首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In adherent SH-SY5Y human neuroblastoma cells, activation of G-protein-coupled muscarinic M3 receptors evoked a biphasic elevation of both intracellular [Ca(2+)] ([Ca(2+)]i) and inositol-1,4,5-trisphosphate (D-Ins(1,4,5)P3) mass. In both cases, temporal profiles consisted of rapid transient elevations followed by a decline to a lower, yet sustained level. In contrast, platelet-derived growth factor (PDGF), a receptor tyrosine kinase agonist acting via PDGF receptor b chains in these cells, elicited a slow and transient elevation of [Ca(2+)]i that returned to basal levels within 5 to 10 min with no evidence of inositol phosphate generation. Full responses for either receptor type required intracellular and extracellular Ca(2+) and mobilization of a shared thapsigargin-sensitive intracellular Ca(2+) store. Strategies that affected the ability of D-Ins(1,4,5)P3 to interact with the Ins(1,4,5)P3-receptor demonstrated an Ins(1,4,5)P3-dependency of the muscarinic receptor-mediated elevation of [Ca(2+)]i but showed that PDGF-mediated elevations of [Ca(2+)]i are Ins(1,4,5)P3-independent in these cells.  相似文献   

2.
Lysophosphatidic acid (LPA)-mediated Ca(2+) mobilization in human SH-SY5Y neuroblastoma cells does not involve either inositol 1,4, 5-trisphosphate (Ins(1,4,5)P(3))- or ryanodine-receptor pathways, but is sensitive to inhibitors of sphingosine kinase. This present study identifies Edg-4 as the receptor subtype involved and investigates the presence of a Ca(2+) signaling cascade based upon the lipid second messenger molecule, sphingosine 1-phosphate. Both LPA and direct G-protein activation increase [(3)H]sphingosine 1-phosphate levels in SH-SY5Y cells. Measurements of (45)Ca(2+) release in premeabilized SH-SY5Y cells indicates that sphingosine 1-phosphate, sphingosine, and sphingosylphosphorylcholine, but not N-acetylsphingosine are capable of mobilizing intracellular Ca(2+). Furthermore, the effect of sphingosine was attenuated by the sphingosine kinase inhibitor dimethylsphingosine, or removal of ATP. Confocal microscopy demonstrated that LPA stimulated intracellular Ca(2+) "puffs," which resulted from an interaction between the sphingolipid Ca(2+) release pathway and Ins(1,4,5)P(3) receptors. Down-regulation of Ins(1,4,5)P(3) receptors uncovered a Ca(2+) response to LPA, which was manifest as a progressive increase in global cellular Ca(2+) with no discernible foci. We suggest that activation of an LPA-sensitive Edg-4 receptor solely utilizes the production of intracellular sphingosine 1-phosphate to stimulate Ca(2+) mobilization in SH-SY5Y cells. Unlike traditional Ca(2+) release processes, this novel pathway does not require the progressive recruitment of elementary Ca(2+) events.  相似文献   

3.
The magnitude and temporal nature of intracellular signaling cascades can now be visualized directly in single cells by the use of protein domains tagged with enhanced green fluorescent protein (eGFP). In this study, signaling downstream of G protein-coupled receptor-mediated phospholipase C (PLC) activation has been investigated in a cell line coexpressing recombinant M(3) muscarinic acetylcholine and alpha(1B) -adrenergic receptors. Confocal measurements of changes in inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)), using the pleckstrin homology domain of PLCdelta1 tagged to eGFP (eGFP-PH(PLCdelta)), and 1,2-diacylglycerol (DAG), using the C1 domain of protein kinase Cgamma (PKCgamma) (eGFP-C1(2)-PKCgamma), demonstrated clear translocation responses to methacholine and noradrenaline. Single cell EC(50) values calculated for each agonist indicated that responses to downstream signaling targets (Ca(2+) mobilization and PKC activation) were approximately 10-fold lower compared with respective Ins(1,4,5)P(3) and DAG EC(50) values. Examining the temporal profile of second messenger responses to sub-EC(50) concentrations of noradrenaline revealed oscillatory Ins(1,4,5)P(3), DAG, and Ca(2+) responses. Oscillatory recruitments of conventional (PKCbetaII) and novel (PKCepsilon) PKC isoenzymes were also observed which were synchronous with the Ca(2+) response measured simultaneously in the same cell. However, oscillatory PKC activity (as determined by translocation of eGFP-tagged myristoylated alanine-rich C kinase substrate protein) required oscillatory DAG production. We suggest a model that uses regenerative Ca(2+) release via Ins(1,4,5)P(3) receptors to initiate oscillatory second messenger production through a positive feedback effect on PLC. By acting on various components of the PLC signaling pathway the frequency-encoded Ca(2+) response is able to maintain signal specificity at a level downstream of PKC activation.  相似文献   

