level, including 10 000 independent all-atom molecular dynamics trajectories totaling over 110 µs of simulation time. This robust sampling reveals a highly dynamic structure comprised of 15 conformational microstates. We assemble a Markov model that includes transitions ranging from the nanosecond to microsecond timescales and is dominated by six key loop conformations that contribute to fluctuations around the native state. Mining of the Protein Data Bank provides an abundance of structures in which GNRA tetraloops participate in tertiary contact formation. Most predominantly observed in the experimental data are interactions of the native loop structure within the minor groove of adjacent helical regions. Additionally, a second trend is observed in which the tetraloop assumes non-native conformations while participating in multiple tertiary contacts, in some cases involving multiple possible loop conformations. This tetraloop flexibility can act to counterbalance the energetic penalty associated with assuming non-native loop structures in forming tertiary contacts. The GNRA motif has thus evolved not only to readily participate in simple tertiary interactions involving native loop structure, but also to easily adapt tetraloop secondary conformation in order to participate in larger, more complex tertiary interactions.  相似文献   

20.
Solution structure of a GAAA tetraloop receptor RNA.   总被引:4,自引:0,他引:4       下载免费PDF全文
S E Butcher  T Dieckmann    J Feigon 《The EMBO journal》1997,16(24):7490-7499
The GAAA tetraloop receptor is an 11-nucleotide RNA sequence that participates in the tertiary folding of a variety of large catalytic RNAs by providing a specific binding site for GAAA tetraloops. Here we report the solution structure of the isolated tetraloop receptor as solved by multidimensional, heteronuclear magnetic resonance spectroscopy. The internal loop of the tetraloop receptor has three adenosines stacked in a cross-strand or zipper-like fashion. This arrangement produces a high degree of base stacking within the asymmetric internal loop without extrahelical bases or kinking the helix. Additional interactions within the internal loop include a U. U mismatch pair and a G.U wobble pair. A comparison with the crystal structure of the receptor RNA bound to its tetraloop shows that a conformational change has to occur upon tetraloop binding, which is in good agreement with previous biochemical data. A model for an alternative binding site within the receptor is proposed based on the NMR structure, phylogenetic data and previous crystallographic structures of tetraloop interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号