首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New molecular peroxotungstate(VI) complexes with dipeptides as ancillary ligands of the type, [WO(O2)2(dipeptide)(H2O)].3H2O, dipeptide = glycyl-glycine or glycyl-leucine, have been synthesized and characterized by elemental analysis, spectral and physico-chemical methods including thermal analysis. The complexes contain side-on bound peroxo groups and a peptide zwitterion bonded to the metal centre unidentately through an O(carboxylate) atom. Investigations on certain biologically important key properties of these compounds and a set of dimeric compounds in analogous co-ligand environment, Na2[W2O3(O2)4(dipeptide)2].3H2O, dipeptide = glycyl-glycine and glycyl-leucine, reported previously by us revealed interesting features of the compounds. Each of the compounds despite having a 7 co-ordinated metal centre exerts a strong inhibitory effect on alkaline phosphatase activity with a potency higher than that of the free dipeptide, tungstate or peroxotungstate. The compounds exhibit remarkable stability in solutions of acidic as well as physiological pH and are weaker as substrate to the enzyme catalase, compared to H2O2. The mononuclear and dinuclear peroxotungsten compounds are efficient oxidants of reduced glutathione (GSH), a reaction in which only one of the peroxo groups of a diperoxotungsten moiety of the complexes was found to be active.  相似文献   

2.
The present work was undertaken to examine and compare some biologically important properties of peroxo compounds of V(V) and W(VI) containing biogenic species as ancillary ligand. New anionic peroxovanadate(V) complex of the type Na[VO(O2)2(triglycine)]·3H2O (pV1) and a molecular peroxotungstate(VI) [WO(O2)2(triglycine)]·3H2O (pW1) were synthesized and characterized for the purpose and their stability in solution was ascertained. Studies on kinetics of inhibition of alkaline phosphatase activity by the newly synthesized compounds and series of dipeptide and amino acid containing peroxo complexes of vanadium and tungsten synthesized previously by us viz., Na[VO(O2)2(gly-gly)(H2O)]·H2O (gly-gly = glycyl-glycine), Na[VO(O2)2(asn)]·H2O (asn = asparagine), Na[VO(O2)2(gln)]·H2O (gln = glutamine), and [WO(O2)2(gly-gly)(H2O)]·3H2O, revealed that each of these species is a potent mixed-type inhibitor of the enzyme. Significant difference was noted between the peroxovanadium (pV) and peroxotungsten (pW) compounds in terms of their oxidant activity with reduced glutathione.  相似文献   

3.
5-Fluoroorotic acid (H(3)FOro) is a potent inhibitor for some metalloproteins such as dihydroorotase and dihydroorotate dehydrogenase and for thymidylate synthase (nonmetalloprotein) in the human malaria parasite Plasmodium falciparum. To study the coordination chemistry of H(3)Foro, the ammonium salt [NH(4)(+)][H(2)FOro(-)].1H(2)O (1) and the first coordination compounds of H(3)FOro with transition metals [Ni(HFOro(2-))(H(2)O)(4)].1H(2)O (2), [Cu(HFOro(2-))(NH(3))(H(2)O)](n) (3) and [Cu(3)(FOro(3-))(2)(NH(3))(6)(H(2)O)(2)] (4) have been synthesised and characterised by single-crystal X-ray diffraction, IR spectroscopy and by thermogravimetry. Three different coordination modes of 5-fluoroorotic acid have been established. In all cases the ligand is chelated to the metal via an amido-nitrogen and a carboxylate-oxygen but for (3), there is also a carboxylate oxygen from another HFOro(2-) ligand resulting in a polymeric structure and for (4), the second amido-nitrogen in the ororotic acid ring coordinates to give a trinuclear complex. The metal coordination polyhedra are octahedral in (2), square-pyramidal in (3) and square-planar and approximately square-pyramidal in (4). An octahedral coordination geometry including a N(1)/O(61)-chelating HFOro(2-) ligand with four aqua ligands is proposed for the Zn complex [Zn(HFOro(2-)) (H(2)O)(4)].0.5H(2)O (5), based on IR and thermogravimetric data. Extensive hydrogen bonded networks and some ring-ring stacking interactions are observed in each of the structures.  相似文献   