4.
In pancreatic acinar cells hormonal stimulation leads to a cytosolic Ca(2+) wave that starts in the apical cell pole and subsequently propagates toward the basal cell side. We used permeabilized pancreatic acinar cells from mouse and the mag-fura-2 technique, which allows direct monitoring of changes in [Ca(2+)] of intracellular stores. We show here that Ca(2+) can be released from stores in all cellular regions by inositol 1,4,5-trisphosphate. Stores at the apical cell pole showed a higher affinity to inositol 1,4,5-trisphosphate (EC(50) = 89 nm) than those at the basolateral side (EC(50) = 256 nm). In contrast, cADP-ribose, a modifier of Ca(2+)-induced Ca(2+) release, and nicotinic acid adenine dinucleotide phosphate (NAADP) were able to release Ca(2+) exclusively from intracellular stores located at the basolateral cell side. Our data agree with observations that upon stimulation Ca(2+) is released initially at the apical cell side and that this is caused by high affinity inositol 1,4,5-trisphosphate receptors. Moreover, our findings allow the conclusion that in Ca(2+) wave propagation from the apical to the basolateral cell side observed in pancreatic acinar cells Ca(2+)-induced Ca(2+) release, modulated by cADP-ribose and/or NAADP, might be involved.  相似文献   

5.
In SH-SY5Y cells, activation of delta-opioid receptors with [D-Pen(2,5)]-enkephalin (DPDPE; 1 microM) did not alter the intracellular free Ca(2+) concentration [Ca(2+)](i). However, when DPDPE was applied during concomitant Gq-coupled m3 muscarinic receptor stimulation by carbachol or oxotremorine-M, it produced an elevation of [Ca(2+)](i). The DPDPE-evoked increase in [Ca(2+)](i) was abolished when the carbachol-sensitive intracellular Ca(2+) store was emptied. There was a marked difference between the concentration-response relationship for the elevation of [Ca(2+)](i) by carbachol (EC(50) 13 microM, Hill slope 1) and the concentration-response relationship for carbachol's permissive action in revealing the delta-opioid receptor-mediated elevation of [Ca(2+)] (EC(50) 0.7 mM; Hill slope 1.8). Sequestration of free G protein beta gamma dimers by transient transfection of cells with a beta gamma binding protein (residues 495-689 of the C terminal tail of G protein-coupled receptor kinase 2) reduced the ability of delta opioid receptor activation to elevate [Ca(2+)](i). However, DPDPE did not elevate either basal or oxotremorine-M-evoked inositol phosphate production indicating that delta-opioid receptor activation did not stimulate phospholipase C. Furthermore, delta-opioid receptor activation did not result in the reversal of muscarinic receptor desensitization, membrane hyperpolarization or stimulation of sphingosine kinase. There was no coincident signalling between the delta-opioid receptor and the lysophosphatidic acid receptor which couples to elevation of [Ca(2+)](i) in SH-SY5Y cells by a PLC-independent mechanism. In SH-SY5Y cells the coincident signalling between the endogenously expressed delta-opioid and m3 muscarinic receptors appears to occur in the receptor activation-Ca(2+) release signalling pathway at a step after the activation of phospholipase C.  相似文献   

6.
The ability of cAMP-dependent hormones to modulate the actions of Ca2(+)-mobilizing hormones was studied in single fura-2-injected guinea pig hepatocytes. In 91% of cells the cAMP-linked hormone, isoproterenol, applied alone, did not alter cytosolic Ca2+ concentration. In 78% of cells which had been pre-exposed to a low concentration of angiotensin II, isoproterenol was able to increase cytosolic Ca2+. Isoproterenol did not, however, increase inositol 1,4,5-trisphosphate or inositol tetrakisphosphate on its own, or in the presence of angiotensin II. Isoproterenol was also able to raise cytosolic Ca2+ concentration in cells microinjected with inositol 2,4,5-trisphosphate or a photoactivatable derivative of inositol 1,4,5-trisphosphate. The elevation of cytosolic Ca2+ concentration induced by isoproterenol in angiotensin II-treated cells and cells injected with caged inositol 1,4,5-trisphosphate was blocked by heparin, implying that the effect was mediated by an inositol 1,4,5-trisphosphate receptor agonist. In permeabilized hepatocytes, inositol 1,4,5-trisphosphate-induced Ca2+ release was enhanced by 8-bromo-cAMP and the catalytic subunit of cAMP-dependent kinase. Cyclic AMP-dependent kinase shifted the dose-response curve for inositol 1,4,5-trisphosphate-mediated Ca2+ release to the left by a factor of 4 and increased the total amount of Ca2+ released by 25%. These results indicate that increased sensitivity of the intracellular Ca2+ releasing organelle to inositol 1,4,5-trisphosphate is responsible for synergism between phospholipase C- and adenylylcyclase-linked hormones in the liver.  相似文献   

