首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diffusible magnesium in frog skeletal muscle cells   总被引:4,自引:0,他引:4       下载免费PDF全文
Total diffusible magnesium concentration in frog skeletal muscle is 5.2 mM as determined by electron probe microanalysis of 0.2 nl liquid samples. The calculated free Mg concentration, 0.2 mM, is at the lower end of the range of values reported by others as calculated by methods using nuclear magnetic resonance, Mg-selective microelectrodes, and metallochromic indicator dyes. Magnesium is but one of many elements of physiological importance in muscle that can be analyzed using this novel liquid-sampling and x-ray spectroscopic method.  相似文献   

2.
Using the isolated perfused rat hindlimb and the fluorocarbon-transfused rat, we have examined the optical characteristics of the rat skeletal muscle in the near-infrared region. The total contribution of myoglobin and cytochromes to the overall absorbance change was less than 10%. Analyzing transmitted light at 700, 730, and 805 nm, we found linear relationships between the absorbance and the hemoglobin concentrations at hematocrit values from 15 to 50% in the inflowing perfusate. Based on the relationship, we determined the ratio of absorption coefficients at 700, 730, and 805 nm of oxy- and deoxy-hemoglobins of blood in the thigh muscle. The values in thigh muscle were significantly smaller than those in hemoglobin solutions for deoxygenated blood. On the other hand, the values in thigh muscle were larger than those in hemoglobin solutions for oxygenated blood. Solving simultaneous equations by the use of these absorption coefficients, we calculated the changes in the contents of oxy-, deoxy-, and total hemoglobins in the anesthetized rat hindlimb under various conditions. The oxygen saturation of blood determined by our optical method in the thigh muscle was very close to that in the vena cava measured directly with a gas analyzer.  相似文献   

3.
1. The mechanical and electrophysiological effects of repetitive, low-frequency electrical stimulation on paired sartorii muscles from small male frogs have been investigated, in vitro. 2. Stimulation for 90 sec at 5 Hz resulted in a progressive rise (staircase) than fall (fatigue) in peak twitch tension. 3. The root mean square amplitude, peak-to-peak amplitude, conduction velocity and mean power frequency of evoked compound muscle action potentials (CMAPs) decreased over the stimulation period. 4. Results suggest that alterations in the shape of the CMAP during repetitive stimulation may contribute to the staircase phenomenon.  相似文献   

4.
A principal step in the process leading to muscle contraction is the intracellular release of Ca2+. We have detected and compared some physical and chemical events that reflect Ca2+ release in contracting frog skeletal muscle cells, described the effects of some agents that are believed to alter intracellular Ca2+ release during contraction, and speculated about the role of Ca2+ release in influencing some of the mechanical properties of frog muscle. The specific physical features recorded were changes in striation spacing, myofibrillar orientation, and force development. The chemical feature was the relative change in intracellular [Ca2+] recorded as light emission from cells microinjected with the Ca2+-sensitive protein aequorin. The presence or absence of a correlation among these variables has been used (i) to evaluate the action of some agents thought to change intracellular Ca2+ release in excitation--contraction (E--C) coupling, (ii) to further substantiate the effects of cell length on Ca2+ release, and (iii) to examine some details of models for E--C coupling. The results showed that potentiating agents enhance and prolong intracellular Ca2+ release without changing the rate of Ca2+ removal during E--C coupling. This extra Ca2+ does not produce the same effect on contractions at all lengths. Contractility is inversely related to cell length, and Ca2+-induced activation is normally less than maximum not only at short lengths but also at optimal striation spacings.  相似文献   

5.
The latency relaxation is a small drop of tension before skeletal muscle begins to develop active tension. This phenomenon was found nearly one century ago but its origin has not been clarified. In this review, the hypotheses for its mechanism are discussed in terms of the recent experimental results using X-ray diffraction. The latency relaxation takes place almost simultaneously as the structural change of the regulatory protein troponin, an unspecified structural change of the thick filament, and increase in stiffness. It seems difficult to associate all of these with the latency relaxation by assuming a simple mechanism.  相似文献   

6.
Furosemide-inhibitable components in unidirectional cation fluxes have been identified in frog skeletal muscle. In sodium loaded muscles, placed in sodium-free rubidium lithium media, furosemide (1 mM) inhibits partially rubidium and lithium influxes as well as potassium and sodium outfluxes. The furosemide-inhibitable components were found to depend on the presence of ouabain. They were greatly diminished in sodium-free magnesium media and were present in chloride-free nitrate containing media. The dependence of furosemide-inhibitable sodium efflux on internal sodium content was also described.  相似文献   