4.
Four new complexes of uracilato and 5-halouracilato with the divalent metal ions Cu(II), Zn(II) and Ni(II) were obtained and structurally characterized. [Cu(uracilato- N(1))(2)(NH(3))(2)].2(H(2)O) (1) and [Cu(5-chlorouracilato-N(1))(2)(NH(3))(2)](H(2)O)(2) (2) complexes present distorted square planar co-ordination geometry around the metal ion. Although an additional axial water molecule is present [Cu(II)-OH(2)=2.89 A (for 1) and 2.52 A (for 2)] in both cases, only in the complex 2 would be considered in the limit of a bond distance. The Zn(II) in [Zn(5-chlorouracilato-N(1))(NH(3))(3)].(5-chlorouracilato-N(1)).(H(2)O) presents a tetrahedral co-ordination with three ammonia molecules and the N(1) of the corresponding uracilato moiety. A non-coordinated uracilato molecule is present as a counterion and a recognition between co-ordinated and free ligands, by means a tandem of H-bonds, should be mentioned. Finally, the complex [Ni(5-chlorouracilato-N(1))(2)(en)(2)] (H(2)O)(2) (where en is ethylenediamine) presents a typical octahedral trans co-ordination with additional hydrogen bonds between 5-chlorouracilato and the NH(2) groups of ethylenediamine units.  相似文献   

5.
The compounds {[Cu(CMP)(Him)].H(2)O}(n) (I) and [Cu(CMP)(crea)H(2)O].3H(2)O (II) were synthesized and characterized by X-ray diffraction, thermal, spectral and magnetic methods (CMP=N-carboxymethyl-;l-prolinato(2-) ion, Him=imidazole and crea=creatinine). Appropriate structural comparison with other compounds such as {[Cu(CMP)(H(2)O)].H(2)O}(n), [Cu(crea)(2)Cl(2)] and [Cu(dipeptide)(crea)(H(2)O)(x)].nH(2)O (x=0 or 1) have been made in order to prove that crea can act as an imidazole-like ligand (because it is able to promote the same fac- to mer-CMP tridentate conformational change in copper(II) complexes) as well as to discuss the interligand interactions which control the 'Cu(CMP) complex-crea, molecular recognition processes. In contrast to that found in related ternary complexes, we have concluded that direct CMP-crea interligand interactions are missing in the Cu-CMP-crea complex due to the inappropriate correspondence between the donor and/or acceptor H-bonding properties of these ligands. CMP can only act as H-acceptor by its two terminal carboxylate group, and crea can display H-donor and H-acceptor roles by its exocyclic -NH(2) and O moieties, respectively. That promotes the reinforcement of the Cu-N(crea) bond by a bridge -N-H(crea)...O(aqua) (2.867(3)A, 176.4 degrees).  相似文献   

6.
Cu(BZA)(2)(EtOH)(0.5) (1) was generated by the reaction of copper(II) hydroxide with benzoic acid (BZAH). [Cu(TBZH)(2)(BZA)](BZA).0.5TBZH.H(2)O (2) and [Cu(2-PyBZIMH)(2-PyBZIM)(BZA)].1.66EtOH (3) were obtained when 1 reacted with Thiabendazole (TBZH) and 2-(2-pyridyl)benzimidazole (2-PyBZIMH), respectively. [Cu(BZA)(2)(phen)(H(2)O)] (4) was isolated from the reaction of benzoic acid and 1,10-phenanthroline (phen) with copper(II)acetate dihydrate. Molecular structures of 2, 3 and 4 were determined crystallographically. 2 and 3 are hydrogen bonded dimers and trimers, respectively. The copper centres in complexes 2 and 3 are bis-chelate derivatives that have N(4)O ligation and their geometry is very similar being approximately square-pyramidal. However whereas in complex 2 both TBZH ligands are neutral in 3 one of the 2-PyBZIMH chelators is deprotonated on each copper. The structural results for 4 represent a re-examination of this crystallographically known compound for which no hydrogen atom coordinates have been previously reported. It crystallises as a hydrogen bonded dimmer and is a mono-chelate of phen with each copper centre possessing N(2)O(3) ligation and square pyramidal geometry. The catalase and superoxide dismutase (SOD) activities of the four complexes along with those of the known phenanthroline complexes [Cu(mal)(phen)(2)] and [Cu(phendione)(3)](ClO(4))(2) (malH(2)=malonic acid and phendione=1,10-phenanthroline-5,6-dione) were investigated. Complexes 1-4, the metal free ligands and a simple copper(II) salt were assessed for their cancer chemotherapeutic potential against the hepatocellular carcinoma (Hep-G(2)) and kidney adenocarcinoma (A-498) cell lines. TBZH, 2-PyBZIMH and benzoic acid when uncoordinated to a metal centre offer poor chemotherapeutic potential. copper(II) benzoate is significantly more active than the free acid. The bis-chelate derivatives [Cu(TBZH)(2)(BZA)](BZA).0.5TBZH.H(2)O (2) and [Cu(2-PyBZIMH)(2-PyBZIM)(BZA)].1.66EtOH (3) elicit a significant cytotoxic response to the cancer cell lines tested. Replacing TBZH and 2-PyBZIMH with phen to give [Cu(BZA)(2)(phen)(H(2)O)] (4) does not significantly increase the anti-cancer activity.  相似文献   