7.
Recent observations have been made regarding the generation of inositol 1,4,5-trisphosphate (IP(3)), using chimeras of green fluorescent protein and the pleckstrin homology domain of phospholipase C-delta. In this paper a model is presented giving the quantitative relations between the green fluorescent protein-pleckstrin homology domain (GFP-PHD) construct and membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)) levels as well as the concentration of IP(3), the product of hydrolysis of PIP(2). The model can correctly reproduce the dependence of cytosolic GFP-PHD fluorescence on IP(3) concentration. This model extends a previous one (Metabotropic receptor activation, desensitization and sequestration-I: modelling calcium and inositol 1,4,5-trisphosphate dynamics following receptor activation, in this issue) dealing with the processes governing the production of IP(3) and the subsequent calcium (Ca2+) changes in cells following activation of metabotropic receptors. This model is applied to the case of purinergic P(2)Y(2) receptor activation in Madin-Darby Canine Kidney (MDCK) cells with adenosine triphosphate (ATP) (Science 284 (1999) 1527). It is shown that it can correctly reproduce the dependence of GFP-PHD fluorescence on the concentration of P(2)Y(2) receptor ligand, as well as the temporal changes of GFP-PHD fluorescence following application of ligand.  相似文献   

8.
The two-step isomerization of inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) to Ins-1,3,4-P3 via the intermediate inositol 1,3,4,5-tetrakisphosphate (Ins-P4) was studied in intact RINm5F cells and in subcellular fractions. Muscarinic stimulation with carbamylcholine leads to a rapid (2 s) rise in both Ins-1,4,5-P3 and Ins-P4, whereas Ins-1,3,4-P3 was produced only after a lag of at least 5 s. In cells with depleted Ca2+ stores, the rise in Ins-1,4,5-P3 was nearly tripled, and that of Ins-1,3,4-P3 markedly diminished as compared to control cells. Raising the free Ca2+ concentration from 10(-7) to 10(-5) M increased inositol 1,4,5-triphosphate-3-kinase activity in cytosolic fractions by 2 1/2-fold (EC50 for Ca2+ approximately 0.8 microM) but had no effect on the activity of inositol 1,4,5-triphosphate-5-phosphomonoesterase. At 10(-7) M Ca2+ these two enzymes displayed comparable activity when assayed at concentrations of Ins-1,4,5-P3 occurring in stimulated cells; however, at 10(-5) M Ca2+, kinase activity predominates. These results suggest that Ins-1,4,5-P3 counter-regulates its own levels through the activity of inositol 1,4,5-trisphosphate 3-kinase and that the increase in [Ca2+]i may account for the transience of the rise in Ins-1,4,5-P3 seen during muscarinic stimulation of RINm5F cells.  相似文献   

9.
Transient transfection of Chinese hamster ovary or baby hamster kidney cells expressing the Group I metabotropic glutamate receptor mGlu1alpha with green fluorescent protein-tagged pleckstrin homology domain of phospholipase Cdelta1 allows real-time detection of inositol 1,4,5-trisphosphate. Loading with Fura-2 enables simultaneous measurement of intracellular Ca(2+) within the same cell. Using this technique we have studied the extracellular calcium sensing property of the mGlu1alpha receptor. Quisqualate, in extracellular medium containing 1.3 mm Ca(2+), increased inositol 1,4,5-trisphosphate in all cells. This followed a typical peak and plateau pattern and was paralleled by concurrent increases in intracellular Ca(2+) concentration. Under nominally Ca(2+)-free conditions similar initial peaks in inositol 1,4,5-trisphosphate and Ca(2+) concentration occurred with little change in either agonist potency or efficacy. However, sustained inositol 1,4,5-trisphosphate production was substantially reduced and the plateau in Ca(2+) concentration absent. Depletion of intracellular Ca(2+) stores using thapsigargin abolished quisqualate-induced increases in intracellular Ca(2+) and markedly reduced inositol 1,4,5-trisphosphate production. These data suggest that the mGlu1alpha receptor is not a calcium-sensing receptor because the initial response to agonist is not sensitive to extracellular Ca(2+) concentration. However, prolonged activation of phospholipase C requires extracellular Ca(2+), while the initial burst of activity is highly dependent on Ca(2+) mobilization from intracellular stores.  相似文献   