7.
Sodium channel gating currents in frog skeletal muscle   总被引:7,自引:5,他引:2       下载免费PDF全文
Charge movements similar to those attributed to the sodium channel gating mechanism in nerve have been measured in frog skeletal muscle using the vaseline-gap voltage-clamp technique. The time course of gating currents elicited by moderate to strong depolarizations could be well fitted by the sum of two exponentials. The gating charge exhibits immobilization: at a holding potential of -90 mV the proportion of charge that returns after a depolarizing prepulse (OFF charge) decreases with the duration of the prepulse with a time course similar to inactivation of sodium currents measured in the same fiber at the same potential. OFF charge movements elicited by a return to more negative holding potentials of -120 or -150 mV show distinct fast and slow phases. At these holding potentials the total charge moved during both phases of the gating current is equal to the ON charge moved during the preceding prepulse. It is suggested that the slow component of OFF charge movement represents the slower return of charge "immobilized" during the prepulse. A slow mechanism of charge immobilization is also evident: the maximum charge moved for a strong depolarization is approximately doubled by changing the holding potential from -90 to -150 mV. Although they are larger in magnitude for a -150-mV holding potential, the gating currents elicited by steps to a given potential have similar kinetics whether the holding potential is -90 or -150 mV.  相似文献   

8.
After a contracture response, skeletal muscle fibers enter into a state of contractile refractoriness or inactivation. Contractile inactivation starts soon after membrane depolarization, and causes spontaneous relaxation from the contracture response. Here we demonstrate that contractile inactivation continues to develop for tens of seconds if the membrane remains in a depolarized state. We have studied this phenomenon using short (1.5 mm) frog muscle fibers dissected from the Lumbricalis brevis muscles of the frog, with a two-microelectrode voltage-clamp technique. After a contracture caused by membrane depolarization to 0 mV, from a holding potential of -100 mV, a second contracture can be developed only if the membrane is repolarized beyond a determined potential value for a certain period of time. We have used a repriming protocol of 1 or 2 s at -100 mV. After this repriming period a fiber, if depolarized again to 0 mV, may develop a second contracture, whose magnitude and time course will depend on the duration of the period during which the fiber was maintained at 0 mV before the repriming process. With this procedure it is possible to demonstrate that the inactivation process builds up with a very slow time course, with a half time of approximately 35 s and completion in greater than 100 s. After prolonged depolarizations (greater than 100 s), the repriming time course is slower and the inactivation curve (obtained by plotting the extent of repriming against the repriming membrane potential) is shifted toward more negative potentials by greater than 30 mV when compared with similar curves obtained after shorter depolarizing periods (10-30 s). These results indicate that important changes occur in the physical state of the molecular moiety that is responsible for the inactivation phenomenon. The shift of the inactivation curve can be partially reversed by a low concentration (50 microM) of lanthanum ions. In the presence of 0.5 mM caffeine, larger responses can be obtained even after prolonged depolarization periods, indicating that the fibers maintain their capacity to liberate calcium.  相似文献   

9.
Acoustic signals from frog skeletal muscle.   总被引:10,自引:1,他引:9       下载免费PDF全文
Acoustic, force, and compound muscle action-potential signals were recorded simultaneously during maximal isometric twitches of frog gastrocnemius muscles. The onset of sound production occurred after the onset of muscle depolarization but before the onset of external force production. Acoustic waveforms consisted of oscillations that initially increased in amplitude, followed by decaying oscillations. The peak-to-peak acoustic amplitude increased with increasing temperature with a Q10 of 2.6 +/- 0.2 over a range of 7.0-25.0 degrees C. The acoustic amplitude increased with increasing muscle length up to approximately 90% of the optimal length for force generation. As length was increased further, the acoustic amplitude decreased. Microphones positioned on opposite sides of the muscle recorded acoustic signals that were 180 degrees out of phase. These results provided evidence that sound production is produced by lateral oscillations of muscle. The oscillation frequency may provide a measure of mechanical properties of muscle.  相似文献   