7.
Twelve zinc(II) complexes with thiosemicarbazone and semicarbazone ligands were prepared and characterized by elemental analysis, thermogravimetric and differential thermal analysis (TG/DTA), FT-IR and 1H and 13C NMR spectroscopy. Seven three-dimensional structures of zinc(II) complexes were determined by single-crystal X-ray analysis. Their antimicrobial activities were evaluated by MIC against four bacteria (B. subtilis, S. aureus, E. coli and P. aeruginosa), two yeasts (C. albicans and S. cerevisiae) and two molds (A. niger and P. citrinum). The 5- and 6-coordinate zinc(II) complexes with a tridentate thiosemicarbazone ligand (Hatsc), ([Zn(atsc)(OAc)](n) 1, [Zn(Hatsc)(2)](NO(3))(2).0.3H(2)O 2, [ZnCl(2)(Hatsc)] 3 and [Zn(SO(4))(Hatsc)(H(2)O)].H(2)O 4 [Hatsc=2-acetylpyridine(thiosemicarbazone)]), showed antimicrobial activities against test organisms, which were different from those of free ligands or the starting zinc(II) compounds. Especially, complex 2 showed effective activities against P. aeruginosa, C. albicans and moderate activities against S. cerevisiae and two molds. These facts are in contrast to the results that the 5- or 6-coordinate zinc(II) complexes with a tridentate 2-acetylpyridine-4N-morpholinethiosemicarbazone, ([Zn(mtsc)(2)].0.2EtOH 5, the previously reported catena-poly [Zn(mtsc)-mu-(OAc-O,O')](n) and [Zn(NO(3))(2)(Hmtsc)] [Hmtsc=2-acetylpyridine (4N-morpholyl thiosemicarbazone)]), showed no activities against the test microorganisms. The 5- and 6-coordinate zinc(II) complexes with a tridentate 2-acetylpyridinesemicarbazone, ([Zn(OAc)(2)(Hasc)] 6 and [Zn(Hasc)(2)](NO(3))(2) 7 [Hasc=2-acetylpyridine(semicarbazone)]), showed no antimicrobial activities against bacteria, yeasts and molds. Complex [ZnCl(2)(Hasc)] 8, which was isostructural to complex 3, showed modest activity against Gram-positive bacterium, B. subtilis. The 1:1 complexes of zinc(II) with pentadentate thiosemicarbazone ligands, ([Zn(dmtsc)](n) 9 and [Zn(datsc)](n) 10 [H(2)dmtsc=2,6-diacetylpyridine bis(4N-morpholyl thiosemicarbazone) and H(2)datsc=2,6-diacetylpyridine bis(thiosemicarbazone)]), did not inhibit the growth of the test organisms. On the contrary, 7-coordinate zinc(II) complexes with one pentadentate semicarbazone ligand and two water molecules, ([Zn(H(2)dasc)(H(2)O)(2)](OAc)(2).5.3H(2)O 11 and [Zn(H(2)dasc)(H(2)O)(2)](NO(3))(2).H(2)O 12 [H(2)dasc=2,6-diacetylpyridine bis(semicarbazone)]), showed modest to moderate activities against bacteria. Based on the X-ray structures, the structure-activity correlation for the antimicrobial activities was elucidated. The zinc(II) complexes with 4N-substituted ligands showed no antimicrobial activities. In contrast to the previously reported nickel(II) complexes, properties of the ligands such as the ability to form hydrogen bonding with a counter anion or hydrated water molecules or the less bulkiness of the 4N moiety would be a more important factor for antimicrobial activities than the coordination number of the metal ion for the zinc(II) complexes.  相似文献   