10.
11.
We have discovered that a single sperm protein, phospholipase C-zeta (PLCζ), can stimulate intracellular Ca(2+) signalling in the unfertilized oocyte ('egg') culminating in the initiation of embryonic development. Upon fertilization by a spermatozoon, the earliest observed signalling event in the dormant egg is a large, transient increase in free Ca(2+) concentration. The fertilized egg responds to the intracellular Ca(2+) rise by completing meiosis. In mammalian eggs, the Ca(2+) signal is delivered as a train of long-lasting cytoplasmic Ca(2+) oscillations that begin soon after gamete fusion and persist beyond the completion of meiosis. Sperm PLCζ effects Ca(2+) release from egg intracellular stores by hydrolyzing the membrane lipid PIP(2) and consequent stimulation of the inositol 1,4,5-trisphosphate (InsP(3) ) receptor Ca(2+) -signalling pathway, leading to egg activation and early embryogenesis. Recent advances have refined our understanding of how PLCζ induces Ca(2+) oscillations in the egg and also suggest its potential dysfunction as a cause of male infertility.  相似文献   

12.
Agonist occupancy of muscarinic cholinergic receptors in human SH-SY-5Y neuroblastoma cells elicited two kinetically distinct phases of phosphoinositide hydrolysis when monitored by either an increased mass of inositol 1,4,5-trisphosphate, or the accumulation of a total inositol phosphate fraction. Within 5s of the addition of the muscarinic agonist, oxotremorine-M, the phosphoinositide pool was hydrolyzed at a maximal rate of 9.5%/min. This initial phase of phosphoinositide hydrolysis was short-lived (t1/2=14s) and after 60s of agonist exposure, the rate of inositol lipid breakdown had declined to a steady state level of 3.4%/min which was then maintained for at least 5–10 min. This rapid, but partial, attenuation of muscarinic receptor stimulated phosphoinositide hydrolysis occurred prior to the agonist-induced internalization of muscarinic receptors.Abbreviations I(1,4,5)P3 inositol 1,4,5-trisphosphate - IP total inositol phosphate fraction - IPL total inositol lipid fraction - mAChR muscarinic acetylcholine receptor - NMS N-methylscopolamine - Oxo-M oxotremorine-M - PI phosphatidylinositol - PIP phosphatidylinositol 4-phosphate - PIP2 phosphatidylinositol 4,5-bisphosphate - PPI phosphoinositide - QNB quinuclidinyl benzilate Special issue dedicated to Dr. Bernard W. Agranoff  相似文献   

