首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Light microscopy, transmission electron microscopy, and scanning electron microscopy were used to visualize the extracellular slime of Proteus mirabilis swarm cells. Slime was observed with phase-contrast microscopy after fixation in hot sulfuric acid-sodium borate. Ruthenium red was used to stain slime for transmission electron microscopy. Copious quantities of extracellular slime were observed surrounding swarm cells; the slime appeared to provide a matrix through which the cells could migrate. Swarm cells were always found embedded in slime. These observations support the argument that swarming of P. mirabilis is associated with the production of large quantities of extracellular slime. Examination of nonswarming mutants of P. mirabilis revealed that a number of morphological changes, including cell elongation and increased flagellum synthesis, were required for swarm cell migration. It is still unclear whether extracellular slime production also is required for migration.  相似文献   

2.
Flies transport specific bacteria with their larvae that provide a wider range of nutrients for those bacteria. Our hypothesis was that this symbiotic interaction may depend on interkingdom signaling. We obtained Proteus mirabilis from the salivary glands of the blow fly Lucilia sericata; this strain swarmed significantly and produced a strong odor that attracts blow flies. To identify the putative interkingdom signals for the bacterium and flies, we reasoned that as swarming is used by this bacterium to cover the food resource and requires bacterial signaling, the same bacterial signals used for swarming may be used to communicate with blow flies. Using transposon mutagenesis, we identified six novel genes for swarming (ureR, fis, hybG, zapB, fadE and PROSTU_03490), then, confirming our hypothesis, we discovered that fly attractants, lactic acid, phenol, NaOH, KOH and ammonia, restore swarming for cells with the swarming mutations. Hence, compounds produced by the bacterium that attract flies also are utilized for swarming. In addition, bacteria with the swarming mutation rfaL attracted fewer blow flies and reduced the number of eggs laid by the flies. Therefore, we have identified several interkingdom signals between P. mirabilis and blow flies.  相似文献   

3.
In a search for Proteus mirabilis genes that were regulated by cell-to-cell signalling, a lacZ fusion (cmr437::mini-Tn5lacZ) was identified that was repressed 10-fold by a self-produced extracellular signal from wild-type cells. However, the cmr437::mini-Tn5lacZ insertion itself led to a marked reduction in this extracellular repressing signal. The cmr437::mini-Tn5lacZ insertion was mapped to a speA homologue in P. mirabilis. Sequence analysis indicated that a speB homologue was encoded downstream of speA. Products of the SpeA and SpeB enzymes (agmatine and putrescine) were tested for repression of cmr437::lacZ. Agmatine did not have repressing activity. However, putrescine was an effective repressing molecule at concentrations down to 30 microM. A second prominent phenotype of the cmr437 (speA)::mini-Tn5lacZ insertion was a severe defect in swarming motility. This swarming defect was also observed in a strain containing a disruption of the downstream speB gene. Differentiation of the speB mutant to swarmer cells was delayed by two hours relative to wild-type cells. Furthermore, the speB mutant was unable to migrate effectively across agar surfaces and formed very closely spaced swarming rings. Exogenous putrescine restored both the normal timing of swarmer cell differentiation and the ability to migrate to speB mutants.  相似文献   

4.
Specific differences in the structure of colonies and the location of microbial cells in colonies, characteristic for aggregating and nonaggregating genetically related pairs of P. vulgaris and P. mirabilis strains, have been demonstrated by means of transmission and scanning electron microscopy. In calculating the number of flagellae per 100 outlines of microbial bodies revealed in negatively stained preparations, the fact that both aggregating and nonaggregating bacteria possess practically the same number of flagellae, on the average 4-8 flagellae per microbial cell outline, has been established. This fact indicates that the presence of flagellae in microbial cells is unrelated to their capacity for swarming.  相似文献   