10.
We present an analysis of experimental steady-state properties of charge movements in voltage-clamped frog skeletal muscle; by adopting an approach based on equilibrium statistical mechanics, detailed assumptions about the dynamics of the charge movement were avoided. Different components of the charge movements, as characterized by their sensitivities to local anaesthetics, were taken to correspond to different types of independent subsystem (integral membrane proteins). Quantitative agreement with the data for the q beta and q gamma components was obtained for the simplest subsystems, having two energy levels; however, q alpha required three (or more) energy levels. Each of the subsystems can be interpreted as having a charged group, minimum valency z, able to occupy two or more positions within the membrane. The tetracaine-sensitive q gamma charge can be described in terms of an ensemble of subsystems having z = 4.5, each occupying one of two levels whose free energies at zero applied voltage differ by 1.7 x 10(-1) eV. Likewise, the lidocaine-sensitive q beta has z = 1.0, free energy difference 1.9 x 10(-2) eV. However, the simplest model for the lidocaine-resistant q alpha involves a charge of valency 1.7 moving between three levels having relative free energies at zero applied voltage -9.7 x 10(-2), 0, and 2.1 x 10(-2) eV respectively, where the intermediate level 'sees' about 50% of the applied voltage.  相似文献   

11.
12.
Using 1-4C-labeled AMP and IMP as substrates, 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) activity was detected at the external surface of frog skeletal muscle with the active site facing toward the extracellular space. The enzyme was firmly bound to the muscle membrane. Its activity was dependent on Ca2+ or Mg2+ and was inhibited by non-radioactive ribonucleoside 5'-monophosphates, or theophylline, while adenosine 3'-monophosphate and p-nitrophenylphosphate had little or no effect. 5'-Nucleotidase with similar properties was also found in the isolated plasma membrane fraction of the muscle.  相似文献   

13.
14.
15.
By means of fluorescent and phase-contrast microscopy the distribution of acid membrane organelles in normal and vacuolated frog skeletal muscle fibers has been studied. The vacuolation of the T-system was produced by loading and subsequent removal of glycerol (80-110 mM), or it appeared as a result of Zenker's necrosis. Acridine orange (AO) was used as a marker for acid intracellular compartments. AO accumulated in granules localized near the nuclear poles (more seldom around the nucleus)' and in the intermyofibrillar spaces. Typically the AO granules make up short longitudinal chains or regular pairs, where the distances between neighboring granules are short-dated to sarcomere lengths. Almost all granules emit in red, but about one third of them simultaneously emit in green, which is characteristic of AO monomers. In the vicinity of necrotic boundary or under the influence of brefeldin A, a green component of fluorescence appears in most granules. Treatment with monensin leads to granule disappearance. Vacuoles accompanying the glycerol treatment or developing of necrosis do not accumulate AO and exert no effect on the localization of AO-granules. The nature of cellular organelles accumulating AO in skeletal muscle fibers is discussed.  相似文献   

16.
Determination of ionic calcium in frog skeletal muscle fibers   总被引:3,自引:0,他引:3       下载免费PDF全文
Ionic calcium concentrations were measured in frog skeletal muscle fibers using Ca-selective microelectrodes. In fibers with resting membrane potentials more negative than -85 mV, the mean pCa value was 6.94 (0.12 microM). In fibers depolarized to -73 mV with 10-mM K the mean pCa was 6.43 (0.37 microM). This increase in the intracellular [Ca2+] could be related to the higher oxygen consumption and heat production (Solandt effect) reported to occur under these conditions. Caffeine, 3 mM, also produced an increase in the free ionic calcium to a pCa of 6.52 (0.31 microM) without changes in the membrane potential. Lower caffeine concentrations, 1 and 2 mM, did not change the fiber pCa. Lower Ca concentrations in the external medium effectively reduced the internal ionic calcium to an estimated pCa of 7.43 (0.03 microM).  相似文献   

17.
18.
The monovalent cation-stimulated calcium pump in frog skeletal muscle   总被引:1,自引:0,他引:1  
P F Duggan 《Life sciences》1968,7(17):913-919
  相似文献   

19.
20.
Strophanthidin-sensitive and insensitive unidirectional fluxes of Na were measured in fog sartorius muscles whose internal Na levels were elevated by overnight storage in the cold. ATP levels were lowered, and ADP levels raised, by metabolic poisoning with either 2,4-dinitrofluorobenzene or iodoacetamide. Strophanthidin-sensitive Na efflux and influx both increased after poisoning, while strophanthidin-insensitives fluxes did not. The increase in efflux did not require the presence of external K but was greatly attenuated when Li replaced Na as the major external cation. Membrane potential was not markedly altered by 2,4-dinitrofluorobenzene. These observations indicate that the sodium pump of frog skeletal muscle resembles that of squid giant axon and human erythrocyte in its ability to catalyze Na-Na exchange to an extent determined by intracellular ATP/ADP levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号