13.
Acute hydrolysis of phosphoinositides has been demonstrated in bovine aortic endothelial cells (BAEC) treated with bradykinin (BK) (10(-7)M). The first phosphoinositide to decrease was phosphatidylinositol-4,5-bisphosphate (PIP2) indicating this to be the initial substrate of phospholipase action. Other lipid changes associated with the stimulation of BAEC were an increase in diacylglycerol (DAG) and arachidonic acid (AA) with a sustained production of phosphatidic acid (PA). The changes in cell phospholipids were accompanied by the release of inositol phosphates. Inositol-1,4,5-trisphosphate (Ins-1,4,5-P3) was produced within 10 s of stimulation with BK. There was no evidence for the production of inositol-1,3,4-trisphosphate. The release of ionic calcium (Ca2+) intracellularly was demonstrated. The timecourse of the rise in intracellular Ca2+ was consistent with the timecourse of production of IP3. Intracellular Ca2+ rose from 127 +/- 21 nM to 462 +/- 27 nM. The Ca2+ peak was at 7.0 +/- 0.4 s and took 3 min to reach a steady state which remained above the basal level. When extracellular Ca2+ was depleted in the extracellular medium a spike of intracellular Ca2+ release was measured with an immediate return to basal. Entry of extracellular Ca2+ into the cell after ionophore A23187 treatment does not induce inositol phosphate release, indicating that phosphoinositide hydrolysis is likely to be the cause rather than consequence of the elevation in cytosolic Ca2+. These data indicate action of phospholipase C (PLC) on PIP2 after BK stimulation of BAEC with the subsequent production of InsP3 causing the resulting intracellular Ca2+ release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
This study reports increased intracellular Ca2+ and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] in response to muscarinic-cholinergic stimulation of human neuroblastoma (SH-SY5Y) cells. Carbachol stimulation leads to a rapid increase in intracellular Ca2+ and Ins(1,4,5)P3 mass, both reaching a peak at around 10 s and then declining to a new maintained phase significantly above basal. Dose-response analysis of peak and plateau phases of intracellular Ca2+ shows different agonist potencies for both phases, carbachol being more potent for the plateau phase. The plateau-phase intracellular Ca2+ was dependent on extracellular Ca2+, which is admitted to the cell through a non-voltage-sensitive Ni2(+)-blockable Ca2+ channel. Using a Mn2+ quench protocol, we have shown that Ca2+ entry occurs early during the discharge of the internal stores. The plateau phase (Ca2(+)-channel opening) is dependent on the continued presence of agonist, since addition of atropine closes the Ca2+ channel and intracellular Ca2+ declines rapidly back to basal. We also failed to detect a refilling transient when we added back Ca2+ after intracellular Ca2+ had reached a peak and then declined in Ca2(+)-free conditions. These data strongly suggest that muscarinic stimulation of SH-SY5Y cells leads to a rapid release of Ca2+ from an Ins(1,4,5)P3-sensitive internal store and a parallel early entry of Ca2+ across the plasma membrane.  相似文献   

15.
Inositol 1,4,5-trisphosphate (InsP(3)) production in single cerebellar granule neurons (CGNs) grown in culture was measured using the PH domain of phospholipase C delta1 tagged with enhanced green fluorescent protein (eGFP-PH(PLCdelta1)). These measurements were correlated with changes in intracellular free Ca2+ determined by single cell imaging. In control CGNs, intracellular Ca2+ stores appeared replete. However, the refilling state of these stores appeared dependent on the fluorophore used to measure Ca2+-release. Thus, methacholine (MCH), acting via muscarinic acetylcholine-receptors (mAchRs), mobilised intracellular Ca2+ in cells loaded with fluo-3 and fura-4f, but not fura-2. Confocal measurements of single CGNs expressing eGFP-PH(PLCdelta1) demonstrated that MCH stimulated a robust peak increase in InsP(3), which was followed by a sustained plateau phase of InsP(3) production. In contrast, glutamate-induced InsP(3) signals were weak or not detectable. MCH-stimulated InsP(3) production was reduced by chelation of intracellular Ca2+ with BAPTA, and emptying of intracellular stores with thapsigargin, indicated a positive feedback effect of Ca2+ mobilisation onto PLC activity. In CGNs, NMDA- and KCl-mediated Ca2+-entry significantly enhanced MCH-induced InsP(3) production. Furthermore, mAchR-mediated PLC activation appeared sensitive to the full dynamic range of intracellular Ca2+ increases stimulated by 100 microm NMDA. This dynamic regulation was also observed at the level of PKC activation indicated by an enhanced translocation of eGFP-tagged myristoylated alanine-rich C kinase substrate (MARCKS) protein in cells stimulated with MCH. Thus, NMDA-mediated Ca2+ influx and PLC activation may represent a coincident-detection system whereby ionotropic and metabotropic signals combine to stimulate InsP(3) production and PKC-mediated phosphorylation events in CGNs.  相似文献   

16.
The role of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]-sensitive Ca2+ pools in secretion, induced by muscarinic agonists in porcine adrenal chromaffin cells, was studied. Activation of muscarinic receptors, as in other species, was found to increase inositol phosphate production including that of Ins(1,4,5)P3. Treatment of cells with thapsigargin, which is known to deplete Ins(1,4,5)P3-sensitive Ca2+ pools, eliminated the initial transient component of increases in the cytosolic free Ca2+ concentration ([Ca2+]in) induced by the muscarinic agonist, methacholine, in both the presence and the absence of extracellular Ca2+. Thapsigargin treatment also decreased methacholine-induced secretion by about 30% in the presence of extracellular Ca2+ and essentially eliminated secretion that occurred independently of extracellular Ca2+ (which was about 30% of the secretory response that occurred in the presence of extracellular Ca2+). Thapsigargin itself had no effect on inositol phosphate production. These results indicate that about 30% of muscarinic agonist-induced secretion is mediated by the release of Ca2+ from Ins(1,4,5)P3- and thapsigargin-sensitive intracellular Ca2+ pools. These results also suggest that Ca2+ influx activated by muscarinic agonists is not due to depletion of intracellular Ca2+ pools, as prior depletion of these pools had no effect on the portion of the methacholine-induced secretory response and [Ca2+]in signal that was dependent on extracellular Ca2+.  相似文献   