5.
6.
Proteus mirabilis forms a concentric-ring colony by undergoing periodic swarming. A colony in the process of such synchronized expansion was examined for its internal population structure. In alternating phases, i.e., swarming (active migration) and consolidation (growth without colony perimeter expansion), phase-specific distribution of cells differing in length, in situ mobility, and migration ability on an agar medium were recognized. In the consolidation phase, the distribution of mobile cells was restricted to the inner part of a new ring and a previous terrace. Cells composing the outer part of the ring were immobile in spite of their ordinary swimming ability in a viscous solution. A sectorial cell population having such an internal structure was replica printed on fresh agar medium. After printing, a transplant which was in the swarming phase continued its ongoing swarming while a transplanted consolidation front continued its scheduled consolidation. This shows that cessation of migration during the consolidation phase was not due to substances present in the underlying agar medium. The ongoing swarming schedule was modifiable by separative cutting of the swarming front or disruption of the ring pattern by random mixing of the pattern-forming cell population. The structured cell population seemed to play a role in characteristic colony growth. However, separation of a narrow consolidation front from a backward area did not induce disturbance in the ongoing swarming schedule. Thus, cells at the frontal part of consolidation area were independent of the internal cell population and destined to exert consolidation and swarming with the ongoing ordinary schedule.  相似文献   

7.
Swarming in Proteus mirabilis is characterized by the coordinated surface migration of multicellular rafts of highly elongated, hyperflagellated swarm cells. We describe a transposon mutant, MNS185, that was unable to swarm even though vegetative cells retained normal motility and the ability to differentiate into swarm cells. However, these elongated cells were irregularly curved and had variable diameters, suggesting that the migration defect results from the inability of these deformed swarm cells to align into multicellular rafts. The transposon was inserted at codon 196 of a 228-codon gene that lacks recognizable homologs. Multiple copies of the wild-type gene, called ccmA, for curved cell morphology, restored swarming to the mutant. The 25-kDa CcmA protein is predicted to span the inner membrane twice, with its C-terminal major domain being present in the cytoplasm. Membrane localization was confirmed both by immunoblotting and by electron microscopy of immunogold-labelled sections. Two forms of CcmA were identified for wild-type P. mirabilis; they were full-length integral membrane CcmA1 and N-terminally truncated peripheral membrane CcmA2, both present at approximately 20-fold higher concentrations in swarm cells. Differentiated MNS185 mutant cells contained wild-type levels of the C-terminally truncated versions of both proteins. Elongated cells of a ccmA null mutant were less misshapen than those of MNS185 and were able to swarm, albeit more slowly than wild-type cells. The truncated CcmA proteins may therefore interfere with normal morphogenesis, while the wild-type proteins, which are not essential for swarming, may enhance migration by maintaining the linearity of highly elongated cells. Consistent with this view, overexpression of the ccmA gene caused cells of both Escherichia coli and P. mirabilis to become enlarged and ellipsoidal.  相似文献   

8.
Gué M  Dupont V  Dufour A  Sire O 《Biochemistry》2001,40(39):11938-11945
Fourier transform infrared spectroscopy was applied to the study of the differentiation process undergone by Proteus mirabilis. This bacterium exhibits a remarkable dimorphism, allowing the cells to migrate on a solid substratum in a concerted manner yielding characteristic ring patterns. We performed an in situ noninvasive analysis of biochemical events occurring as vegetative cells differentiate into elongated, multinucleate, nonseptate, and hyperflagellated swarm cells. The major findings arising from this study are (i) the real-time monitoring of flagellar filament assembly, (ii) the evidence for de novo synthesis of qualitatively different lipopolysaccharides (LPS) and/or exopolysaccharides (EPS) constituting the slime into which bacteria swarm, and (iii) the alteration in the membrane fatty acid composition with a concomitant 10 degrees C decrease in the gel/liquid crystal phase transition resulting in an elevated membrane fluidity in swarm cells at the growth temperature. The time course of events shows that the EPS-LPS syntheses are synchronous with membrane fatty acid alterations and occur about 1 h before massive flagellar filament assembly is detected. This study not only provided a time sketch of biochemical events involved in the differentiation process but also led to the identification of the major spectral markers of both vegetative and swarm cells. This identification will allow to resolve the time-space structure of P. mirabilis colonies by using infrared microscopy.  相似文献   

