首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecological and evolutionary processes are affected by forces acting at both local and regional scales, yet our understanding of how these scales interact has remained limited. These processes are fundamentally linked through individuals that develop as juveniles in one environment and then either remain in the natal habitat or disperse to new environments. Empirical studies in a diverse range of organisms have demonstrated that the conditions experienced in the natal habitat can have profound effects on the adult phenotype. This environmentally induced phenotypic variation can in turn affect the probability that an individual will disperse to a new environment and the ecological and evolutionary impact of that individual in the new environment. We synthesize the literature on this process and propose a framework for exploring the linkage between local developmental environment and dispersal. We then discuss the ecological and evolutionary implications of dispersal asymmetries generated by the effects of natal habitat conditions on individual phenotypes. Our review indicates that the influence of natal habitat conditions on adult phenotypes may be a highly general mechanism affecting the flow of individuals between populations. The wealth of information already gathered on how local conditions affect adult phenotype can and should be integrated into the study of dispersal as a critical force in ecology and evolution.  相似文献   

2.
When provisioning offspring, mothers balance the benefits of producing a few large, fitter offspring with the costs of decreased fecundity. The optimal balance between offspring size and fecundity depends on the environment. Theory predicts that larger offspring have advantages in adverse conditions, but in favorable conditions size is less important. Thus, if environmental quality varies, selection should favor mothers that adaptively allocate resources in response to local conditions to maximize maternal fitness. In the bryozoan Bugula neritina, we show that the intensity of intraspecific competition dramatically changes the offspring size/performance relationship in the field. In benign or extremely competitive environments, offspring size is less important, but at intermediate levels of competition, colonies from larger larvae have higher performance than colonies from smaller larvae. We predicted mothers should produce larger offspring when intermediate competition is likely and tested these expectations in the field by manipulating the density of brood colonies. Our findings matched expectations: mothers produced larger larvae at high densities and smaller larvae at low densities. In addition, mothers from high-density environments produced larvae that have higher dispersal potential, which may enable offspring to escape crowded environments. It appears mothers can adaptively adjust offspring size to maximize maternal fitness, altering the offspring phenotype across multiple life-history stages.  相似文献   

3.
Knowledge of heritability and genetic correlations are of central importance in the study of adaptive trait evolution and genetic constraints. We use a paternal half-sib-full-sib breeding design to investigate the genetic architecture of three life-history and morphological traits in the seed beetle, Callosobruchus maculatus. Heritability was significant for all traits under observation and genetic correlations between traits (r(A)) were low. Interestingly, we found substantial sex-specific genetic effects and low genetic correlations between sexes (r(MF)) in traits that are only moderately (weight at emergence) to slightly (longevity) sexually dimorphic. Furthermore, we found an increased sire ([Formula: see text]) compared to dam ([Formula: see text]) variance component within trait and sex. Our results highlight that the genetic architecture even of the same trait should not be assumed to be the same for males and females. Furthermore, it raises the issue of the presence of unnoticed environmental effects that may inflate estimates of heritability. Overall, our study stresses the fact that estimates of quantitative genetic parameters are not only population, time, environment, but also sex specific. Thus, extrapolation between sexes and studies should be treated with caution.  相似文献   

4.
Do complex life histories affect the conditions under which competitors can coexist? We investigated this using a two-species, two-stage Ricker model. With complex life cycles, the competition coefficients associated with each life-history stage suggest one of three competitive outcomes-coexistence, alternate stable states, or competitive exclusion-that depend on the relative magnitudes of intraspecific and interspecific competition. When the two stages suggest the same outcome, only that outcome can occur. When the stages suggest different outcomes, either one may prevail. It is also possible to have emergent outcomes, in which the outcome is not suggested by either stage. This can occur when the two stages suggest competitive exclusion by opposite species or when one stage suggests alternate stable states and the other suggests coexistence. Therefore, determining the mechanisms of coexistence in species with complex life histories may require consideration of competitive interactions within all life-history stages.  相似文献   

5.
Naturalists and scientists have been captivated by the diversity of marine larval forms since they were discovered following the advent of the microscope. Because they often bear little resemblance to adults, larvae were identified initially as new life forms, classified into different groups based on the similarity of their body plans and given new names that are still with us today. The radically different body plans and lifestyles of marine larvae and adults have led most investigators historically to study the two phases of complex life cycles in isolation. More recently, important ecological insights have sprung from taking a holistic view of marine life cycles. Meanwhile, the evolutionary (phenotypic and genetic) links among life-history phases remain less appreciated. In this review, our objective is to evaluate the evolutionary links within marine life cycles, and explore their ecological and evolutionary consequences. We provide a brief overview of marine life histories, discuss the phenotypic and genetic links between the two phases of the life cycle and pose challenges to advance our understanding of the evolutionary constraints acting on marine life histories.  相似文献   