17.
Zhang XG  Coté GG  Crain RC 《Planta》2002,215(2):312-318
Mesophyll cells of Zinnia elegans L., cultured in the presence of phytohormones, will transdifferentiate and undergo programmed cell death to become tracheary elements, thick-walled cells of the xylem. This system is a model system for study of plant cell development and differentiation. We report that a high concentration of extracellular Ca(2+) is necessary during the first 6 h of culturing for tracheary elements to form. Extracellular Ca(2+) is still required at later times, but at a much lower concentration. When cells transdifferentiate in adequate Ca(2+), microsomal phospholipase C activity increases and levels of inositol 1,4,5-trisphosphate rise at about hour 4 of culturing. The production of inositol 1,4,5-trisphosphate appears to be important for tracheary element formation, since inhibitors of phospholipase C inhibit both inositol 1,4,5-trisphosphate production and tracheary element formation. Pertussis toxin, an inhibitor of GTP-binding proteins, inhibits transdifferentiation and eliminates inositol 1,4,5-trisphosphate production. Tracheary element formation was not completely abolished by inhibitors that eliminated inositol 1,4,5-trisphosphate production, suggesting the involvement of other pathways in regulating transdifferentiation.  相似文献   

18.
ATP induced a biphasic increase in the intracellular Ca(2+)concentration ([Ca(2+)](i)), an initial spike, and a subsequent plateau in A549 cells. Erythromycin (EM) suppressed the ATP-induced [Ca(2+)](i) spike but only in the presence of extracellular calcium (Ca(2+)(o)). It was ineffective against ATP- and UTP-induced inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] formation and UTP-induced [Ca(2+)](i) spike, implying that EM perturbs Ca(2+) influx from the extracellular space rather than Ca(2+)release from intracellular Ca(2+) stores via the G protein-phospholipase C-Ins(1,4,5)P(3) pathway. A verapamil-sensitive, KCl-induced increase in [Ca(2+)](i) and the Ca(2+) influx activated by Ca(2+) store depletion were insensitive to EM. 3'-O-(4-benzoylbenzoyl)-ATP evoked an Ca(2+)(o)-dependent [Ca(2+)](i) response even in the presence of verapamil or the absence of extracellular Na(+), and this response was almost completely abolished by EM pretreatment. RT-PCR analyses revealed that P2X(4) as well as P2Y(2), P2Y(4), and P2Y(6) are coexpressed in this cell line. These results suggest that in A549 cells 1) the coexpressed P2X(4) and P2Y(2)/P2Y(4) subtypes contribute to the ATP-induced [Ca(2+)](i) spike and 2) EM selectively inhibits Ca(2+) influx through the P2X channel. This action of EM may underlie its clinical efficacy in the treatment of airway inflammation.  相似文献   

19.
In most nonexcitable cells, calcium (Ca(2+)) release from inositol 1,4,5-trisphosphate (InsP(3))-sensitive intracellular Ca(2+) stores is coupled to Ca(2+) influx (calcium release-activated channels (I(CRAC))) pathway. Despite intense investigation, the molecular identity of I(CRAC) and the mechanism of its activation remain poorly understood. InsP(3)-dependent miniature calcium channels (I(min)) display functional properties characteristic for I(CRAC). Here we used patch clamp recordings of I(min) channels in human carcinoma A431 cells to demonstrate that I(min) activity was greatly enchanced in the presence of anti-phosphatidylinositol 4, 5-bisphosphate antibody (PIP(2)Ab) and diminished in the presence of PIP(2). Anti-PIP(2) antibody induced a greater than 6-fold increase in I(min) sensitivity for InsP(3) activation and an almost 4-fold change in I(min) maximal open probability. The addition of exogenous PIP(2) vesicles to the cytosolic surface of inside-out patches inhibited I(min) activity. These results lead us to propose an existence of a Ca(2+) influx pathway in nonexcitable cells activated via direct conformational coupling with a selected population of InsP(3) receptors, located just underneath the plasma membrane and coupled to PIP(2). The described pathway provides for a highly compartmentalized Ca(2+) influx and intracellular Ca(2+) store refilling mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号