9.
Swarming by Proteus mirabilis is characterized by cycles of rapid and coordinated population migration across surfaces following differentiation of vegetative cells into elongated hyperflagellated swarm cells. It has been shown that surface colony expansion by the swarm cell population is facilitated by a colony migration factor (Cmf), a capsular polysaccharide (CPS) that also contributes to the uropathogenicity of P. mirabilis (Gygi, D., Rahman, M. M., Lai, H.-C., Carlson, R., Guard-Petter, J., and Hughes, C. (1995) Mol. Microbiol. 17, 1167-1175). In this report, the Cmf-CPS was extracted with hot water, precipitated with ethanol, and further purified by gel permeation chromatography. Its structure was established by glycosyl composition and linkage analyses, and by one- and two-dimensional NMR spectroscopy. The Cmf-CPS is composed of the following tetrasaccharide repeating unit. [see text]  相似文献   

10.
11.
Transposon mutagenesis in Proteus mirabilis.   总被引:6,自引:0,他引:6       下载免费PDF全文
R Belas  D Erskine    D Flaherty 《Journal of bacteriology》1991,173(19):6289-6293
A technique of transposon mutagenesis involving the use of Tn5 on a suicide plasmid was developed for Proteus mirabilis. Analysis of the resulting exconjugants indicated that Tn5 transposed in P. mirabilis at a frequency of ca. 4.5 x 10(-6) per recipient cell. The resulting mutants were stable and retained the transposon-encoded antibiotic resistance when incubated for several generations under nonselective conditions. The frequency of auxotrophic mutants in the population, as well as DNA-DNA hybridizaiton to transposon sequences, confirmed that the insertion of the transposon was random and the Proteus chromosome did not contain significant insertional hot spots of transposition. Approximately 35% of the mutants analyzed possessed plasmid-acquired ampicillin resistance, although no extrachromosomal plasmid DNA was found. In these mutants, insertion of the Tn5 element and a part or all of the plasmid had occurred. Application of this technique to the study of swarmer cell differentiation in P. mirabilis is discussed.  相似文献   

12.
The biosynthesis of a Proteus mirabilis outer membrane protein of molecular weight of approximately 7,000 was found to be relatively resistant to puromycin and rifampin, as is the case for the Escherichia coli liporotein. Furthermore, the existence of the lipoprotein in P. mirabilis was indicated by a comparison of the amino acid compositions of the purified free and bound forms of this protein with those of the E. coli free and bound lipoproteins.  相似文献   

13.
1. Proteus mirabilis formed fumarate reductase under anaerobic growth conditions. The formation of this reductase was repressed under conditions of growth during which electron transport to oxygen or to nitrate is possible. In two of three tested chlorate-resistant mutant strains of the wild type, fumarate reductase appeared to be affected. 2. Cytoplasmic membrane suspensions isolated from anaerobically grown P. mirabilis oxidized formate and NADH with oxygen and with fumarate, too. 3. Spectral investigation of the cytoplasmic membrane preparation revealed the presence of (probably at least two types of) cytochrome b, cytochrome a1 and cytochrome d. Cytochrome b was reduced by NADH as well as by formate to approximately 80%. 4. 2-n-Heptyl-4-hydroxyquinilone-N-oxide and antimycin A inhibited oxidation of both formate and NADH by oxygen and fumarate. Both inhibitors increased the level of the formate/oxygen steady state and the formate/fumarate steady state. 5. The site of inhibition of the respiratory activity by both HQNO and antimycin A was located at the oxidation side of cytochrome b. 6. The effect of ultraviolet-irradiation of cytoplasmic membrane suspensions on oxidation/reduction phenomena suggested that the role of menaquinone is more exclusive in the formate/fumarate pathway than in the electron transport route to oxygen. 7. Finally, the conclusion has been drawn that the preferential route for electron transport from formate and from NADH to fumarate (and to oxygen) includes cytochrome b as a directly involved carrier. A hypothetical scheme for the electron transport in anaerobically grown P. mirabilis is presented.  相似文献   