6.
Understanding how population sizes vary over time is a key aspect of ecological research.Unfortunately,our understanding of population dynamics has historically been based on an assumption that individuals are identical with homogenous life-history properties.This assumption is certainly false for most natural systems,raising the question of what role individual variation plays in the dynamics of populations.While there has been an increase of interest regarding the effects of within populatien variation on the dynamics of single populations,there has been little study of the effects of differences in within population variation on patterns observed across populations.We found that life-history differences (clutch size) among individuals explained the majority of the variation observed in the degree to which population sizes of eastern fence lizards Sceloporus undulatus fluctuated.This finding suggests that differences across populations cannot be understood without an examination of differences at the level of a system rather than at the level of the individual [Current Zoology 58 (2):358-362,2012].  相似文献   

7.
The early life‐history of Chinese rock carp Procypris rabaudi was investigated during a 56‐day rearing period: 318 artificially propagated P. rabaudi larvae were reared throughout metamorphosis in a small‐scale recirculation system (345 L water volume, 10 × 18 L rearing tanks, 150 L storage and filter compartment with bioballs, 20–30 larvae L?1) at the Institute of Hydrobiology, Wuhan, Hubei Province, China. The newly hatched larvae had an initial total length of 8.93 ± 0.35 mm SD (n = 10) at 3 days post‐hatch and reached an average total length of 33.29 mm (±1.88 mm SD, n = 10) 56 days after hatching. Length increment averaged 0.45 mm day?1, resulting in a mean growth of 24.4 mm within the 56‐day period. High mortality rates of up to 92% derived from an introduced fungus infection and subsequent treatment stress with malachite green. Our results indicate that Chinese rock carp can be raised successfully from artificially fertilized eggs. We therefore assume this species to be a candidate for commercial aquaculture.  相似文献   

8.
Inbreeding depression, asymmetries in costs or benefits of dispersal, and the mating system have been identified as potential factors underlying the evolution of sex-biased dispersal. We use individual-based simulations to explore how the mating system and demographic stochasticity influence the evolution of sex-specific dispersal in a metapopulation with females competing over breeding sites, and males over mating opportunities. Comparison of simulation results for random mating with those for a harem system (locally, a single male sires all offspring) reveal that even extreme variance in local male reproductive success (extreme male competition) does not induce male-biased dispersal. The latter evolves if the between-patch variance in reproductive success is larger for males than females. This can emerge due to demographic stochasticity if the habitat patches are small. More generally, members of a group of individuals experiencing higher spatio-temporal variance in fitness expectations may evolve to disperse with greater probability than others.  相似文献   

9.
In many species, certain life-history stages are difficult or impossible to observe directly, hampering management. Often more easily observed stages are monitored instead, but the extent to which various forms of uncertainty cloud our ability to discern trends in one critical life-history stage by observing another is poorly studied. We develop a stochastic simulation model for threatened California coho salmon Oncorhynchus kisutch to examine how well trends in one stage can be detected from observations of another. In particular, we use the model to examine the effect density dependence has on our ability to detect trends. We present a structural form for the transition between life-history stages that encompasses the common functional forms: density independence, Beverton–Holt compensatory density dependence and Ricker-type over-compensation. In small populations, such density dependence is often ignored. However, it may in fact be extremely important, for example if population decline was caused by a decrease in carrying capacity. Our results show that density dependence in any life-history transition significantly reduces the ability to detect trends in abundance; critical but inaccessible stages cannot generally be studied by monitoring more easily observed stages, especially if density dependence is present for any life-cycle transition.  相似文献   

10.
To evaluate the importance of non-consumptive effects of predators on prey life histories under natural conditions, an index of predator abundance was developed for naturally occurring populations of a common prey fish, the yellow perch Perca flavescens, and compared to life-history variables and rates of prey energy acquisition and allocation as estimated from mass balance models. The predation index was positively related to maximum size and size at maturity in both male and female P. flavescens, but not with life span or reproductive investment. The predation index was positively related to size-adjusted specific growth rates and growth efficiencies but negatively related to model estimates of size-adjusted specific consumption and activity rates in both vulnerable (small) and invulnerable (large) size classes of P. flavescens. These observations suggest a trade-off between growth and activity rates, mediated by reduced activity in response to increasing predator densities. Lower growth rates and growth efficiencies in populations with fewer predators, despite increased consumption suggests either 1) a reduction in prey resources at lower predator densities or 2) an intrinsic cost of rapid prey growth that makes it unfavourable unless offset by a perceived threat of predation. This study provides evidence of trade-offs between growth and activity rates induced by predation risk in natural prey fish populations and illustrates how behavioural modification induced through predation can shape the life histories of prey fish species.  相似文献   