8.
Two Cu(II) complexes with cyanoguanidine (cnge) and o-phenanthroline, [Cu(o-phen)(2)(cnge)](NO(3))(2).2H(2)O (1) and [Cu(o-phen)(cnge)(H(2)O)(NO(3))(2)] (2), have been synthesized using different experimental techniques and characterized by elemental analyses, FTIR, diffuse and UV-vis spectra and EPR and magnetic moment measurements techniques. The crystal structures of both complexes were solved by X-ray diffraction methods. Complex (1) crystallizes in the monoclinic space group C2/c with a=12.621(5), b=31.968(3), c=15.39(1)A, beta=111.68(4) degrees, and Z=8 and complex (2) in the monoclinic space group P2(1)/n with a=10.245(1), b=13.923(2), c=12.391(2)A, beta=98.07(1) degrees, and Z=4. The environments of the copper(II) center are trigonal bipyramidal (TBP) for [Cu(o-phen)(2)(cnge)](2+) and an elongated octahedron for [Cu(o-phen)(cnge)(H(2)O)(NO(3))(2)]. Solution studies have been performed to determine the species distribution. The superoxide dismutase (SOD) activities of both complexes have also been tested in order to determine if these compounds mimic the enzymatic action of the enzyme SOD that protects cells against peroxide radicals.  相似文献   

9.
Vanadium(V) involvement in interactions with physiological ligands in biological media prompted us to delve into the systematic pH-dependent synthesis, spectroscopic characterization, and perusal of chemical properties of arising aqueous vanadium(V)-citrate species in the requisite system. To this end, facile reactions led to dinuclear complexes (NH(4))(4)[V(2)O(4)(C(6)H(5)O(7))(2)].4H(2)O (1) and (NH(4))(6)[V(2)O(4)(C(6)H(4)O(7))(2)].6H(2)O (2). Complex 1 and 2 were characterized by elemental analysis, FT-IR and X-ray crystallography. Complex 1 crystallizes in the monoclinic space group C2/c with a=16.998(5) A, b=16.768(5) A, c=9.546(3) A, beta=105.22(1) degrees, V=2625(1) A(3), and Z=4. Complex 2 crystallizes in the triclinic space group P1;, with a=9.795(4) A, b=9.942(4) A, c=9.126(3) A, alpha=90.32(1) degrees, beta=111.69(1) degrees, gamma=108.67(1) degrees, V=774.5(5) A(3), and Z=1. The structures of 1 and 2 were consistent with the presence of a V(V)(2)O(2) core, to which citrate ligands of differing protonation state were bound in a coordination mode consistent with past observations. Ultimately, the aqueous pH dependent transformations of a series of three dinuclear complexes, 1, 2 and (NH(4))(2)[V(2)O(4)(C(6)H(6)O(7))(2)].2H(2)O (3), all isolated at pH values from 3 to 7.5, were explored and revealed an important interconnection among all species. Collectively, pH emerged as a determining factor of structural attributes in all three complexes, with the adjoining acid-base chemistry unfolding around the stable V(V)(2)O(2) core. The results point to the participation of all three species in aqueous vanadium(V)-citrate speciation, and may relate the site-specific protonations-deprotonations on the dinuclear complexes to potential biological processes involving vanadium(V) and physiological ligand targets.  相似文献   

10.
Several peroxovanadium(V) complexes were prepared with a tripodal or a quasi-tripodal tetradentate ligand. The structures of K(2)[VO(O(2))(nta)].2H(2)O and K[VO(O(2))(DL-cmhist)].H(2)O have been determined by X-ray crystallography (nta, nitrilotriacetate; cmhist, N-carboxymethylhistidinate). The structure of Cs[VO(O(2))(pda)].2H(2)O (pda, N-pyridylmethyliminodiacetate) has been estimated to be similar to that of K[VO(O(2))(DL-cmhist)].H(2)O. Each complex anion in these compounds adopts a distorted pentagonal bipyramidal structure, which is typical for heptacoordinate oxoperoxovanadium(V) complexes. The peroxide ion binds in a side-on fashion to the vanadium(V) center in the pentagonal plane. The peroxide anion in the cmhist complex dissociates rather easily in an acidic solution (pH approximately 3), while that in the other complexes stays intact under similar conditions. The in vitro insulin mimetic effect of the peroxovanadium(V) complexes has been evaluated by the inhibitory effect on free fatty acid (FFA) release in isolated rat adipocytes treated with epinephrine. The cmhist complex is effective, while the others are almost totally ineffective.  相似文献   