14.
Freeze-fracture studies of short, nonswarming Proteus mirabilis revealed the characteristic gram-negative profile of fractured inner membrane with densely packed particles and sectioned outer membrane with little or no fracture plane. Long swarming cells, however, fractured easily along both the inner membrane and a second membrane, probably the outer membrane. The inner membrane had a typical profile, whereas the outer membrane had fewer but more prominent particles. Isolation and purification of the inner and outer membranes of the short and long bacteria and examination of them with electron paramagnetic resonance measurements after spinlabeling supported the above observations. The outer membrane of swarmer cells allowed higher mobility of the spin label than did the outer membrane of the nonswarming short cells, which showed a typical rigid profile. These results suggest that regions of lipid bilayer appear in the outer membrane during swarmer formation. Previous observation of the behavior and biochemistry of P. mirabilis during swarming are discussed in light of these results.  相似文献   

15.
Swarming by Proteus mirabilis involves differentiation of typical short vegetative rods into filamentous hyper-flagellated swarm cells which undergo cycles of rapid and co-ordinated population migration across surfaces and exhibit high levels of virulence gene expression. By supplementing a minimal growth medium (MGM) unable to support swarming migration we identified a single amino acid, glutamine, as sufficient to signal initiation of cell differentiation and migration. Bacteria isolated from the migrating edge of colonies grown for 8h with glutamine as the only amino acid were filamentous and synthesized the characteristic high levels of flagellin and haemolysin. In contrast, addition of the other 19 common amino acids (excluding glutamine) individually or in combination did not initiate differentiation even after 24 h, cells remaining typical vegetative rods with basal levels of haemolysin and flagellin. The glutamine analogue γ-glutamyl hydroxamate (GH) inhibited swarming but not growth of P. mirabilis on glutamine MGM and transposon mutants defective in glutamine uptake retained their response to glutamine signalling and its inhibition by GH, suggesting that differentiation signalling by glutamine may be transduced independently of the cellular glutamine transport system. Levels of mRNA transcribed from the haemolysin (hpmA) and flagellin (fliC) genes were low in vegetative cells grown on MGM without glutamine or with glutamine and GH, but were specifically increased c. 40-fold during glutamine-dependent differentiation. In liquid glutamine—MGM cultures, differentiation to filamentous hyper-flagellated hyper-haemorytic swarm cells occurred early in the exponential phase of growth, and increased concomitantly with the concentration of glutamine from a 0.1 mM threshold up to 10 mM. Differentiation in liquid culture was completely inhibited by GH but was further stimulated c. 30% in the absence of GH by the viscosity agent polyvinylpy-rollidone (PVP). Chemotaxis assays of bacterial cells in which the viscosity of liquid media was varied by PVP to allow either swimming or swarming motility demonstrated that glutamine was chemoattractive specifically to differentiated swarming cells.  相似文献   

16.
Four R mutants of P. mirabilis were isolated. The composition of their degraded polysaccharides (PS) obtained from the respective lipopolysaccharides (LPS) as well as the composition and properties of the PS-fractions separated by column chromatography were examined. The results were compared with those obtained with PS of the wild type. One of the mutants could be classified as an Ra-type mutant, presenting a complete LPS core. This polysaccharide core contains: galacturonic acid, glucosamine, glucose, D-glycero-D-mannoheptose, L-glycero-D-mannoheptose in a molar ratio of 1 : 1 : 1 : 1 : 2 and 2-keto-3-deoxyoctonate. Taking into consideration the common sugars described previously in the LPS chemotypes of P. hauseri, the composition of the complete core region mentioned above represents the LPS core part of all the chemotypes, containing two different heptoses.  相似文献   

17.
18.
Proteus mirabilis is one of the leading causes of catheter-associated UTIs (CAUTI) in individuals with prolonged urinary catheterization. Since, biofilm assisted antibiotic resistance is reported to complicate the treatment strategies of P. mirabilis infections, the present study was aimed to attenuate biofilm and virulence factor production in P. mirabilis. Linalool is a naturally occurring monoterpene alcohol found in a wide range of flowers and spice plants and has many biological applications. In this study, linalool exhibited concentration dependent anti-biofilm activity against crystalline biofilm of P. mirabilis through reduced production of the virulence enzyme urease that raises the urinary pH and drives the formation of crystals (struvite) in the biofilm. The results of q-PCR analysis unveiled the down regulation of biofilm/virulence associated genes upon linalool treatment, which was in correspondence with the in vitro bioassays. Thus, this study reports the feasibility of linalool acting as a promising anti-biofilm agent against P. mirabilis mediated CAUTI.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号