11.
12.
1. It has been suggested that immune defences are shaped by life history and ecology, but few general patterns have been described across species. We hypothesized that 'fast' life-history traits (e.g. short development times, large clutch sizes) would be associated with developmentally inexpensive immune defences, minimizing the resource demands of young animals' immune systems during periods of rapid growth. Conversely, 'slow' life histories should be associated with well developed antibody-mediated defences, which are developmentally costly. 2. We therefore predicted that 'fast-living' species would exhibit higher levels of complement proteins, a component of non-specific innate defence, but lower levels of constitutive ('natural') antibodies. Additionally, we predicted that constitutive immune defences in general would be higher in species with ecological characteristics that might increase exposure to pathogens, such as open nests, omnivorous diets, gregariousness, and closed forested habitat. 3. Across 70 Neotropical bird species, we found a strongly positive relationship between incubation period and natural antibody levels in adult birds, suggesting that longer developmental times might allow the production of a more diverse and/or more reactive adaptive immune system. Complement activity was positively, although weakly, correlated with clutch size, providing some support for the hypothesis that faster-living species rely more on innate defences, such as complement. Unexpectedly, solitary species had higher natural antibody titres than species that frequently join flocks. 4. Our results suggest that, despite probably widespread differences in the intensity and diversity of pathogen exposure, species-level variation in constitutive immune defences is understandable within the context of life-history theory.  相似文献   

13.
Despite significant advances in our knowledge of how testosterone mediates life-history trade-offs, this research has primarily focused on seasonal taxa. We know comparatively little about the relationship between testosterone and life-history stages for non-seasonally breeding species. Here we examine testosterone profiles across the life span of males from three non-seasonally breeding primates: yellow baboons (Papio cynocephalus or P. hamadryas cynocephalus), chacma baboons (Papio ursinus or P. h. ursinus), and geladas (Theropithecus gelada). First, we predict that testosterone profiles will track the reproductive profiles of each taxon across their respective breeding years. Second, we evaluate age-related changes in testosterone to determine whether several life-history transitions are associated with these changes. Subjects include males (> 2.5 years) from wild populations of each taxon from whom we had fecal samples for hormone determination. Although testosterone profiles across taxa were broadly similar, considerable variability was found in the timing of two major changes: (1) the attainment of adult levels of testosterone and (2) the decline in testosterone after the period of maximum production. Attainment of adult testosterone levels was delayed by 1 year in chacmas compared with yellows and geladas. With respect to the decline in testosterone, geladas and chacmas exhibited a significant drop after 3 years of maximum production, while yellows declined so gradually that no significant annual drop was ever detected. For both yellows and chacmas, increases in testosterone production preceded elevations in social dominance rank. We discuss these differences in the context of ecological and behavioral differences exhibited by these taxa.  相似文献   

14.
The densities of chemoautotrophic and methanotrophic symbiont morphotypes were determined in life- history stages (post-larvae, juveniles, adults) of two species of mussels (Bathymodiolus azoricus and B. heckerae) from deep-sea chemosynthetic environments (the Lucky Strike hydrothermal vent and the Blake Ridge cold seep) in the Atlantic Ocean. Both symbiont morphotypes were observed in all specimens and in the same relative proportions, regardless of life-history stage. The relative abundance of symbiont morphotypes, determined by transmission electron microscopy, was different in the two species: chemoautotrophs were dominant (13:1-18:1) in B. azoricus from the vent site; methanotrophs were dominant (2:1-3:1) in B. heckerae from the seep site. The ratio of CH4:H2S is proposed as a determinant of the relative abundance of symbiont types: where CH4:H2S is less than 1, as at the Lucky Strike site, chemoautotrophic symbionts dominate; where CH4:H2S is greater than 2, as at the seep site, methanotrophs dominate. Organic carbon and nitrogen isotopic compositions of B. azoricus (delta 13C = -30 per thousand; delta 15N = -9 per thousand) and B. heckerae (delta 13C = -56 per thousand; delta 15N = -2 per thousand) varied little among life-history stages and provided no record of a larval diet of photosynthetically derived organic material in the post-larval and juvenile stages.  相似文献   