11.
A series of mononuclear copper(II) complexes having a 1:1 molar ratio of copper and the planar heterocyclic base like 1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz) are prepared from a reaction of copper(II) nitrate.trihydrate and the base (L) in ethanol or aqueous ethanol at different temperatures. The complexes [Cu(dpq)(NO(3))(2)] (2), [Cu(dpq)(NO(3))(H(2)O)(2)](NO(3)) (3), [Cu(dpq)(NO(3))(2)(H(2)O)(2)].2H(2)O (4.2H(2)O) and [Cu(dppz)(NO(3))(2)(H(2)O)].H(2)O (5.H(2)O) have been characterized by X-ray crystallography. The crystal structures show the presence of the heterocyclic base in the basal plane. The coordination geometries of the copper(II) centers are axially elongated square-pyramidal (4+1) in 2, 3 and 5, and octahedral (4+2) in 4. The nitrate anion in the coordination sphere displays unidentate and bidentate chelating bonding modes. The axial ligand is either H(2)O or NO(3) in these structures giving a Cu-L(ax) distance of approximately 2.4 A. The one-electron paramagnetic complexes (mu approximately 1.8 mu(B)) exhibit axial EPR spectra in DMF glass at 77 K giving g(parallel)>g( perpendicular ) with an A(parallel) value of approximately 170G indicating a [d(x)2(-y)2](1) ground state. The complexes are redox active and display a quasireversible cyclic voltammetric response for the Cu(II)/Cu(I) couple near 0.0 V vs. SCE giving an order of the E(1/2) values as 5(dppz)>2-4 (dpq)>[Cu(phen)(2)(H(2)O)](2+)>1 (phen). The complexes bind to calf thymus DNA giving an order 5 (dppz)>2 (dpq)>[Cu(phen)(2)(H(2)O)](2+)>1 (phen). An effect of the extended planar ring in dpq and dppz is observed in the DNA binding. The complexes show nuclease activity with pUC19 supercoiled DNA in DMF/Tris-HCl buffer containing NaCl in presence of mercaptopropanoic acid as a reducing agent. The extent of cleavage follows the order: [Cu(phen)(2)(H(2)O)](ClO(4))(2)>5>2 approximately 3 approximately 4>1. The bis-phen complex is a better cleaver of SC DNA than 1-5 having mono-heterocyclic base. Mechanistic investigations using distamycin reveal minor groove biding for the phen, dpq complexes, and a major groove binding for the dppz complex 5. The cleavage reactions are found to be inhibited in the presence of hydroxyl radical scavenger DMSO and the reactions are proposed to proceed via sugar hydrogen abstraction pathway. The ancillary ligand is found to have less effect in DNA binding but are of importance in DNA cleavage reactions.  相似文献   

12.
The stereospecific formation and absolute configuration of R-homocitrate coordinated FeMo-co in nitrogenase was mimicked through the structural analyses of a collection of enantiomeric and mesomeric mandelato molybdenum complexes, i.e., (NH(4))(2)[Mo(Delta)O(2)(R-mand)(2)]x3H(2)O (1a), (NH(4))(2)[Mo(Lambda)O(2)(S-mand)(2)]x3H(2)O (1b), (NH(4))(4)[Mo(Delta)O(2)(RS-mand)(2)][Mo(Lambda)O(2)(RS-mand)(2)]x8H(2)O (2), (NH(4))(2)[W(Delta)O(2)(R-mand)(2)]x2H(2)O (3a), (NH(4))(2)[W(Lambda)O(2)(S-mand)(2)]x2H(2)O (3b) (H(2)mand=mandelic acid, C(8)H(8)O(3)), which have been characterized by elemental analyses, optical rotation, circular dichroism, IR, NMR spectroscopes and X-ray single crystal studies. The R and S chiral mandelic acids induce the formations of the enantiomeric pair of chiral complexes, which are supported by the characterizations of optical rotation and circular dichroism. The configuration of the resulted metal center could be assigned as Delta or Lambda. While the RS racemic reagent yields only mesomeric compound. The Delta(R,R)-complexes 1a and 3a are enantiomers of Lambda(S,S)-1b and 3b, respectively. Of the five complexes, Mo and W atoms are all hexa-coordinated by two cis-oxo groups and two bidentate mandelate ligands through the deprotonated alpha-alkoxyl and alpha-carboxyl groups, forming a stable five-membered chelated rings. The average Mo(VI)-O bond distances with alpha-alkoxyl and alpha-carboxyl are 1.944 and 2.210 A, respectively. Further comparison indicates that bonds of alpha-alkoxyl groups in the hydroxycarboxylato molybdenum complexes are much sensitive to the change in the oxidation state of molybdenum, which support the possible Mo activation model in FeMo-co through the protonation and cleavage of alpha-alkoxyl group in homocitrate ligand.  相似文献   

13.
The Pt(II) and Pd(II) complexes of the types cis-[Pt(L(1))(2)Cl(2)].H(2)O (1), cis-[Pt(L(2))(2)Cl(2)].3H(2)O (2), trans-[Pd(L(1))(2)Cl(2)].H(2)O (3), trans-[Pd(L(2))(2)Cl(2)].H(2)O (4), trans-[Pd(L(3))(2)Cl(2)].2DMF (5) and trans-[Pd(L(4))(2)Cl(2)].2DMF (6) (L(1)-L(4)=cyclin-dependent kinase inhibitors derived from 6-benzylamino-9-isopropylpurine) have been prepared and characterized. The complexes have been studied by elemental analyses, conductivity measurements, ES+ MS, FT-IR, (1)H, (13)C and (195)Pt NMR spectra, differential scanning calorimetry and thermogravimetric analysis. The molecular structures of L(1), trans-[Pd(L(3))(2)Cl(2)].2DMF (5) and trans-[Pd(L(4))(2)Cl(2)].2DMF (6) have been determined by single crystal X-ray analysis. The complexes have been tested in vitro due to their presumable anticancer activity against the following human cancer cell lines: K-562, MCF7, G-361 and HOS. Satisfying results were obtained for the complex 1 with IC(50) values of 6 microM acquired against G-361 as well as against HOS cell lines. The lowest values of IC(50) were achieved for the complexes 3 and 4 against MCF 7 cell line with IC(50) 3 microM(for 3) and also 3 microM (for 4).  相似文献   

14.
The new square-planar Pt(II) and Pd(II) complexes with cytokinin-derived compounds Bohemine and Olomoucine, having the formulae [Pt(BohH(+))Cl(3)].H(2)O (1), [Pt(Boh)(2)Cl(2)].3H(2)O (2), [Pt(Boh-H)Cl(H(2)O)(2)].H(2)O (3), [Pt(OloH(+))Cl(3)].H(2)O (4), [Pd(BohH(+))Cl(3)].H(2)O (5), [Pd(Boh)Cl(2)(H(2)O)] (6), [Pd(Boh-H)Cl(H(2)O)].EtOH (7) and [Pd(OloH(+))Cl(3)].H(2)O (8), where Boh=6-(benzylamino)-2-[(3-(hydroxypropyl)amino]-9-isopropylpurine and Olo=6-(benzylamino)-2-[(2-(hydroxyethyl)amino]-9-methylpurine, have been synthesized. The complexes have been characterized by elemental analyses, IR, FAB+ mass, 1H, 13C and 195Pt NMR spectra, and conductivity data. The molecular structure of the complex [Pt(BohH(+)-N7)Cl(3)].9/5H(2)O has been determined by an X-ray diffraction study. Results from physical studies show that both Bohemine and Olomoucine are coordinated to transition metals through the N(7) atom of purine ring in all the complexes. The prepared compounds have been tested in vitro for their possible cytotoxic activity against G-361 (human malignant melanoma), HOS (human osteogenic sarcoma), K-562 (human chronic myelogenous leukemia) and MCF-7 (human breast adenocarcinoma) cell lines and IC(50) values have been also determined for all the complexes. IC(50) values estimated for the Pt(II)-Bohemine complexes (2.1-16 microM) allow us to conclude that they could find utilization in antineoplastic therapy. Thus, from a pharmacological point of view, Pt(II) complexes of Bohemine may represent compounds for a new class of antitumor drugs.  相似文献   