15.
Franks  Steven J. 《Plant Ecology》2003,168(1):1-11
Garden experiments focused on vegetative regeneration were carried out with four invasive taxa of the genus Reynoutria (R. japonica var. japonica, R. japonica var. compacta, R. sachalinensis and a hybrid between R. sachalinensis and R. japonica var. japonica, R. ×bohemica). Regeneration ability of stems and rhizomes, timing of shoot emergence and biomass production were studied under the following treatments: laid horizontally on the soil surface; placed upright; buried in the soil; floating in water. Two different soils (sand and garden loam) representing contrasting nutrient levels were applied. Differences were found in the capability and speed of regeneration, as well as in the quality of shoots produced. Regeneration from stems was less efficient than that from rhizomes in all taxa except R. sachalinensis. R. ×bohemica exhibits higher regeneration potential (61%) than all other taxa and can be considered as the most successful taxon of the Czech representatives of the genus Reynoutria in terms of regeneration and establishment of new shoots. High regeneration capacity was also exhibited by R. japonica var. compacta (52%). Other taxa showed generally lower regeneration rates (R. japonica var. japonica 39% and R. sachalinensis 21%), but under some treatments the percentage of regenerated segments was high, too. R. japonica var. japonica rhizomes regenerated successfully in all three soil treatments but not in the water. An opposite pattern was found for its stems: they regenerated well if exposed to water treatment but in the soil, they did not regenerate at all. Particular taxa responded to the soil type in a contrasting way. R. sachalinensis and R. ×bohemica regenerated better in loam while the opposite was true in R. japonica var. japonica. R. japonica var. compacta produced the tallest and R. ×bohemica the heaviest and most robust shoots. It is concluded that rhizomes are more crucial than stems for the spread of knotweeds through fragmentation and clonal growth, suggesting the importance of soil disturbance.  相似文献   

16.
17.
18.
Many biological consequences of external mechanical loads applied to cells depend on localized cell deformations rather than on average whole-cell-body deformations. Such localized intracellular deformations are likely to depend, in turn, on the individual geometrical features of each cell, e.g., the local surface curvatures or the size of the nucleus, which always vary from one cell to another, even within the same culture. Our goal here was to characterize cell-to-cell variabilities in magnitudes and distribution patterns of localized tensile strains that develop in the plasma membrane (PM) and nuclear surface area (NSA) of compressed myoblasts, in order to identify resemblance or differences in mechanical performances across the cells. For this purpose, we utilized our previously developed confocal microscopy-based three-dimensional cell-specific finite element modeling methodology. Five different C2C12 undifferentiated cells belonging to the same culture were scanned confocally and modeled, and were then subjected to compression in the simulation setting. We calculated the average and peak tensile strains in the PM and NSA, the percentage of PM area subjected to tensile strains above certain thresholds and the coefficient of variation (COV) in average and peak strains. We found considerable COV values in tensile strains developing at the PM and NSA (up to ~35%) but small external compressive deformations induced greater variabilities in intracellular strains across cells compared to large deformations. Interestingly, the external deformations needed to cause localized PM or NSA strains exceeding each threshold were very close across the different cells. Better understanding of variabilities in mechanical performances of cells-either of the same type or of different types-is important for interpreting experimental data in any experiments involving delivery of mechanical loads to cells.  相似文献   

19.
Legume-based cropping systems have the potential to internally regulate N cycling due to the suppressive effect of soil N availability on biological nitrogen fixation. We used a gradient of endogenous soil N levels resulting from different management legacies and soil textures to investigate the effects of soil organic matter dynamics and N availability on soybean (Glycine max) N2 fixation. Soybean N2 fixation was estimated on 13 grain farm fields in central New York State by the 15N natural abundance method using a non-nodulating soybean reference. A range of soil N fractions were measured to span the continuum from labile to more recalcitrant N pools. Soybean reliance on N2 fixation ranged from 36% to 82% and total N2 fixed in aboveground biomass ranged from 40 to 224 kg N ha?1. Soil N pools were consistently inversely correlated with % N from fixation and the correlation was statistically significant for inorganic N and occluded particulate organic matter N. However, we also found that soil N uptake by N2-fixing soybeans relative to the non-nodulating isoline increased as soil N decreased, suggesting that N2 fixation increased soil N scavenging in low fertility fields. We found weak evidence for internal regulation of N2 fixation, because the inhibitory effects of soil N availability were secondary to the environmental and site characteristics, such as soil texture and corresponding soil characteristics that vary with texture, which affected soybean biomass, total N2 fixation, and net N balance.  相似文献   

20.
We consider the potential of applying wavelet analysis to fluctuations found in physiological systems. We focus on cardiac interbeat interval time series (RR-intervals) from a group of young adults and children and fetus heart beat rate time series (antepartum cardiotocography), because the wavelet analysis of these heart rate dynamics may provide important practical diagnostic and prognostic information not obtainable with current approaches. We show that all the signals analyzed are self-similar and propose a method for estimating this scaling feature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号