15.
The reactions of phosphine Ph(2)P(CH(2))(2)SO(3)Na with Cp(2)M'Cl(2) (M'=Ti, Zr) in aqueous solution give the metallophosphines, Cp(2)Ti(OSO(2)(CH(2))(2)PPh(2))(2) (Cp=cyclopentadienyl) and CpZr(OH)(OSO(2)(CH(2))(2)PPh(2))(2). These react with CODM"Cl(2) (M"=Pd, Pt) (COD=1,5-cyclooctadiene) in dichloromethane to give heterobimetallic complexes Cp(2)Ti(OSO(2)(CH(2))(2)PPh(2))(2)M"Cl(2) and CpZr(OH)(OSO(2)(CH(2))(2) PPh(2))(2)M"Cl(2) respectively. The compounds are characterised by infrared and NMR spectroscopies and elemental analysis. Electrospray mass spectra of the complexes are reported and compared to those of Cp(2)M'Cl(2) in water and dimethylsulfoxide (DMSO). For zirconocene dichloride and its product heterobimetallic complexes, the addition of ethylenediamine tetraacetic acid disodium salt (Na(2)H(2)EDTA) was found to be an effective ionisation enhancement agent for the electrospray mass spectral studies. Cytotoxicity studies for the previously reported Cl(2)Pt(PPh(2)(CH(2))(2)SO(3)H)(2).3.5H(2)O (Wedgwood et al., Inorg. Chim. Acta 290 (1999) 189), and the compounds Cp(2)Ti(OSO(2)(CH(2))(2) PPh(2))(2).1.5H(2)O and Cp(2)Ti(OSO(2)(CH(2))(2)PPh(2))(2)PtCl(2).4H(2)O reported here, have been evaluated by colony formation assay against cisplatin-sensitive and -resistant cell lines L929 and L929/R to highlight potential chemotherapeutic activity. The compound Cl(2)Pt(PPh(2)(CH(2))(2)SO(3)H)(2).3.5H(2)O overcomes cisplatin resistance.  相似文献   

16.
Reactions of Cd(NO(3))(2) with the model nucleobases 9-alkylguanine in water at neutral pH, give the compounds trans-[Cd(9-RGH-N7)(2)(H(2)O)(4)](NO(3))(2)(R=Me, Et), with the 9-alkylguanine ligands bound to the metal cation at the N(7) position. The X-ray structures of both compounds are reported. The six-coordinate Cd(II) complexes consist of a highly regular octahedral geometry in which the two 9-alkylguanine ligands are in a trans position to each other and approximately collinear with the metal cation. In addition, the networks of both compounds show interesting features. Thus, intramolecular H-bonds between O(6) and a coordinated water molecule are present, and self-association of guanines via H-bonding of N(3)-H...N(2) take place, leading to a 1D supramolecular polymeric ribbon. Density functional theory calculations have been applied to both compounds in order to study the stability of N(7) metalated guanine-guanine associations by comparing experimental and theoretical results. The potential relevance with regard to possible Cd(II)-DNA cross-links is briefly discussed.  相似文献   

17.
Synthesis and crystal structure of two Zn(II) dimer complexes with 1-methylcytosine (1-MeC) are reported. In complex [Zn(2)Cl(4)(mu-1-MeC-O2,N3)(2)] (1), two 1-MeC ligands are bridging two ZnCl(2) moieties. In [Zn(2)(1-MeC-N3)(4)(mu-SO(4))(2)].2H(2)O (2), the sulfates act as bridging ligands and 1-MeC are linked via N3 to Zn(II) as terminal ligands. Both complexes represent the first examples of Zn(II)-pyrimidine dimers. The potential biological significance of 1 and 2 is discussed.  相似文献   

18.
Three new ternary peptide-Cu(II)-1,10-phenanthroline (phen) complexes, [Cu(L-ala-gly)(phen)].3.5H(2)O 1, [Cu(L-val-gly)(phen)] 2 and [Cu(gly-L-trp)(phen)].2H(2)O 3, have been prepared and structurally characterised. These compounds exist as distorted square pyramidal complexes with the five co-ordination sites occupied by the tridentate peptide dianion and the two heterocyclic nitrogens of the phenanthroline ligand. The bulk of the lateral chain in the peptide moiety determines the relative disposition of the phen ligand. Thus, in [Cu(L-val-gly)(phen)] 2, the phenanthroline plane is deviated towards the opposite side of the isopropyl group of the L-valine moiety. On the other hand, in [Cu(gly-L-trp)(phen)].2H(2)O 3 the absence of stacking interactions between phen and indole rings and the presence of an intramolecular CH...pi interaction should be pointed out. These complexes exhibit significant differences in their nuclease activity which depends on the nature of the peptidic moiety, the complex [Cu(gly-L-trp) (phen)].2H(2)O 3 being the most active.  相似文献   

19.
The anti-cancer chemotherapeutic potential of 1,10-phenanthroline-5,6-dione (phendione), [Cu(phendione)(3)](ClO(4))(2).4H(2)O and [Ag(phendione)(2)]ClO(4) were determined using four human cells lines, i.e. two neoplastic (A-498 and Hep-G2) and two non-neoplastic (CHANG and HK-2). All of the phendione derivatives induced a concentration-dependant decrease in the viability of the four cell lines, with [Cu(phendione)(3)](ClO(4))(2).4H(2)O displaying greatest activity. In comparative studies, IC(50) values obtained with the two neoplastic cell lines showed a cytotoxic response which was between 3 and 35 times greater than that observed for the metal-based anti-cancer agent, cisplatin. Furthermore, metal-phendione complexes, rather than simple solvated metal ions, were responsible for the observed cytotoxicity. Despite the high level of potency associated with these compounds they did not display an apparent cyto-selective profile, as they reduced the viability of both neoplastic and non-neoplastic cells. However, selected mechanistic studies showed that phendione and its metal complexes inhibited DNA synthesis which did not appear to be mediated through intercalation. Ames testing highlighted that all three compounds and their phase I metabolites were non-mutagenic, unlike cisplatin. Taken together, these results suggest that phendione and its Cu(II) and Ag(I) complexes may be capable of acting as highly effective anti-cancer therapies, which with careful administration could provide very potent and effective alternatives to cisplatin.  相似文献   

20.
Radiolabeling of biologically active molecules with the [(99m)Tc(CO)(3)](+) unit has been of primary interest in recent years. With this in mind, we herein report symmetric (L(1)) and asymmetric (L(2)-L(5)) pyrazolyl-containing chelators that have been evaluated in radiochemical reactions with the synthon [(99m)Tc(H(2)O)(3)(CO)(3)](+) (1a). These reactions yielded the radioactive building blocks [(99m)Tc(CO)(3)(k(3)-L)](+) (L = L(1)-L(5), 2a-6a), which were identified by RP-HPLC. The corresponding Re surrogates (2-6) allowed for macroscopic identification of the radiochemical conjugates. Complexes 2a-6a, with log P(o/w) values ranging from -2.35 to 0.87, were obtained in yields of > or =90% using ligand concentrations in the 10(-5-)10(-4) M range. Challenge studies with cysteine and histidine revealed high stability for all of these radioactive complexes, and biodistribution studies in mice indicated a fast rate of blood clearance and high rate of total radioactivity excretion, occurring primarily through the renal-urinary pathway. Based on the framework of the asymmetric chelators, the novel bifunctional ligands 3,5-Me(2)-pz(CH(2))(2)N((CH(2))(3)COOH)(CH(2))(2)NH(2) (L(6)) and pz(CH(2))(2)N((CH(2))(3)COOH)(CH(2))(2)NH(2) (L(7)) have been synthesized and their coordination chemistry toward (NEt(4))(2)[ReBr(3)(CO)(3)] (1) has been explored. The resulting complexes, fac-[Re(CO)(3)(k(3)-L)]Br (L(6)(7), L(7)(8)), contain tridentate ancillary ligands that are coordinated to the metal center through the pyrazolyl and amine nitrogen atoms, as observed for the other related building blocks. L(6) and L(7) were coupled to a glycylglycine ethyl ester dipeptide, and the resulting functionalized ligands were used to prepare the model complexes fac-[Re(CO)(3)(kappa(3)-3,5-Me(2)-pz(CH(2))(2)N(glygly)(CH(2))(2)NH(2))](+) (9/9a) and fac-[Re(CO)(3)(kappa(3)-pz(CH(2))(2)N(CH(2))(3)(glygly)(CH(2))(2)NH(2))](+) (10/10a) (M = Re, (99m)Tc). These small conjugates have been fully characterized and are reported herein. On the basis of the in vitro/in vivo behavior of the model complexes (2a-6a, 9a, 10a), we chose to evaluate the in vitro/in vivo biological behavior of a new tumor-seeking Bombesin pyrazolyl conjugate, [(L(6))-G-G-G-Q-W-A-V-G-H-L-M-NH(2)], that has been labeled with the [(99m)Tc(CO)(3)](+) metal fragment. Stability, in vitro cell binding assays, and pharmacokinetics studies in normal mice are reported herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号